1
|
Hua D, Gu J, Xie F, Xu Y, Li Z, Zheng H, Chen Z. To explore the protective effect and mechanism of KLF7 overexpression on retinal ganglion cells after optic nerve crush in mice. Eur J Ophthalmol 2024:11206721241297023. [PMID: 39513284 DOI: 10.1177/11206721241297023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE To investigate the protective effect and mechanism of Krüppel-like factor 7 (KLF7) on retinal ganglion cells (RGCs) after optic nerve crush (ONC). METHODS Ninety 10-week-old C57BL/6J mice were randomly assigned to five groups. The blank control group (group A), IVT (intravitreal injection) of KLF7 (group B), IVT of phosphate-buffered saline after ONC (group C), IVT of KLF7 after ONC (group D), and IVT of green fluorescent protein after ONC (group E). Retinal electroretinography and immunofluorescence staining were performed to observe the function and survival rate of RGCs on days 3 and 7 after ONC. The Western Blot determined the expressions of JNK 1, ERK, P38, NF-κB, IL-1, IL-6, and TNF-α seven days after ONC. RESULTS After ONC, KLF7 gradually increased from day 3 to day 14, with the peak noted a peak on day 7. On day 7 after ONC, the RGC survival rate in Group D was significantly higher than in groups C (P = 0.028) and E (P = 0.007). The negative PhNR wave amplitude significantly decreased in groups C (P = 0.03) and E (P = 0.04) compared to group D. Moreover, group D also showed significantly higher ERK levels among the groups (all P < 0.01); NF-κB, IL-1, IL-6, and TNF-α expression decreased significantly in group D compared with groups C and E (all P < 0.01). CONCLUSIONS Overexpression of KLF7 improved the survival rate and function of RGCs in mice ONC models by activating the ERK pathway and inhibiting relevant inflammatory factors. KLF7 may be a promising protective factor against optic nerve damage.
Collapse
Affiliation(s)
- Dihao Hua
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Jingsai Gu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Feijia Xie
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Yishuang Xu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Zongyuan Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongmei Zheng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Huibei, China
| |
Collapse
|
2
|
Liu X, Hu Z, Huang Y, Hu L, Lu J, Chen M, Xue H, Ma S, Wan J, Hu J. Advances in novel biomaterials combined with traditional Chinese medicine rehabilitation technology in treatment of peripheral nerve injury. Front Neurol 2024; 15:1421772. [PMID: 38938781 PMCID: PMC11208681 DOI: 10.3389/fneur.2024.1421772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Peripheral nerve injuries (PNI) represent one of the primary neuropathies leading to lifelong disability. Nerve regeneration and targeted muscle atrophy stand as the two most crucial factors influencing functional rehabilitation post peripheral nerve injury. Over time, traditional Chinese medicine (TCM) rehabilitation approaches such as acupuncture, Tuina, and microneedles serve as pivot means to activate the regeneration of injured nerve Schwann cells. By promoting axon regeneration, these approaches can accomplish nerve repair, reconstruction, and functional rehabilitation. Although TCM rehabilitation approaches have clinically demonstrated effectiveness in promoting the repair and regeneration of PNI, the related molecular mechanisms remain unclear. This significantly hampers the application and promotion of TCM rehabilitation in PNI recovery. Therefore, deeply delving into the cellular and molecular mechanisms of TCM rehabilitation technologies to foster nerve regeneration stands as the most pressing issue. On the other hand, in recent years, novel biomaterials represented by hydrogels, microfluidic platforms, and new chitosan scaffolds have showed their unique roles in treating various degrees of nerve injury. These methods exhibit immense potential in conducting high-throughput cell and organoid culture in vitro and synthesizing diverse tissue engineering scaffolds and drug carriers. We believe that the combination of TCM rehabilitation technology and novel biomaterials can more effectively address precise treatment issues such as identification of treatment target and dosage control. Therefore, this paper not only summarizes the molecular mechanisms of TCM rehabilitation technology and novel biomaterials in treating peripheral nerve injury individually, but also explores the research direction of precise treatment by integrating the two at both macro and micro levels. Such integration may facilitate the exploration of cellular and molecular mechanisms related to neurodegeneration and regeneration, providing a scientific and theoretical foundation for the precise functional rehabilitation of PNI in the future.
