1
|
Wang P, Wu EG, Uluşan H, Zhao ET, Phillips A, Kling A, Hays MR, Vasireddy PK, Madugula S, Vilkhu R, Hierlemann A, Hong G, Chichilnisky E, Melosh NA. Direct-Print 3D Electrodes for Large-Scale, High-Density, and Customizable Neural Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408602. [PMID: 39588825 PMCID: PMC11744676 DOI: 10.1002/advs.202408602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/03/2024] [Indexed: 11/27/2024]
Abstract
Silicon-based microelectronics can scalably record and modulate neural activity at high spatiotemporal resolution, but their planar form factor poses challenges in targeting 3D neural structures. A method for fabricating tissue-penetrating 3D microelectrodes directly onto planar microelectronics using high-resolution 3D printing via 2-photon polymerization and scalable microfabrication technologies are presented. This approach enables customizable electrode shape, height, and positioning for precise targeting of neuron populations distributed in 3D. The effectiveness of this approach is demonstrated in tackling the critical challenge of interfacing with the retina-specifically, selectively targeting retinal ganglion cell (RGC) somas while avoiding the axon bundle layer. 6,600-microelectrode, 35 µm pitch, tissue-penetrating arrays are fabricated to obtain high-fidelity, high-resolution, and large-scale retinal recording that reveals little axonal interference, a capability previously undemonstrated. Confocal microscopy further confirms the precise placement of the microelectrodes. This technology can be a versatile solution for interfacing silicon microelectronics with neural structures at a large scale and cellular resolution.
Collapse
Affiliation(s)
- Pingyu Wang
- Department of Materials Science and EngineeringStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Eric G. Wu
- Department of Electrical EngineeringStanford UniversityStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Hasan Uluşan
- Department of Biosystems Science and Engineering in BaselETH ZürichBaselSwitzerland
| | - Eric Tianjiao Zhao
- Department of Chemical EngineeringStanford University350 Jane Stanford WayStanfordCA94305USA
| | - A.J. Phillips
- Department of Electrical EngineeringStanford UniversityStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Alexandra Kling
- Department of NeurosurgeryStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Madeline Rose Hays
- Department of BioengineeringStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Praful Krishna Vasireddy
- Department of Electrical EngineeringStanford UniversityStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Sasidhar Madugula
- School of MedicineStanford UniversityStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Ramandeep Vilkhu
- Department of Electrical EngineeringStanford UniversityStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering in BaselETH ZürichBaselSwitzerland
| | - Guosong Hong
- Department of Materials Science and EngineeringStanford University350 Jane Stanford WayStanfordCA94305USA
| | - E.J. Chichilnisky
- Department of NeurosurgeryStanford University350 Jane Stanford WayStanfordCA94305USA
- Hansen Experimental Physics LaboratoryStanford University350 Jane Stanford WayStanfordCA94305USA
| | - Nicholas A. Melosh
- Department of Materials Science and EngineeringStanford University350 Jane Stanford WayStanfordCA94305USA
| |
Collapse
|
2
|
Vecchi JT, Rhomberg M, Guymon CA, Hansen MR. The geometry of photopolymerized topography influences neurite pathfinding by directing growth cone morphology and migration. J Neural Eng 2024; 21:026027. [PMID: 38547528 PMCID: PMC10993768 DOI: 10.1088/1741-2552/ad38dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Objective. Cochlear implants provide auditory perception to those with severe to profound sensorineural hearing loss: however, the quality of sound perceived by users does not approximate natural hearing. This limitation is due in part to the large physical gap between the stimulating electrodes and their target neurons. Therefore, directing the controlled outgrowth of processes from spiral ganglion neurons (SGNs) into close proximity to the electrode array could provide significantly increased hearing function.Approach.For this objective to be properly designed and implemented, the ability and limits of SGN neurites to be guided must first be determined. In this work, we engineer precise topographical microfeatures with angle turn challenges of various geometries to study SGN pathfinding and use live imaging to better understand how neurite growth is guided by these cues.Main Results.We find that the geometry of the angled microfeatures determines the ability of neurites to navigate the angled microfeature turns. SGN neurite pathfinding fidelity is increased by 20%-70% through minor increases in microfeature amplitude (depth) and by 25% if the angle of the patterned turn is made obtuse. Further, we see that dorsal root ganglion neuron growth cones change their morphology and migration to become more elongated within microfeatures. Our observations also indicate complexities in studying neurite turning. First, as the growth cone pathfinds in response to the various cues, the associated neurite often reorients across the angle topographical microfeatures. Additionally, neurite branching is observed in response to topographical guidance cues, most frequently when turning decisions are most uncertain.Significance.Overall, the multi-angle channel micropatterned substrate is a versatile and efficient system to assess neurite turning and pathfinding in response to topographical cues. These findings represent fundamental principles of neurite pathfinding that will be essential to consider for the design of 3D systems aiming to guide neurite growthin vivo.
