1
|
Shi LJ, Li CC, Zhang XT, Lin YC, Wang YP, Zhang JC. Application of HFO and scaling analysis of neuronal oscillations in the presurgical evaluation of focal epilepsy. Brain Res Bull 2024; 215:111018. [PMID: 38908759 DOI: 10.1016/j.brainresbull.2024.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE To explore the utility of high frequency oscillations (HFO) and long-range temporal correlations (LRTCs) in preoperative assessment of epilepsy. METHODS MEG ripples were detected in 59 drug-resistant epilepsy patients, comprising 5 with parietal lobe epilepsy (PLE), 21 with frontal lobe epilepsy (FLE), 14 with lateral temporal lobe epilepsy (LTLE), and 19 with mesial temporal lobe epilepsy (MTLE) to identify the epileptogenic zone (EZ). The results were compared with clinical MEG reports and resection area. Subsequently, LRTCs were quantified at the source-level by detrended fluctuation analysis (DFA) and life/waiting -time at 5 bands for 90 cerebral cortex regions. The brain regions with larger DFA exponents and standardized life-waiting biomarkers were compared with the resection results. RESULTS Compared to MEG sensor-level data, ripple sources were more frequently localized within the resection area. Moreover, source-level analysis revealed a higher proportion of DFA exponents and life-waiting biomarkers with relatively higher rankings, primarily distributed within the resection area (p<0.01). Moreover, these two LRCT indices across five distinct frequency bands correlated with EZ. CONCLUSION HFO and source-level LRTCs are correlated with EZ. Integrating HFO and LRTCs may be an effective approach for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Li-Juan Shi
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Can-Cheng Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Xia-Ting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing 100053, China
| | - Yi-Cong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing 100053, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Brain Functional Disease and Neuromodulation of Beijing Key Laboratory, Beijing 100053, China.
| | - Ji-Cong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China; Hefei Innovation Research Institute, Beihang University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Mercier M, Pepi C, Carfi-Pavia G, De Benedictis A, Espagnet MCR, Pirani G, Vigevano F, Marras CE, Specchio N, De Palma L. The value of linear and non-linear quantitative EEG analysis in paediatric epilepsy surgery: a machine learning approach. Sci Rep 2024; 14:10887. [PMID: 38740844 PMCID: PMC11091060 DOI: 10.1038/s41598-024-60622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Epilepsy surgery is effective for patients with medication-resistant seizures, however 20-40% of them are not seizure free after surgery. Aim of this study is to evaluate the role of linear and non-linear EEG features to predict post-surgical outcome. We included 123 paediatric patients who underwent epilepsy surgery at Bambino Gesù Children Hospital (January 2009-April 2020). All patients had long term video-EEG monitoring. We analysed 1-min scalp interictal EEG (wakefulness and sleep) and extracted 13 linear and non-linear EEG features (power spectral density (PSD), Hjorth, approximate entropy, permutation entropy, Lyapunov and Hurst value). We used a logistic regression (LR) as feature selection process. To quantify the correlation between EEG features and surgical outcome we used an artificial neural network (ANN) model with 18 architectures. LR revealed a significant correlation between PSD of alpha band (sleep), Mobility index (sleep) and the Hurst value (sleep and awake) with outcome. The fifty-four ANN models gave a range of accuracy (46-65%) in predicting outcome. Within the fifty-four ANN models, we found a higher accuracy (64.8% ± 7.6%) in seizure outcome prediction, using features selected by LR. The combination of PSD of alpha band, mobility and the Hurst value positively correlate with good surgical outcome.
Collapse
Affiliation(s)
- Mattia Mercier
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
- Department of Physiology, Behavioural Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Chiara Pepi
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Giusy Carfi-Pavia
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | | | - Greta Pirani
- Department of Mechanical and Aerospace Engineering - DIMA, Sapienza University of Rome, Rome, Italy
| | - Federico Vigevano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy.