Collapse
Affiliation(s)
- Xinhao Liu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zekai Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yixiao Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lelun Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinnuo Lu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengning Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Xue
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shujie Ma
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jie Wan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Hu
- The Second Rehabilitation Hospital of Shanghai, Shanghai, China
| |
Collapse
|
3
|
Chen G, Wang S, Wei R, Liu Y, Xu T, Liu Z, Tan Z, Xie Y, Yang D, Liang Z, Zhuang Y, Peng S. Circular RNA circ-3626 promotes bone formation by modulating the miR-338-3p/Runx2 axis. Joint Bone Spine 2024; 91:105669. [PMID: 38042362 DOI: 10.1016/j.jbspin.2023.105669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Disorders of bone homeostasis are the key factors leading to metabolic bone disease, such as senile osteoporosis, which is characterized by age-related bone loss. Bone marrow stromal cells (BMSCs) possess high osteogenic capacity which has been regarded as a practical approach to preventing bone loss. Previous studies have shown that the osteogenic differentiation ability of BMSCs is significantly decreased in senile osteoporosis. Recently, circular RNAs (circRNAs) have been regarded as critical regulators in controlling the osteogenic differentiation of BMSCs by sponging microRNAs (miRNAs). Our study aimed to discover new and critical osteogenesis-related circRNAs that can promote bone formation in senile osteoporosis. METHODS We detected the dysregulated circRNAs of BMSCs upon osteogenic differentiation induction and identified the critical osteogenic circRNA (circ-3626). The relationship between circ-3626 and osteoporosis was further verified in clinical bone samples and aged mice by qPCR. Moreover, circ-3626 AAV was constructed to examine the osteogenic effect of circ-3626 on bone formation via using Micro-CT, double calcein labeling, and the three-point bending tests. Bioinformatics analysis, Luciferase report gene assays, FISH, RNA pull-down, qPCR, Western Blots, and alizarin red staining assay explore the effects and mechanisms of circ-3626 on osteogenic differentiation of BMSCs. RESULTS Circ-3626 was identified as a pivotal osteogenesis-related circRNA via RNA sequencing. The results of alizarin red staining, Western blots, and qPCR assays suggest that overexpressing circ-3626 dramatically accelerates the osteogenic capability of BMSCs. Furthermore, the bone repair capability of aging mice could be significantly improved by circ-3626 AAV treatment. Micro RNA miR-338-3p was identified as the downstream target of circ-3626. Overexpression of circ-3626 increases the expression of Runx2 by sponging miR-338-3p, thereby promoting the osteogenic differentiation of BMSCs by upregulating the expression of osteogenic genes. In addition, Western blots, and qPCR assays suggest circ-3626 AAV treatment promote the expression of Runx2 and osteogenic marker genes. CONCLUSION Thus, we demonstrate that circ-3626 plays a pivotal role in promoting bone formation through the miR-338-3p/Runx2 axis and may provide new strategies for preventing and treating the bone loss of senile osteoporosis.