Collapse
Affiliation(s)
- Joseph T Vecchi
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - Madeline Rhomberg
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Marlan R Hansen
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
3
|
Yadav N, Giacomozzi F, Cian A, Giubertoni D, Lorenzelli L. Enhancing the Deposition Rate and Uniformity in 3D Gold Microelectrode Arrays via Ultrasonic-Enhanced Template-Assisted Electrodeposition. SENSORS (BASEL, SWITZERLAND) 2024; 24:1251. [PMID: 38400408 PMCID: PMC10893058 DOI: 10.3390/s24041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
In the pursuit of refining the fabrication of three-dimensional (3D) microelectrode arrays (MEAs), this study investigates the application of ultrasonic vibrations in template-assisted electrodeposition. This was driven by the need to overcome limitations in the deposition rate and the height uniformity of microstructures developed using conventional electrodeposition methods, particularly in the field of in vitro electrophysiological investigations. This study employs a template-assisted electrodeposition approach coupled with ultrasonic vibrations to enhance the deposition process. The method involves utilizing a polymeric hard mask to define the shape of electrodeposited microstructures (i.e., micro-pillars). The results show that the integration of ultrasonic vibrations significantly increases the deposition rate by up to 5 times and substantially improves the uniformity in 3D MEAs. The key conclusion drawn is that ultrasonic-enhanced template-assisted electrodeposition emerges as a powerful technique and enables the development of 3D MEAs at a higher rate and with a superior uniformity. This advancement holds promising implications for the precision of selective electrodeposition applications and signifies a significant stride in developing micro- and nanofabrication methodologies for biomedical applications.
Collapse
Affiliation(s)
- Neeraj Yadav
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy
- Center for Sensors & Devices (SD), FBK—Foundation Bruno Kessler, 38123 Trento, Italy; (F.G.); (A.C.); (L.L.)
| | - Flavio Giacomozzi
- Center for Sensors & Devices (SD), FBK—Foundation Bruno Kessler, 38123 Trento, Italy; (F.G.); (A.C.); (L.L.)
| | - Alessandro Cian
- Center for Sensors & Devices (SD), FBK—Foundation Bruno Kessler, 38123 Trento, Italy; (F.G.); (A.C.); (L.L.)
| | - Damiano Giubertoni
- Center for Sensors & Devices (SD), FBK—Foundation Bruno Kessler, 38123 Trento, Italy; (F.G.); (A.C.); (L.L.)
| | - Leandro Lorenzelli
- Center for Sensors & Devices (SD), FBK—Foundation Bruno Kessler, 38123 Trento, Italy; (F.G.); (A.C.); (L.L.)
