1
|
Liu W, Li G, Huang Z, Jiang W, Luo X, Xu X. Enhancing generalized anxiety disorder diagnosis precision: MSTCNN model utilizing high-frequency EEG signals. Front Psychiatry 2023; 14:1310323. [PMID: 38179243 PMCID: PMC10764566 DOI: 10.3389/fpsyt.2023.1310323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Generalized Anxiety Disorder (GAD) is a prevalent mental disorder on the rise in modern society. It is crucial to achieve precise diagnosis of GAD for improving the treatments and averting exacerbation. Although a growing number of researchers beginning to explore the deep learning algorithms for detecting mental disorders, there is a dearth of reports concerning precise GAD diagnosis. This study proposes a multi-scale spatial-temporal local sequential and global parallel convolutional model, named MSTCNN, which designed to achieve highly accurate GAD diagnosis using high-frequency electroencephalogram (EEG) signals. To this end, 10-min resting EEG data were collected from 45 GAD patients and 36 healthy controls (HC). Various frequency bands were extracted from the EEG data as the inputs of the MSTCNN. The results demonstrate that the proposed MSTCNN, combined with the attention mechanism of Squeeze-and-Excitation Networks, achieves outstanding classification performance for GAD detection, with an accuracy of 99.48% within the 4-30 Hz EEG data, which is competitively related to state-of-art methods in terms of GAD classification. Furthermore, our research unveils an intriguing revelation regarding the pivotal role of high-frequency band in GAD diagnosis. As the frequency band increases, diagnostic accuracy improves. Notably, high-frequency EEG data ranging from 10-30 Hz exhibited an accuracy rate of 99.47%, paralleling the performance of the broader 4-30 Hz band. In summary, these findings move a step forward towards the practical application of automatic diagnosis of GAD and provide basic theory and technical support for the development of future clinical diagnosis system.
Collapse
Affiliation(s)
- Wei Liu
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua, China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| | - Ziyi Huang
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Weixiong Jiang
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| | | | - Xingjuan Xu
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
2
|
Xu Y, Zhong H, Ying S, Liu W, Chen G, Luo X, Li G. Depressive Disorder Recognition Based on Frontal EEG Signals and Deep Learning. SENSORS (BASEL, SWITZERLAND) 2023; 23:8639. [PMID: 37896732 PMCID: PMC10611358 DOI: 10.3390/s23208639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Depressive disorder (DD) has become one of the most common mental diseases, seriously endangering both the affected person's psychological and physical health. Nowadays, a DD diagnosis mainly relies on the experience of clinical psychiatrists and subjective scales, lacking objective, accurate, practical, and automatic diagnosis technologies. Recently, electroencephalogram (EEG) signals have been widely applied for DD diagnosis, but mainly with high-density EEG, which can severely limit the efficiency of the EEG data acquisition and reduce the practicability of diagnostic techniques. The current study attempts to achieve accurate and practical DD diagnoses based on combining frontal six-channel electroencephalogram (EEG) signals and deep learning models. To this end, 10 min clinical resting-state EEG signals were collected from 41 DD patients and 34 healthy controls (HCs). Two deep learning models, multi-resolution convolutional neural network (MRCNN) combined with long short-term memory (LSTM) (named MRCNN-LSTM) and MRCNN combined with residual squeeze and excitation (RSE) (named MRCNN-RSE), were proposed for DD recognition. The results of this study showed that the higher EEG frequency band obtained the better classification performance for DD diagnosis. The MRCNN-RSE model achieved the highest classification accuracy of 98.48 ± 0.22% with 8-30 Hz EEG signals. These findings indicated that the proposed analytical framework can provide an accurate and practical strategy for DD diagnosis, as well as essential theoretical and technical support for the treatment and efficacy evaluation of DD.