Collapse
Affiliation(s)
- Gaoyang Chen
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China.
| | - Song Wang
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Ruihong Wei
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Yingnan Liu
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Tao Xu
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Zhaokang Liu
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Zhouyong Tan
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Yongheng Xie
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Dazhi Yang
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China
| | - Yongqing Zhuang
- Division of Hand, Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China.
| | - Songlin Peng
- Division of Spine Surgery, Department of Orthopedic Surgery, Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology), 518020 Shenzhen, China; Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration (ZDSYS20200811143752005), Shenzhen Institute for Orthopedic Research, 518020 Shenzhen, China.
| |
Collapse
|
4
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
5
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
6
|
MicroRNA-370 as a negative regulator of signaling pathways in tumor cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Li WY, Li ZG, Fu XM, Wang XY, Lv ZX, Sun P, Zhu XF, Wang Y. Transgenic Schwann cells overexpressing POU6F1 promote sciatic nerve regeneration within acellular nerve allografts. J Neural Eng 2022; 19. [PMID: 36317259 DOI: 10.1088/1741-2552/ac9e1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Objective.Acellular nerve allograft (ANA) is an effective surgical approach used to bridge the sciatic nerve gap. The molecular regulators of post-surgical recovery are not well-known. Here, we explored the effect of transgenic Schwann cells (SCs) overexpressing POU domain class 6, transcription factor 1 (POU6F1) on sciatic nerve regeneration within ANAs. We explored the functions of POU6F1 in nerve regeneration by using a cell model of H2O2-induced SCs injury and transplanting SCs overexpressing POU6F1 into ANA to repair sciatic nerve gaps.Approach.Using RNA-seq, Protein-Protein Interaction network analysis, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we identified a highly and differentially expressed transcription factor, POU6F1, following ANA treatment of sciatic nerve gap. Expressing a high degree of connectivity, POU6F1 was predicted to play a role in peripheral nervous system myelination.Main results.To test the role of POU6F1 in nerve regeneration after ANA, we infected SCs with adeno-associated virus-POU6F1, demonstrating that POU6F1 overexpression promotes proliferation, anti-apoptosis, and migration of SCsin vitro. We also found that POU6F1 significantly upregulated JNK1/2 and c-Jun phosphorylation and that selective JNK1/2 inhibition attenuated the effects of POU6F1 on proliferation, survival, migration, and JNK1/2 and c-Jun phosphorylation. The direct interaction of POU6F1 and activated JNK1/2 was subsequently confirmed by co-immunoprecipitation. In rat sciatic nerve injury model with a 10 mm gap, we confirmed the pattern of POU6F1 upregulation and co-localization with transplanted SCs. ANAs loaded with POU6F1-overexpressing SCs demonstrated the enhanced survival of transplanted SCs, axonal regeneration, myelination, and functional motor recovery compared to the ANA group loaded by SCs-only in line within vitrofindings.Significance.This study identifies POU6F1 as a novel regulator of post-injury sciatic nerve repair, acting through JNK/c-Jun signaling in SCs to optimize therapeutic outcomes in the ANA surgical approach.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhi-Gang Li
- The Second Department of General Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical College, Chengde 067000, People's Republic of China.,Hebei Key Laboratory of Nerve Injury and Repair, Chengde 067000, People's Republic of China
| | - Xiao-Yu Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhong-Xiao Lv
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ping Sun
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiao-Feng Zhu
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| |
Collapse
|
8
|
Expression and Clinical Significance of Serum Krüppel-Like Factor 7 (KLF7) in NSCLC Patients. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9270789. [PMID: 35936369 PMCID: PMC9348920 DOI: 10.1155/2022/9270789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is a serious threat to the life and health of patients with high incidence rate and mortality. The present research was to assess the relationship between the serum Krüppel-like factor 7 (KLF7) level and the recurrence and metastasis of NSCLC patients. 150 patients with NSCLC treated by thoracoscopic radical resection of lung cancer in our hospital from January 2016 to February 2017 were selected. As the control group, 148 healthy people who went to the hospital for physical examination in the same period were screened. The expression levels of serum KLF7 in the observation group and the control group were compared and analyzed. According to the level of KLF7 expression, the patients in the observation group were divided into KLF7 high expression group (≥258.6 ng/L, n =75) and KLF7 low expression group (<258.6 ng/L, n =75). The 3-year recurrence and metastasis rate of patients in each group was compared and analyzed. It was found the concentration of serum KLF7 in peripheral blood of NSCLC (2.25 ± 0.65) ng/ml was significantly higher than that in healthy population (1.42 ± 0.38) ng/ml (P < 0.05). The expression level of serum KLF7 was not related to gender, age, smoking history, and tumor diameter of NSCLC patients (P > 0.05), but related to the degree of differentiation and TNM stage of NSCLC patients (P < 0.05). Univariate analysis showed that the degree of differentiation, TNM stage, and KLF7 were significantly correlated with 3-year recurrence and metastasis of NSCLC patients (P < 0.05). Cox regression analysis showed that low degree of differentiation, TNM stage IIIa, and KLF7 were independent risk factors for recurrence and metastasis in NSCLC patients in 3 years (P < 0.05). Taken together, the expression level of serum KLF7 in patients with NSCLC is significantly increased, which is an independent risk factor for recurrence and metastasis in 3 years, and is worthy of clinical application.