| |
Collapse
|
4
|
Zhang K, Liu Y, Song Y, Xu S, Yang Y, Jiang L, Sun S, Luo J, Wu Y, Cai X. Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays. Front Bioeng Biotechnol 2023; 11:1245082. [PMID: 37600306 PMCID: PMC10434521 DOI: 10.3389/fbioe.2023.1245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (-15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Longhui Jiang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang P, Wu EG, Uluşan H, Phillips A, Rose Hays M, Kling A, Zhao ET, Madugula S, Vilkhu RS, Vasireddy PK, Hier- lemann A, Hong G, Chichilnisky E, Melosh NA. Direct-print three-dimensional electrodes for large- scale, high-density, and customizable neural inter- faces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542925. [PMID: 37398164 PMCID: PMC10312573 DOI: 10.1101/2023.05.30.542925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Silicon-based planar microelectronics is a powerful tool for scalably recording and modulating neural activity at high spatiotemporal resolution, but it remains challenging to target neural structures in three dimensions (3D). We present a method for directly fabricating 3D arrays of tissue-penetrating microelectrodes onto silicon microelectronics. Leveraging a high-resolution 3D printing technology based on 2-photon polymerization and scalable microfabrication processes, we fabricated arrays of 6,600 microelectrodes 10-130 μm tall and at 35-μm pitch onto a planar silicon-based microelectrode array. The process enables customizable electrode shape, height and positioning for precise targeting of neuron populations distributed in 3D. As a proof of concept, we addressed the challenge of specifically targeting retinal ganglion cell (RGC) somas when interfacing with the retina. The array was customized for insertion into the retina and recording from somas while avoiding the axon layer. We verified locations of the microelectrodes with confocal microscopy and recorded high-resolution spontaneous RGC activity at cellular resolution. This revealed strong somatic and dendritic components with little axon contribution, unlike recordings with planar microelectrode arrays. The technology could be a versatile solution for interfacing silicon microelectronics with neural structures and modulating neural activity at large scale with single-cell resolution.
Collapse
Affiliation(s)
- Pingyu Wang
- Department of Materials Science and Engineering, Stanford University
| | - Eric G. Wu
- Department of Electrical Engineering, Stanford University, Stanford University
| | - Hasan Uluşan
- Department of Biosystems Science and Engineering in Basel, ETH Zürich
| | - A.J. Phillips
- Department of Electrical Engineering, Stanford University, Stanford University
| | | | | | - Eric T. Zhao
- Department of Chemical Engineering, Stanford University
| | | | - Ramandeep S. Vilkhu
- Department of Electrical Engineering, Stanford University, Stanford University
| | | | | | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University
| | - E.J. Chichilnisky
- Department of Neurosurgery, Stanford University
- Hansen Experimental Physics Laboratory, Stanford University
| | | |
Collapse
|
6
|
Liu Y, Xu S, Yang Y, Zhang K, He E, Liang W, Luo J, Wu Y, Cai X. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain-computer interfaces: a review. MICROSYSTEMS & NANOENGINEERING 2023; 9:13. [PMID: 36726940 PMCID: PMC9884667 DOI: 10.1038/s41378-022-00479-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/18/2023]
Abstract
A bidirectional in vitro brain-computer interface (BCI) directly connects isolated brain cells with the surrounding environment, reads neural signals and inputs modulatory instructions. As a noninvasive BCI, it has clear advantages in understanding and exploiting advanced brain function due to the simplified structure and high controllability of ex vivo neural networks. However, the core of ex vivo BCIs, microelectrode arrays (MEAs), urgently need improvements in the strength of signal detection, precision of neural modulation and biocompatibility. Notably, nanomaterial-based MEAs cater to all the requirements by converging the multilevel neural signals and simultaneously applying stimuli at an excellent spatiotemporal resolution, as well as supporting long-term cultivation of neurons. This is enabled by the advantageous electrochemical characteristics of nanomaterials, such as their active atomic reactivity and outstanding charge conduction efficiency, improving the performance of MEAs. Here, we review the fabrication of nanomaterial-based MEAs applied to bidirectional in vitro BCIs from an interdisciplinary perspective. We also consider the decoding and coding of neural activity through the interface and highlight the various usages of MEAs coupled with the dissociated neural cultures to benefit future developments of BCIs.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190 China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049 PR China
| |
Collapse
|
7
|
Steins H, Mierzejewski M, Brauns L, Stumpf A, Kohler A, Heusel G, Corna A, Herrmann T, Jones PD, Zeck G, von Metzen R, Stieglitz T. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine. MICROSYSTEMS & NANOENGINEERING 2022; 8:131. [PMID: 36568135 PMCID: PMC9772315 DOI: 10.1038/s41378-022-00466-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 05/31/2023]
Abstract
Recording neural signals from delicate autonomic nerves is a challenging task that requires the development of a low-invasive neural interface with highly selective, micrometer-sized electrodes. This paper reports on the development of a three-dimensional (3D) protruding thin-film microelectrode array (MEA), which is intended to be used for recording low-amplitude neural signals from pelvic nervous structures by penetrating the nerves transversely to reduce the distance to the axons. Cylindrical gold pillars (Ø 20 or 50 µm, ~60 µm height) were fabricated on a micromachined polyimide substrate in an electroplating process. Their sidewalls were insulated with parylene C, and their tips were optionally modified by wet etching and/or the application of a titanium nitride (TiN) coating. The microelectrodes modified by these combined techniques exhibited low impedances (~7 kΩ at 1 kHz for Ø 50 µm microelectrode with the exposed surface area of ~5000 µm²) and low intrinsic noise levels. Their functionalities were evaluated in an ex vivo pilot study with mouse retinae, in which spontaneous neuronal spikes were recorded with amplitudes of up to 66 µV. This novel process strategy for fabricating flexible, 3D neural interfaces with low-impedance microelectrodes has the potential to selectively record neural signals from not only delicate structures such as retinal cells but also autonomic nerves with improved signal quality to study neural circuits and develop stimulation strategies in bioelectronic medicine, e.g., for the control of vital digestive functions.