| | - Luca De Palma
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
3
|
Hu M, Zhang H, Ang KK. Brain Criticality EEG analysis for tracking neurodevelopment from Childhood to Adolescence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082967 DOI: 10.1109/embc40787.2023.10340775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The brain criticality hypothesis suggests that neural networks and multiple aspects of brain activity self-organize into a critical state, and criticality marks the transition between ordered and disordered states. This hypothesis is appealing from computer science perspective because neural networks at criticality exhibit optimal processing and computing properties while having implications in clinical applications to neurological disorders. In this paper, we introduced brain criticality analysis to track neurodevelopment from childhood to adolescence using the electroencephalogram (EEG) data of 662 subjects aged 5 to 16 years from the Child Mind Institute. We computed brain criticality from long-range temporal correlation (LRTC) using detrended fluctuation analysis (DFA). We also compared the brain criticality analysis with standard EEG power analysis. The results showed a statistically significant increase in brain criticality from childhood to adolescence in the alpha band. A decreasing trend was observed in theta band from EEG power analysis, but a much higher variance was observed compared to the brain criticality analysis. However, the significant results were only observed in some EEG channels, and not observed if the analysis were performed separately with eyes-open and eyes-close condition. Nonetheless, the results suggest that brain criticality may serve as a biomarker of brain development and maturation, but further research is needed to improve brain criticality algorithms and EEG analysis methods.Clinical Relevance- The brain criticality analysis may be used to characterize and predict neurodevelopment in early childhood.
Collapse
|
4
|
Gervais C, Boucher LP, Villar GM, Lee U, Duclos C. A scoping review for building a criticality-based conceptual framework of altered states of consciousness. Front Syst Neurosci 2023; 17:1085902. [PMID: 37304151 PMCID: PMC10248073 DOI: 10.3389/fnsys.2023.1085902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
The healthy conscious brain is thought to operate near a critical state, reflecting optimal information processing and high susceptibility to external stimuli. Conversely, deviations from the critical state are hypothesized to give rise to altered states of consciousness (ASC). Measures of criticality could therefore be an effective way of establishing the conscious state of an individual. Furthermore, characterizing the direction of a deviation from criticality may enable the development of treatment strategies for pathological ASC. The aim of this scoping review is to assess the current evidence supporting the criticality hypothesis, and the use of criticality as a conceptual framework for ASC. Using the PRISMA guidelines, Web of Science and PubMed were searched from inception to February 7th 2022 to find articles relating to measures of criticality across ASC. N = 427 independent papers were initially found on the subject. N = 378 were excluded because they were either: not related to criticality; not related to consciousness; not presenting results from a primary study; presenting model data. N = 49 independent papers were included in the present research, separated in 7 sub-categories of ASC: disorders of consciousness (DOC) (n = 5); sleep (n = 13); anesthesia (n = 18); epilepsy (n = 12); psychedelics and shamanic state of consciousness (n = 4); delirium (n = 1); meditative state (n = 2). Each category included articles suggesting a deviation of the critical state. While most studies were only able to identify a deviation from criticality without being certain of its direction, the preliminary consensus arising from the literature is that non-rapid eye movement (NREM) sleep reflects a subcritical state, epileptic seizures reflect a supercritical state, and psychedelics are closer to the critical state than normal consciousness. This scoping review suggests that, though the literature is limited and methodologically inhomogeneous, ASC are characterized by a deviation from criticality, though its direction is not clearly reported in a majority of studies. Criticality could become, with more extensive research, an effective and objective way to characterize ASC, and help identify therapeutic avenues to improve criticality in pathological brain states. Furthermore, we suggest how anesthesia and psychedelics could potentially be used as neuromodulation techniques to restore criticality in DOC.