Collapse
|
9
|
Chen C, Hu F, Miao S, Sun L, Jiao Y, Xu M, Huang X, Yang Y, Zhou R. Transcription Factor KLF7 Promotes Osteoclast Differentiation by Suppressing HO-1. Front Genet 2022; 13:798433. [PMID: 35419025 PMCID: PMC8995880 DOI: 10.3389/fgene.2022.798433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteoporosis is a common orthopedic disease with high prevalence in patients older than 50 years. Osteoporosis is often detected only after the fracture and is hard to treat. Therefore, it is of great significance to explore the molecular mechanism of the occurrence of osteoporosis. Methods: The expression of Heme oxygenase-1 (HO-1) in people with different bone mineral density (BMD) was analyzed based on public databases. GenHacncer and JASPAR databases were adopted to search and verify the upstream transcription factor of HO-1. qRT-PCR, western blot and tartrate-resistant acid phosphatase assays were performed to explore the impact of HO-1 and Kruppel-like factor 7 (KLF7) on osteoclast differentiation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding relationship between KLF7 and HO-1. Finally, Hemin, the agonist of HO-1, was applied in rescue assays, thereby verifying the mechanism of KLF7 modulating osteoclast differentiation by HO-1. Results: Bioinformatics analysis revealed that HO-1 was highly-expressed while KLF7 lowly-expressed in people with high BMD. Besides, a potential binding site of KLF7 was found on the promoter region of HO-1. ChIP assay further manifested the targeting relationship between HO-1 and KLF7. Western blot and TRAP staining unveiled that osteoclast differentiation was suppressed by HO-1, while facilitated by KLF7. Rescue experiments indicated that over-expressed HO-1 could reverse of the promoting effect of KLF7 on osteoclast differentiation. Conclusion: The study confirmed that osteoclast differentiation was promoted by KLF7 constraining HO-1, thereby facilitating osteoporosis. The cognation of the pathogenesis of osteoporosis was further enriched. New treatment could be developed on this basis.
Collapse
Affiliation(s)
- Changhong Chen
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Fei Hu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Shichang Miao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Liping Sun
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Yajun Jiao
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Mingwei Xu
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Xin Huang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Ying Yang
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Rongkui Zhou
- Department of Orthopedics and Injury, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| |
Collapse
|
10
|
Liu L, Cheng X, Li S. Effect of Krüppel-Like Factor 7 (KLF7) on High Sugar Induced Retinal Ganglion Cell Biological Activity and Oxidative Stress. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated KLF7’s effect on sugar induced retinal ganglion cells (RGCs) biological activity. The RGCs cells divided into blank group (RA), high sugar group (RB), high sugar+NC group (RC) and high sugar+KLF7 group (RD) (transfected with KLF7 mimic) followed by analysis
cell proliferation by MTT, cell apoptosis by flow cytometry and protein expression by western blot and ROS level. RB and RC group showed significantly reduced KLF7 mRNA and protein level compared to RA group (P < 0.05) without different between RB and RC group (P > 0.05).