Collapse
Affiliation(s)
- Yanting Xu
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China; (Y.X.); (S.Y.)
| | - Hongyang Zhong
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (W.L.); (G.C.)
| | - Shangyan Ying
- College of Engineering, Zhejiang Normal University, Jinhua 321004, China; (Y.X.); (S.Y.)
| | - Wei Liu
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (W.L.); (G.C.)
| | - Guibin Chen
- College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China; (H.Z.); (W.L.); (G.C.)
| | - Xiaodong Luo
- The Second Hospital of Jinhua, Jinhua 321016, China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Parsa M, Rad HY, Vaezi H, Hossein-Zadeh GA, Setarehdan SK, Rostami R, Rostami H, Vahabie AH. EEG-based classification of individuals with neuropsychiatric disorders using deep neural networks: A systematic review of current status and future directions. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107683. [PMID: 37406421 DOI: 10.1016/j.cmpb.2023.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 05/23/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023]
Abstract
The use of deep neural networks for electroencephalogram (EEG) classification has rapidly progressed and gained popularity in recent years, but automatic feature extraction from EEG signals remains a challenging task. The classification of neuropsychiatric disorders demands the extraction of neuro-markers for use in automated EEG classification. Numerous advanced deep learning algorithms can be used for this purpose. In this article, we present a comprehensive review of the main factors and parameters that affect the performance of deep neural networks in classifying different neuropsychiatric disorders using EEG signals. We also analyze the EEG features used for improving classification performance. Our analysis includes 82 scientific journal papers that applied deep neural networks for subject-wise classification based on EEG signals. We extracted information on the EEG dataset and types of disorders, deep neural network structures, performance, and hyperparameters. The results show that most studies have focused on clinical classification, achieving an average accuracy of 91.83 ± 7.34, with convolutional neural networks (CNNs) being the most frequently used network architecture and resting-state EEG signals being the most commonly used data type. Additionally, the review reveals that depression (N = 18), Alzheimer's (N = 11), and schizophrenia (N = 11) were studied more frequently than other types of neuropsychiatric disorders. Our review provides insight into the performance of deep neural networks in EEG classification and highlights the importance of EEG feature extraction in improving classification accuracy. By identifying the main factors and parameters that affect deep neural network performance in EEG classification, our review can guide future research in this area. We hope that our findings will encourage further exploration of deep learning methods for EEG classification and contribute to the development of more accurate and effective methods for diagnosing and monitoring neuropsychiatric disorders using EEG signals.
Collapse
Affiliation(s)
- Mohsen Parsa
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Habib Yousefi Rad
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Hadi Vaezi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Artesh Highway, P.O. Box 19568-36484, Tehran, Iran
| | - Gholam-Ali Hossein-Zadeh
- Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
| | - Seyed Kamaledin Setarehdan
- Control and Intelligent Processing Center of Excellence, Faculty of Electrical and Computer Engineering, University of Tehran, North Kargar St., P.O. Box 14395/515, Tehran, Iran
| | - Reza Rostami
- Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran
| | - Hana Rostami
- ACNC, Atieh Clinical Neuroscience Center, Valiasr St., P.O. Box 19697-13663, Tehran, Iran
| | - Abdol-Hossein Vahabie
- Faculty of Psychology and Education, University of Tehran, Jalal-Al-e-Ahmed, P.O. Box 14155-6456, Tehran, Iran; Cognitive Systems Laboratory, Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395/515, Tehran, Iran; Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran.
| |
Collapse
|
4
|
Wen D, Li R, Tang H, Liu Y, Wan X, Dong X, Saripan MI, Lan X, Song H, Zhou Y. Task-state EEG signal classification for spatial cognitive evaluation based on multi-scale high-density convolutional neural network. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1041-1051. [PMID: 35404820 DOI: 10.1109/tnsre.2022.3166224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this study, a multi-scale high-density convolutional neural network (MHCNN) classification method for spatial cognitive ability assessment was proposed, aiming at achieving the binary classification of task-state EEG signals before and after spatial cognitive training. Besides, the multi-dimensional conditional mutual information method was used to extract the frequency band features of the EEG data. And the coupling features under the combination of multi-frequency bands were transformed into multi-spectral images. At the same time, the idea of Densenet was introduced to improve the multi-scale convolutional neural network. Firstly, according to the discreteness of multispectral EEG image features, two-scale convolution kernels were used to calculate and learn useful channel and frequency band feature information in multispectral image data. Secondly, to enhance feature propagation and reduce the number of parameters, the dense network was connected after the multi-scale convolutional network, and the learning rate change function of the stochastic gradient descent algorithm was optimized to objectively evaluate the training effect. The experimental results showed that compared with the classical convolution neural network (CNN) and multi-scale convolution neural network, the proposed MHCNN had better classification performance in the six frequency band combinations with the highest accuracy of 98%: Theta-Alpha2-Gamma, Alpha2-Beta2-Gamma, Beta1-Beta2-Gamma, Theta-Beta2-Gamma, Theta-Alpha1-Gamma, and Alpha1-Alpha2-Gamma. By comparing the classification results of six frequency band combinations, it was found that the combination of the Theta-Beta2-Gamma band had the best classification effect. The MHCNN classification method proposed in this research could be used as an effective biological indicator of spatial cognitive training effect and could be extended to other brain function evaluations.