Collapse
Affiliation(s)
- Helen Steins
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Michael Mierzejewski
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Lisa Brauns
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Angelika Stumpf
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Alina Kohler
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Gerhard Heusel
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Andrea Corna
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Thoralf Herrmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Peter D. Jones
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Günther Zeck
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Rene von Metzen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Spanu A, Martines L, Tedesco M, Martinoia S, Bonfiglio A. Simultaneous recording of electrical and metabolic activity of cardiac cells in vitro using an organic charge modulated field effect transistor array. Front Bioeng Biotechnol 2022; 10:945575. [PMID: 35992349 PMCID: PMC9385991 DOI: 10.3389/fbioe.2022.945575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022] Open
Abstract
In vitro electrogenic cells monitoring is an important objective in several scientific and technological fields, such as electrophysiology, pharmacology and brain machine interfaces, and can represent an interesting opportunity in other translational medicine applications. One of the key aspects of cellular cultures is the complexity of their behavior, due to the different kinds of bio-related signals, both chemical and electrical, that characterize these systems. In order to fully understand and exploit this extraordinary complexity, specific devices and tools are needed. However, at the moment this important scientific field is characterized by the lack of easy-to-use, low-cost devices for the sensing of multiple cellular parameters. To the aim of providing a simple and integrated approach for the study of in vitro electrogenic cultures, we present here a new solution for the monitoring of both the electrical and the metabolic cellular activity. In particular, we show here how a particular device called Micro Organic Charge Modulated Array (MOA) can be conveniently engineered and then used to simultaneously record the complete cell activity using the same device architecture. The system has been tested using primary cardiac rat myocytes and allowed to detect the metabolic and electrical variations thar occur upon the administration of different drugs. This first example could lay the basis for the development of a new generation of multi-sensing tools that can help to efficiently probe the multifaceted in vitro environment.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
| | - Laura Martines
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Genova, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy
- Interdepartmental Center for Amyotrophic Lateral Sclerosis and Motor Neuron Diseases, Cagliari, Italy
- Scuola Universitaria Superiore IUSS, Pavia, Italy
| |
Collapse
|
9
|
Geng J, Zhang H, Meng X, Gao H, Rong W, Xie H. Three-Dimensional Kelvin Probe Force Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32719-32728. [PMID: 35816692 DOI: 10.1021/acsami.2c07645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional Kelvin probe force microscopy (KPFM) is mainly limited to the characterization of two-dimensional (2D) surfaces, and in situ surface potential (SP) imaging along 3D device surfaces remains a challenge. This paper presents a multimode 3D-KPFM based on an orthogonal cantilever probe (OCP) that can achieve SP mapping of 3D micronano structures. It integrates three working modes: a bending mode for 2D horizontal surface imaging, a torsion mode for vertical sidewall imaging, and a vector tracking-based 3D scanning mode. The customized OCP has a nanoscale tip protruding from the side and underside of the cantilever, rather than the front, and the extended tip makes the proposed approach universally applicable for 3D detection from the nanometer to micrometer scale. The spatial resolution of the proposed method is analyzed by simulation, which shows it can reduce the cantilever homogenization effect. Linearity and energy resolution measurements show that the proposed method has comparable performance to traditional methods. A comparative experiment using a gold-silicon interface verifies the accuracy of the reported method in its bending and torsion modes. Further, the imaging ability of the 3D scanning mode is confirmed in the 3D characterization of a step grating. This technique is applied to the in situ characterization of a microforce sensor with microcomb structures. The experiment results show that this method can excellently achieve the 3D quantitative characterization of topography and SP, including critical dimensions and SP along a 3D device surface. This novel 3D-KPFM technique has many potential applications in the further exploration of 3D micronano devices.