RD group had significantly increased LKF7 and Sirt1 protein expression (F = 113.3, P < 0.0, 01), reduced cell proliferation (P < 0.05) and increased RGCs apoptosis rate (P < 0.05) compared with RB and RC group. After 24 h, RB and RC group presented significantly
higher ROS level (P < 0.05) which was reduced in RD group (P < 0.05). In conclusion, KLF7 can change sugar induced retinal ganglion cell biological activity and reduce the oxidative stress level.
Collapse
Affiliation(s)
- Lan Liu
- Department of Ophthalmology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Xinchao Cheng
- Department of Ophthalmology, Xianning City Center, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, Hubei Province, 437000, China
| | - Shaomin Li
- Department of Pediatric Ophthalmology, Zhongxiang Aier Eye Hospital, Jingmen City, Hubei Province, 448001, China
| |
Collapse
|
11
|
Chen G, Long C, Wang S, Wang Z, Chen X, Tang W, He X, Bao Z, Tan B, Zhao J, Xie Y, Li Z, Yang D, Xiao G, Peng S. Circular RNA circStag1 promotes bone regeneration by interacting with HuR. Bone Res 2022; 10:32. [PMID: 35361779 PMCID: PMC8971384 DOI: 10.1038/s41413-022-00208-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postmenopausal osteoporosis is a common bone metabolic disorder characterized by deterioration of the bone microarchitecture, leading to an increased risk of fractures. Recently, circular RNAs (circRNAs) have been demonstrated to play pivotal roles in regulating bone metabolism. However, the underlying functions of circRNAs in bone metabolism in postmenopausal osteoporosis remain obscure. Here, we report that circStag1 is a critical osteoporosis-related circRNA that shows significantly downregulated expression in osteoporotic bone marrow mesenchymal stem cells (BMSCs) and clinical bone tissue samples from patients with osteoporosis. Overexpression of circStag1 significantly promoted the osteogenic capability of BMSCs. Mechanistically, we found that circStag1 interacts with human antigen R (HuR), an RNA-binding protein, and promotes the translocation of HuR into the cytoplasm. A high cytoplasmic level of HuR led to the activation of the Wnt signaling pathway by stabilizing and enhancing low-density lipoprotein receptor-related protein 5/6 (Lrp5/6) and β-catenin expression, thereby stimulating the osteogenic differentiation of BMSCs. Furthermore, overexpression of circStag1 in vivo by circStag1-loaded adeno-associated virus (circStag1-AAV) promoted new bone formation, thereby preventing bone loss in ovariectomized rats. Collectively, we show that circStag1 plays a pivotal role in promoting the regeneration of bone tissue via HuR/Wnt signaling, which may provide new strategies to prevent bone metabolic disorders such as postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Canling Long
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shang Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenmin Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Chen
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wanze Tang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoqin He
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiteng Bao
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baoyu Tan
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jin Zhao
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yongheng Xie
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhizhong Li
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Dazhi Yang
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China.
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, 518055, China.
| | - Songlin Peng
- Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, Shenzhen, 518020, China.
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Krüppel-like Transcription Factor 7 Is a Causal Gene in Autism Development. Int J Mol Sci 2022; 23:ijms23063376. [PMID: 35328799 PMCID: PMC8949233 DOI: 10.3390/ijms23063376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disease. To date, more than 1000 genes have been shown to be associated with ASD, and only a few of these genes account for more than 1% of autism cases. Klf7 is an important transcription factor of cell proliferation and differentiation in the nervous system, but whether klf7 is involved in autism is unclear. Methods: We first performed ChIP-seq analysis of klf7 in N2A cells, then performed behavioral tests and RNA-seq in klf7+/− mice, and finally restored mice with adeno-associated virus (AAV)-mediated overexpression of klf7 in klf7+/− mice. Results: Klf7 targeted genes are enriched with ASD genes, and 631 ASD risk genes are also differentially expressed in klf7+/− mice which exhibited the core symptoms of ASD. When klf7 levels were increased in the central nervous system (CNS) in klf7+/− adult mice, deficits in social interaction, repetitive behavior and majority of dysregulated ASD genes were rescued in the adults, suggesting transcriptional regulation. Moreover, knockdown of klf7 in human brain organoids caused dysregulation of 517 ASD risk genes, 344 of which were shared with klf7+/− mice, including some high-confidence ASD genes. Conclusions: Our findings highlight a klf7 regulation of ASD genes and provide new insights into the pathogenesis of ASD and promising targets for further research on mechanisms and treatments.