Collapse
Affiliation(s)
- Charles Gervais
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
| | - Louis-Philippe Boucher
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - Guillermo Martinez Villar
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - UnCheol Lee
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Catherine Duclos
- Centre for Advanced Research in Sleep Medicine & Integrated Trauma Centre, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal, Montréal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, QC, Canada
- CIFAR Azrieli Global Scholars Program, Toronto, ON, Canada
| |
Collapse
|
5
|
Auno S, Lauronen L, Wilenius J, Peltola M, Vanhatalo S, Palva JM. Detrended fluctuation analysis in the presurgical evaluation of parietal lobe epilepsy patients. Clin Neurophysiol 2021; 132:1515-1525. [PMID: 34030053 DOI: 10.1016/j.clinph.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the usability of long-range temporal correlations (LRTCs) in non-invasive localization of the epileptogenic zone (EZ) in refractory parietal lobe epilepsy (RPLE) patients. METHODS We analyzed 10 RPLE patients who had presurgical MEG and underwent epilepsy surgery. We quantified LRTCs with detrended fluctuation analysis (DFA) at four frequency bands for 200 cortical regions estimated using individual source models. We correlated individually the DFA maps to the distance from the resection area and from cortical locations of interictal epileptiform discharges (IEDs). Additionally, three clinical experts inspected the DFA maps to visually assess the most likely EZ locations. RESULTS The DFA maps correlated with the distance to resection area in patients with type II focal cortical dysplasia (FCD) (p<0.05), but not in other etiologies. Similarly, the DFA maps correlated with the IED locations only in the FCD II patients. Visual analysis of the DFA maps showed high interobserver agreement and accuracy in FCD patients in assigning the affected hemisphere and lobe. CONCLUSIONS Aberrant LRTCs correlate with the resection areas and IED locations. SIGNIFICANCE This methodological pilot study demonstrates the feasibility of approximating cortical LRTCs from MEG that may aid in the EZ localization and provide new non-invasive insight into the presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Sami Auno
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Leena Lauronen
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Juha Wilenius
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital(HUH), Helsinki, Finland
| | - Maria Peltola
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Zimmern V. Why Brain Criticality Is Clinically Relevant: A Scoping Review. Front Neural Circuits 2020; 14:54. [PMID: 32982698 PMCID: PMC7479292 DOI: 10.3389/fncir.2020.00054] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The past 25 years have seen a strong increase in the number of publications related to criticality in different areas of neuroscience. The potential of criticality to explain various brain properties, including optimal information processing, has made it an increasingly exciting area of investigation for neuroscientists. Recent reviews on this topic, sometimes termed brain criticality, make brief mention of clinical applications of these findings to several neurological disorders such as epilepsy, neurodegenerative disease, and neonatal hypoxia. Other clinicallyrelevant domains - including anesthesia, sleep medicine, developmental-behavioral pediatrics, and psychiatry - are seldom discussed in review papers of brain criticality. Thorough assessments of these application areas and their relevance for clinicians have also yet to be published. In this scoping review, studies of brain criticality involving human data of all ages are evaluated for their current and future clinical relevance. To make the results of these studies understandable to a more clinical audience, a review of the key concepts behind criticality (e.g., phase transitions, long-range temporal correlation, self-organized criticality, power laws, branching processes) precedes the discussion of human clinical studies. Open questions and forthcoming areas of investigation are also considered.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
8
|
Abstract
The study of the dependences between different assets is a classic topic in financial literature. To understand how the movements of one asset affect to others is critical for derivatives pricing, portfolio management, risk control, or trading strategies. Over time, different methodologies were proposed by researchers. ARCH, GARCH or EGARCH models, among others, are very popular to model volatility autocorrelation. In this paper, a new simple method called HP is introduced to measure the co-movement between two time series. This method, based on the Hurst exponent of the product series, is designed to detect correlation, even if the relationship is weak, but it also works fine with cointegration as well as non linear correlations or more complex relationships given by a copula. This method and different variations thereaof are tested in statistical arbitrage. Results show that HP is able to detect the relationship between assets better than the traditional correlation method.
Collapse
|
9
|
Tarnopolski M. Analytical representation of Gaussian processes in the A-T plane. Phys Rev E 2019; 100:062144. [PMID: 31962435 DOI: 10.1103/physreve.100.062144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Closed-form expressions, parametrized by the Hurst exponent H and the length n of a time series, are derived for paths of fractional Brownian motion (fBm) and fractional Gaussian noise (fGn) in the A-T plane, composed of the fraction of turning points T and the Abbe value A. The exact formula for A_{fBm} is expressed via Riemann ζ and Hurwitz ζ functions. A very accurate approximation, yielding a simple exponential form, is obtained. Finite-size effects, introduced by the deviation of fGn's variance from unity, and asymptotic cases are discussed. Expressions for T for fBm, fGn, and differentiated fGn are also presented. The same methodology, valid for any Gaussian process, is applied to autoregressive moving average processes, for which regions of availability of the A-T plane are derived and given in analytic form. Locations in the A-T plane of some real-world examples as well as generated data are discussed for illustration.
Collapse
Affiliation(s)
- Mariusz Tarnopolski
- Astronomical Observatory, Jagiellonian University, Orla 171, PL-30-244 Kraków, Poland
| |
Collapse
|