Collapse
Affiliation(s)
- Junyuan Geng
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Hao Zhang
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xianghe Meng
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haibo Gao
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Weibin Rong
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Hui Xie
- The State key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
10
|
Xiang Y, Liu H, Yang W, Xu Z, Wu Y, Tang Z, Zhu Z, Zeng Z, Wang D, Wang T, Hu N, Zhang D. A biosensing system employing nanowell microelectrode arrays to record the intracellular potential of a single cardiomyocyte. MICROSYSTEMS & NANOENGINEERING 2022; 8:70. [PMID: 35774495 PMCID: PMC9237042 DOI: 10.1038/s41378-022-00408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Electrophysiological recording is a widely used method to investigate cardiovascular pathology, pharmacology and developmental biology. Microelectrode arrays record the electrical potential of cells in a minimally invasive and high-throughput way. However, commonly used microelectrode arrays primarily employ planar microelectrodes and cannot work in applications that require a recording of the intracellular action potential of a single cell. In this study, we proposed a novel measuring method that is able to record the intracellular action potential of a single cardiomyocyte by using a nanowell patterned microelectrode array (NWMEA). The NWMEA consists of five nanoscale wells at the center of each circular planar microelectrode. Biphasic pulse electroporation was applied to the NWMEA to penetrate the cardiomyocyte membrane, and the intracellular action potential was continuously recorded. The intracellular potential recording of cardiomyocytes by the NWMEA measured a potential signal with a higher quality (213.76 ± 25.85%), reduced noise root-mean-square (~33%), and higher signal-to-noise ratio (254.36 ± 12.61%) when compared to those of the extracellular recording. Compared to previously reported nanopillar microelectrodes, the NWMEA could ensure single cell electroporation and acquire high-quality action potential of cardiomyocytes with reduced fabrication processes. This NWMEA-based biosensing system is a promising tool to record the intracellular action potential of a single cell to broaden the usage of microelectrode arrays in electrophysiological investigation.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Obstetrics and Gynecology, Affiliated Dongguan People’s Hospital, Southern Medical University, Dongguan, 523058 China
| | - Haitao Liu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
- Research Center for Humanoid Sensing, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhongyuan Xu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Yue Wu
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhaojian Tang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| | - Zhijing Zhu
- Key Laboratory of Novel Target and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou, 310015 China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Zhiyong Zeng
- School of Automation, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Depeng Wang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 China
| | - Tianxing Wang
- E-LinkCare Meditech Co., Ltd, Hangzhou, 310011 China
| | - Ning Hu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Department of Chemistry, Zhejiang University, Hangzhou, 310058 China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311100 China
| |
Collapse
|
11
|
Spanu A, Taki M, Baldazzi G, Mascia A, Cosseddu P, Pani D, Bonfiglio A. Epidermal Electrodes with Ferrimagnetic/Conductive Properties for Biopotential Recordings. Bioengineering (Basel) 2022; 9:bioengineering9050205. [PMID: 35621483 PMCID: PMC9137760 DOI: 10.3390/bioengineering9050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/04/2022] Open
Abstract
Interfacing ultrathin functional films for epidermal applications with external recording instruments or readout electronics still represents one of the biggest challenges in the field of tattoo electronics. With the aim of providing a convenient solution to this ever-present limitation, in this work we propose an innovative free-standing electrode made of a composite thin film based on the combination of the conductive polymer PEDOT:PSS and ferrimagnetic powder. The proposed epidermal electrode can be directly transferred onto the skin and is structured in two parts, namely a conformal conductive part with a thickness of 3 μm and a ferrimagnetic-conductive part that can be conveniently connected using magnetic connections. The films were characterized for ECG recordings, revealing a performance comparable to that of commercial pre-gelled electrodes in terms of cross-spectral coherence, signal-to-noise ratio, and baseline wandering. These new, conductive, magnetically interfaceable, and free-standing conformal films introduce a novel concept in the domain of tattoo electronics and can set the basis for the development of a future family of epidermal devices and electrodes.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Correspondence:
| | - Mohamad Taki
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Department of Electrical & Electronics Engineering, Lebanese International University, Beirut 146404, Lebanon
| | - Giulia Baldazzi
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Department of Bioengineering, Robotics and System Engineering, University of Genoa, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Antonello Mascia
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
| | - Piero Cosseddu
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
| | - Danilo Pani
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Interdepartmental Center for Amyotrophic Lateral Sclerosis and Motor Neuron Diseases, 09100 Cagliari, Italy
| | - Annalisa Bonfiglio
- Department of Electrical and Electronics Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy; (M.T.); (G.B.); (A.M.); (P.C.); (D.P.); (A.B.)