Collapse
|
13
|
Li WY, Fu XM, Wang ZD, Li ZG, Ma D, Sun P, Liu GB, Zhu XF, Wang Y. Krüppel-like factor 7 attenuates hippocampal neuronal injury after traumatic brain injury. Neural Regen Res 2022; 17:661-672. [PMID: 34380908 PMCID: PMC8504401 DOI: 10.4103/1673-5374.320991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous study has shown that the transcription factor Krüppel-like factor 7 (KLF7) promotes peripheral nerve regeneration and motor function recovery after spinal cord injury. KLF7 also participates in traumatic brain injury, but its regulatory mechanisms remain poorly understood. In the present study, an HT22 cell model of traumatic brain injury was established by stretch injury and oxygen-glucose deprivation. These cells were then transfected with an adeno-associated virus carrying KLF7 (AAV-KLF7). The results revealed that, after stretch injury and oxygen-glucose deprivation, KLF7 greatly reduced apoptosis, activated caspase-3 and lactate dehydrogenase, downregulated the expression of the apoptotic markers B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and cleaved caspase-3, and increased the expression of βIII-tubulin and the antiapoptotic marker Bcl-2. Furthermore, KLF7 overexpression upregulated Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in HT22 cells treated by stretch injury and oxygen-glucose deprivation. Immunoprecipitation assays revealed that KLF7 directly participated in the phosphorylation of STAT3. In addition, treatment with AG490, a selective inhibitor of JAK2/STAT3, weakened the protective effects of KLF7. A mouse controlled cortical impact model of traumatic brain injury was then established. At 30 minutes before modeling, AAV-KLF7 was injected into the ipsilateral lateral ventricle. The protein and mRNA levels of KLF7 in the hippocampus were increased at 1 day after injury and recovered to normal levels at 3 days after injury. KLF7 reduced ipsilateral hippocampal atrophy, decreased the injured cortex volume, downregulated Bax and cleaved caspase-3 expression, and increased the number of 5-bromo-2'-deoxyuridine-positive neurons and Bcl-2 protein expression. Moreover, KLF7 transfection greatly enhanced the phosphorylation of JAK2 and STAT3 in the ipsilateral hippocampus. These results suggest that KLF7 may protect hippocampal neurons after traumatic brain injury through activation of the JAK2/STAT3 signaling pathway. The study was approved by the Institutional Review Board of Mudanjiang Medical University, China (approval No. mdjyxy-2018-0012) on March 6, 2018.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical University, Chengde, Hebei Province, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei Province, China
| | - Zhen-Dong Wang
- Department of Otorhinolaryngology, Mudanjiang City Second People’s Hospital, Mudanjiang, Heilongjiang Province, China
| | - Zhi-Gang Li
- The First Department of General Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Duo Ma
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Ping Sun
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Gui-Bo Liu
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Xiao-Feng Zhu
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China
| |
Collapse
|
14
|
Circular RNA circUBE2J2 acts as the sponge of microRNA-370-5P to suppress hepatocellular carcinoma progression. Cell Death Dis 2021; 12:985. [PMID: 34686662 PMCID: PMC8536678 DOI: 10.1038/s41419-021-04269-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Accumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in hepatocellular carcinoma is largely unknown. CircRNA microarray was performed to identify abnormally expressed circRNAs in HCC tissue samples. We conducted Kaplan–Meier survival analysis to explore the significance of circUBE2J2 in clinical prognosis. Then, we examined the functions of circUBE2J2 in HCC by cell proliferation, migration, and mouse xenograft assay. We identified miR-370-5P as a circUBE2J2-related microRNA by using biotin-labeled circUBE2J2 probe to perform RNA antisense purification (RAP) assay in HCC cells. The dual luciferase reporter assay and RNA pulldown assays were employed to verify the relationships among circUBE2J2, miRNA-370-5P, and KLF7. Microarray analysis and qRT-PCR verified a circRNA termed circUBE2J2 that was downregulated in HCC. Kaplan–Meier