Collapse
|
5
|
Liu Y, Xu X, Zhou Y, Xu J, Dong X, Li X, Yin S, Wen D. Coupling feature extraction method of resting state EEG Signals from amnestic mild cognitive impairment with type 2 diabetes mellitus based on weight permutation conditional mutual information. Cogn Neurodyn 2021; 15:987-997. [PMID: 34790266 PMCID: PMC8572246 DOI: 10.1007/s11571-021-09682-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/28/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
This study aimed to find a good coupling feature extraction method to effectively analyze resting state EEG signals (rsEEG) of amnestic mild cognitive impairment(aMCI) with type 2 diabetes mellitus(T2DM) and normal control (NC) with T2DM. A method of EEG signal coupling feature extraction based on weight permutation conditional mutual information (WPCMI) was proposed in this research. With the WPCMI method, coupling feature strength of two time series in Alpha1, Alpha2, Beta1, Beta2 and Gamma bands for aMCI with T2DM and NC with T2DM could be extracted respectively. Then selected three frequency bands coupling feature matrix with the help of multi-spectral image transformation method to map it as spectral image characteristics. And finally classified these characteristics through the convolution neural network method(CNN). For aMCI with T2DM and NC with T2DM, the highest classification accuracy of 96%, 95%, 95% could be achieved respectively in the combination of three frequency bands (Alpha1, Alpha2, Gamma), (Beta1, Beta2 and Gamma) and (Alpha2, Beta1, Beta2). This WPCMI method highlighted the coupling dynamic characteristics of EEG signals, and its classification performance was better than all previous methods in aMCI with T2DM diagnosis field. WPCMI method could be used as an effective biomarker to distinguish EEG signals of aMCI with T2DM and NC with T2DM. The coupling feature extraction method used in this paper provided a new perspective for the EEG analysis of aMCI with T2DM.
Collapse
Affiliation(s)
- Yijun Liu
- School of Science, Yanshan University, Qinhuangdao, China
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Xiaodong Xu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Yanhong Zhou
- School of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Xu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Xianling Dong
- Department of Biomedical Engineering, Chengde Medical University, Chengde, China
| | - Xiaoli Li
- The National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Shimin Yin
- Department of Neurology, The Rocket Force Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Dong Wen
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
6
|
Classification of ERP signal from amnestic mild cognitive impairment with type 2 diabetes mellitus using single-scale multi-input convolution neural network. J Neurosci Methods 2021; 363:109353. [PMID: 34492241 DOI: 10.1016/j.jneumeth.2021.109353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The application of deep learning models to electroencephalogram (EEG) signal classification has recently become a popular research topic. Several deep learning models have been proposed to classify EEG signals in patients with various neurological diseases. However, no effective deep learning model for event-related potential (ERP) signal classification is yet available for amnestic mild cognitive impairment (aMCI) with type 2 diabetes mellitus (T2DM). METHOD This study proposed a single-scale multi-input convolutional neural network (SSMICNN) method to classify ERP signals between aMCI patients with T2DM and the control group. Firstly, the 18-electrode ERP signal on alpha, beta, and theta frequency bands was extracted by using the fast Fourier transform, and then the mean, sum of squares, and absolute value feature of each frequency band were calculated. Finally, these three features are converted into multispectral images respectively and used as the input of the SSMICNN network to realize the classification task. RESULTS The results show that the SSMICNN can fuse MSI formed by different features, SSMICNN enriches the feature quantity of the neural network input layer and has excellent robustness, and the errors of SSMICNN can be simultaneously transmitted to the three convolution channels in the back-propagation phase. Comparison with Existing Method(s): SSMICNN could more effectively identify ERP signals from aMCI with T2DM from the control group compared to existing classification methods, including convolution neural network, support vector machine, and logistic regression. CONCLUSIONS The combination of SSMICNN and MSI can be used as an effective biological marker to distinguish aMCI patients with T2DM from the control group.