- Interdepartmental Center for Amyotrophic Lateral Sclerosis and Motor Neuron Diseases, 09100 Cagliari, Italy
- Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
| |
Collapse
|
12
|
Zhao H, Liu R, Zhang H, Cao P, Liu Z, Li Y. Research Progress on the Flexibility of an Implantable Neural Microelectrode. MICROMACHINES 2022; 13:386. [PMID: 35334680 PMCID: PMC8954487 DOI: 10.3390/mi13030386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/25/2021] [Accepted: 01/16/2022] [Indexed: 12/22/2022]
Abstract
Neural microelectrode is the important bridge of information exchange between the human body and machines. By recording and transmitting nerve signals with electrodes, people can control the external machines. At the same time, using electrodes to electrically stimulate nerve tissue, people with long-term brain diseases will be safely and reliably treated. Young's modulus of the traditional rigid electrode probe is not matched well with that of biological tissue, and tissue immune rejection is easy to generate, resulting in the electrode not being able to achieve long-term safety and reliable working. In recent years, the choice of flexible materials and design of electrode structures can achieve modulus matching between electrode and biological tissue, and tissue damage is decreased. This review discusses nerve microelectrodes based on flexible electrode materials and substrate materials. Simultaneously, different structural designs of neural microelectrodes are reviewed. However, flexible electrode probes are difficult to implant into the brain. Only with the aid of certain auxiliary devices, can the implant be safe and reliable. The implantation method of the nerve microelectrode is also reviewed.
Collapse
Affiliation(s)
- Huiqing Zhao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Ruping Liu
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Huiling Zhang
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Peng Cao
- Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zilong Liu
- Division of Optics, National Institute of Metrology, Beijing 100029, China
| | - Ye Li
- Beijing Institute of Graphic Communication, Beijing 102600, China
| |
Collapse
|
13
|
Son J, Park SJ, Ha T, Lee SN, Cho HY, Choi JW. Electrophysiological Monitoring of Neurochemical-Based Neural Signal Transmission in a Human Brain-Spinal Cord Assembloid. ACS Sens 2022; 7:409-414. [PMID: 35044765 DOI: 10.1021/acssensors.1c02279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Combining human brain organoids holds great potential in recapitulating the human brain's histological features and modeling neural disorders. However, current combined-brain organoid models focus on the internal interactions between different brain regions. In this study, we develop an engineered brain-spinal cord assembloid (eBSA) by coculturing cerebral organoids (COs) and motor neuron spheroids (MNSs). By connecting COs and MNSs, we generate a terminal for signal transfer from the brain to the whole body by mimicking the brain-spinal cord connection. After the formation of COs from human induced pluripotent stem cells and MNSs from human neural stem cells, MNSs are prepatterned into specific CO regions and assembled to form an eBSA. Caffeine serves as a neurochemical model to demonstrate neural signal transmission. When the MNSs in the eBSA contact the multielectrode array, the eBSA successfully shows an increased neural spiking speed on the motor neuron region by caffeine treatment, which means that neural stimulation signals transfer from the COs to MNSs. The neural stimulation effects of caffeine are tested on the MNSs only to prove the eBSA system's neural signal transmission, and there were no stimulus effects. Our results demonstrate that the eBSA system can monitor a caffeine-mediated excitatory signal as an output signal from the brain to the spinal cord. We believe that the eBSA system can be utilized as a screening platform to validate the stimulus signal transfer by neurochemicals. In addition, the accumulation of understanding of the neural signal transfer from CNS to PNS will provide better knowledge for controlling muscle actuators with the nervous system.