survival analysis showed that downregulated circUBE2J2 was correlated with poorer survival. CircUBE2J2 expression in HCC cells was selectively regulated via luciferase reporter assays; circUBE2J2 and KLF7 were observed to directly bind to miR-370-5P. Furthermore, knockdown of circUBE2J2 in HCC could downregulate KLF7, the target of miR-370-5P, thus promoting the proliferation and migration of HCC cells. Then the related experiment suggested that circUBE2J2 could regulate the expression of KLF7 by sponging miR-370-5p. In summary, we infer that circUBE2J2 may act as a competing endogenous RNA (ceRNA) to regulate KLF7 expression through sponging miR-370-5P and play a regulatory functions in HCC. CircUBE2J2 may be a diagnostic biomarker and potential target for HCC therapy.
Collapse
|
15
|
Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 2021; 16:93-98. [PMID: 32788452 PMCID: PMC7818858 DOI: 10.4103/1673-5374.286956] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury (PNI) is common and, unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury. Peripheral myelinating glia, Schwann cells (SCs), interact with various cells in and around the injury site and are important for debris elimination, repair, and nerve regeneration. Following PNI, Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages. Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair. The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve. In particular, SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers. This mobility increases SC interactions with other cells in the nerve and the exogenous environment, which influence SC behavior post-injury. Following PNI, SCs directly and indirectly interact with other SCs, fibroblasts, and macrophages. In addition, the inter- and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve. This review provides a basic assessment of SC function post-PNI, as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and, ultimately, repair of the injured nerve.
Collapse
Affiliation(s)
- Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - De-Biao Song
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing-Peng Chen
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Li WY, Jia H, Wang ZD, Zhai FG, Sun GD, Ma D, Liu GB, Li CM, Wang Y. Combinatory transplantation of mesenchymal stem cells with flavonoid small molecule in acellular nerve graft promotes sciatic nerve regeneration. J Tissue Eng 2020; 11:2041731420980136. [PMID: 34956585 PMCID: PMC8693221 DOI: 10.1177/2041731420980136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022] Open
Abstract
Previous animal studies have demonstrated that the flavonoid small-molecule TrkB agonist, 7, 8-dihydroxyflavone (DHF), promotes axon regeneration in transected peripheral nerves. In the present study, we investigated the combined effects of 7, 8-DHF treatment and bone marrow-derived stem/stromal cells (BMSCs) engraftment into acellular nerve allografts (ANAs) and explore relevant mechanisms that may be involved. Our results show that TrkB and downstream ERK1/2 phosphorylation are increased upon 7, 8-DHF treatment compared to the negative control group. Also, 7, 8-DHF promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. While selective ERK1/2 inhibitor U0126 suppressed the effect of upregulation of ERK1/2 phosphorylation and decreased cell proliferation, survival, and Schwann-like cell differentiation partially induced by 7, 8-DHF. In vivo, 7, 8-DHF promotes survival of transplanted BMSCs and upregulates axonal growth and myelination in regenerating ANAs. 7, 8-DHF+BMSCs also improved motor endplate density of target musculature. These benefits were associated with increased motor functional recovery. 7, 8-DHF+BMSCs significantly upregulated TrkB and ERK1/2 phosphorylation expression in regenerating ANA, and increased TrkB expression in the lumbar spinal cord. The mechanism of 7, 8-DHF action may be related to its ability to upregulate TrkB signaling, and downstream activation of survival signaling molecules ERK1/2 in the regenerating ANAs and spinal cord and improved survival of transplanted BMSCs. This study provides novel foundational data connecting the benefits of 7, 8-DHF treatment in neural injury and repair to BMSCs biology and function and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.