Collapse
|
7
|
Zhao J, Li K, Xi X, Wang S, Saravanan V, Samuel RDJ. Analysis of complex cognitive task and pattern recognition using distributed patterns of EEG signals with cognitive functions. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Wen D, Yuan J, Zhou Y, Xu J, Song H, Liu Y, Xu Y, Jung TP. The EEG Signal Analysis for Spatial Cognitive Ability Evaluation Based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2113-2122. [PMID: 32833638 DOI: 10.1109/tnsre.2020.3018959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study aims to find an effective method to evaluate the efficacy of cognitive training of spatial memory under a virtual reality environment, by classifying the EEG signals of subjects in the early and late stages of spatial cognitive training. This study proposes a new EEG signal analysis method based on Multivariate Permutation Conditional Mutual Information-Multi-Spectral Image (MPCMIMSI). This method mainly considers the relationship between the coupled features of EEG signals in different channel pairs and transforms the multivariate permutation conditional mutual information features into multi-spectral images. Then, a convolutional neural networks (CNN) model classifies the resultant image data into different stages of cognitive training to objectively assess the efficacy of the training. Compared to the multi-spectral image transformation method based on Granger causality analysis (GCA) and permutation conditional mutual information (PCMI), the MPCMIMSI led to better classification performance, which can be as high as 95% accuracy. More specifically, the Theta-Beta2-Gamma-band combination has the best accuracy. The proposed MPCMIMSI method outperforms the multi-spectral image transformation methods based on GCA and PCMI in terms of classification performance. The MPCMIMSI feature in the Theta-Beta2-Gamma band is an effective biomarker for assessing the efficacy of spatial memory training. The proposed EEG feature-extraction method based on MPCMIMSI offers a new window to characterize spatial information of the noninvasive EEG recordings and might apply to assessing other brain functions.
Collapse
|
9
|
Wen D, Li P, Zhou Y, Sun Y, Xu J, Liu Y, Li X, Li J, Bian Z, Wang L. Feature Classification Method of Resting-State EEG Signals From Amnestic Mild Cognitive Impairment With Type 2 Diabetes Mellitus Based on Multi-View Convolutional Neural Network. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1702-1709. [PMID: 32746302 DOI: 10.1109/tnsre.2020.3004462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The convolutional neural network (CNN) model is an active research topic in the field of EEG signals analysis. However, the classification effect of CNN on EEG signals of amnestic mild cognitive impairment (aMCI) with type 2 diabetes mellitus (T2DM) is not ideal. Even if EEG signals are transformed into multispectral images that are more closely matched with the model, the best classification performance can not be achieved. Therefore, to improve the performance of CNN toward EEG multispectral image classification, a multi-view convolutional neural network (MVCNN) classification model based on inceptionV1 is designed in this study. This model mainly improves and optimizes the convolutional layers and stochastic gradient descent (SGD) in the convolutional architecture model. Firstly, based on the discreteness of EEG multispectral image features, the multi-view convolutional layer structure was proposed. Then the learning rate change function of the SGD was optimized to increase the classification performance. The multi-view convolutional nerve was used in an EEG multispectral classification task involving 19 aMCI with T2DM and 20 normal controls. The results showed that compared with the traditional classification models, MVCNN had a better stability and accuracy. Therefore, MVCNN could be used as an effective feature classification method for aMCI with T2DM.
Collapse
|