Collapse
Affiliation(s)
- Joohyung Son
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Soo Jeong Park
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taehyeong Ha
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107, Republic of Korea
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
14
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Didier CM, Kundu A, Rajaraman S. Rapid Makerspace Microfabrication and Characterization of 3D Microelectrode Arrays (3D MEAs) for Organ-on-a-Chip Models. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:853-863. [PMID: 34949905 PMCID: PMC8691745 DOI: 10.1109/jmems.2021.3110163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Integrated sensors in "on-a-chip" in vitro cellular models are a necessity for granularity in data collection required for advanced biosensors. As these models become more complex, the requirement for the integration of electrogenic cells is apparent. Interrogation of such cells, whether alone or within a connected cellular framework, are best achieved with microelectrodes, in the form of a microelectrode array (MEA). Makerspace microfabrication has thus far enabled novel and accessible approaches to meet these demands. Here, resin-based 3D printing, selective multimodal laser micromachining, and simple insulation strategies, define an approach to highly customizable and "on-demand" in vitro 3D MEA-based biosensor platforms. The scalability of this approach is aided by a novel makerspace microfabrication assisted technique denoted using the term Hypo-Rig. The MEA utilizes custom-defined metal microfabricated microelectrodes transitioned from planar (2D) to 3D using the Hypo-Rig. To simulate this transition process, COMSOL modeling is utilized to estimate transitionary forces and angles (with respect to normal). Practically, the Hypo-Rig demonstrated a force of ~40N, as well as a consistent 70° average angular transitionary performance which matched well with the COMSOL model. To illustrate the scalability potential, 3 × 3, 6 × 6, and 8 × 8 versions of the device were fabricated and characterized. The 3D MEAs, demonstrated impedance and phase measurements in the biologically relevant 1 kHz range of 45.4 kΩ, and -34.6° respectively, for polystyrene insulated, ~70μm sized microelectrodes.
Collapse
Affiliation(s)
- Charles M Didier
- Burnett School of Biomedical Sciences, and the Nanoscience Technology Center at the University of Central Florida, Orlando, FL 32816, USA
| | - Avra Kundu
- College of Engineering and Computer Science at the University of Central Florida, Orlando, FL 32816, USA
| | - Swaminathan Rajaraman
- Nanoscience Technology Center, the Department of Materials Science and Engineering, the College of Electrical and Computer Engineering, and the Burnett School of Biomedical Sciences at the University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
16
|
Spanu A, Martines L, Bonfiglio A. Interfacing cells with organic transistors: a review of in vitro and in vivo applications. LAB ON A CHIP 2021; 21:795-820. [PMID: 33565540 DOI: 10.1039/d0lc01007c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, organic bioelectronics has attracted considerable interest in the scientific community. The impressive growth that it has undergone in the last 10 years has allowed the rise of the completely new field of cellular organic bioelectronics, which has now the chance to compete with consolidated approaches based on devices such as micro-electrode arrays and ISFET-based transducers both in in vitro and in vivo experimental practice. This review focuses on cellular interfaces based on organic active devices and has the intent of highlighting the recent advances and the most innovative approaches to the ongoing and everlasting challenge of interfacing living matter to the "external world" in order to unveil the hidden mechanisms governing its behavior. Device-wise, three different organic structures will be considered in this work, namely the organic electrochemical transistor (OECT), the solution-gated organic transistor (SGOFET - which is presented here in two possible different versions according to the employed active material, namely: the electrolyte-gated organic transistor - EGOFET, and the solution gated graphene transistor - gSGFET), and the organic charge modulated field effect transistor (OCMFET). Application-wise, this work will mainly focus on cellular-based biosensors employed in in vitro and in vivo cellular interfaces, with the aim of offering the reader a comprehensive retrospective of the recent past, an overview of the latest innovations, and a glance at the future prospects of this challenging, yet exciting and still mostly unexplored scientific field.
Collapse
Affiliation(s)
- Andrea Spanu
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo, 09123 Cagliari, CA, Italy.
| | | | | |
Collapse
|