Collapse
Affiliation(s)
- Wen-yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Hua Jia
- Department of Anatomy, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Zhen-Dong Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Mudanjiang College of Medicine, Mudanjiang, China
| | - Feng-guo Zhai
- Department of Pharmacology, Mudanjiang College of Medicine, Mudanjiang, China
| | - Guang-da Sun
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Duo Ma
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Gui-Bo Liu
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| | - Chun-Mei Li
- Department of Basic Psychological, Mudanjiang College of Medicine, Mudanjiang, China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, China
| |
Collapse
|
17
|
Ye J, Gong P. NGF-CS/HA-coating composite titanium facilitates the differentiation of bone marrow mesenchymal stem cells into osteoblast and neural cells. Biochem Biophys Res Commun 2020; 531:290-296. [PMID: 32800542 DOI: 10.1016/j.bbrc.2020.06.158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Dental implant is the most effective way to repair the defect or absence of dentition. Currently, the modification in titanium surface properties has become a hot topic in the study of oral implantology. However, more suitable titanium surface coating still needs to be further explored. We prepared the nerve growth factor-chondroitin sulfate/hydroxyapatite (NGF-CS/HA)-coating composite titanium by modified biomimetic method. We also observed the surface morphology, thickness, surface adhesion and component analysis of NGF-CS/HA-coating composite titanium by scanning electron microscope, and the release of NGF was also identified via ELISA assay. Besides, the identification of bone marrow mesenchymal stem cells (BMSCs) was conducted through alizarin red staining, oil red O staining and fluorescence detection. and the osteogenesis differentiation and neuronal differentiation-related genes were determined by RT-qPCR assay. The surface of NGF-CS/HA coating with the 65.4 ± 6.4 μm thickness presented a porous network, and the main components of NGF-CS/HA coating were Ti and HA, and maintained the activity and release of NGF. Besides, we successfully obtained and identified BMSCs, and proved that NGF-CS/HA-coating composite titanium could notably upregulated the expression levels of the osteogenesis differentiation and neuronal differentiation-related genes and proteins in BMSCs. In conclusion, NGF-CS/HA-coating composite titanium has significant promoting effects on the differentiation of BMSCs into osteoblast and neural cells.
Collapse
Affiliation(s)
- Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, PR China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Department of Oral Implant, West China School of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
18
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Heng W, Bhavsar M, Han Z, Barker JH. Effects of Electrical Stimulation on Stem Cells. Curr Stem Cell Res Ther 2020; 15:441-448. [PMID: 31995020 DOI: 10.2174/1574888x15666200129154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
Recent interest in developing new regenerative medicine- and tissue engineering-based treatments has motivated researchers to develop strategies for manipulating stem cells to optimize outcomes in these potentially, game-changing treatments. Cells communicate with each other, and with their surrounding tissues and organs via electrochemical signals. These signals originate from ions passing back and forth through cell membranes and play a key role in regulating cell function during embryonic development, healing, and regeneration. To study the effects of electrical signals on cell function, investigators have exposed cells to exogenous electrical stimulation and have been able to increase, decrease and entirely block cell proliferation, differentiation, migration, alignment, and adherence to scaffold materials. In this review, we discuss research focused on the use of electrical stimulation to manipulate stem cell function with a focus on its incorporation in tissue engineering-based treatments.
Collapse
Affiliation(s)
- Wang Heng
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Mit Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Zhihua Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| |
Collapse
|