1
|
Geng J, Voitiuk K, Parks DF, Robbins A, Spaeth A, Sevetson JL, Hernandez S, Schweiger HE, Andrews JP, Seiler ST, Elliott MA, Chang EF, Nowakowski TJ, Currie R, Mostajo-Radji MA, Haussler D, Sharf T, Salama SR, Teodorescu M. Multiscale Cloud-Based Pipeline for Neuronal Electrophysiology Analysis and Visualization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623530. [PMID: 39605518 PMCID: PMC11601321 DOI: 10.1101/2024.11.14.623530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids and ex vivo brain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity.
Collapse
Affiliation(s)
- Jinghui Geng
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kateryna Voitiuk
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - David F. Parks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ash Robbins
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex Spaeth
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jessica L. Sevetson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian Hernandez
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hunter E. Schweiger
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John P. Andrews
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Spencer T. Seiler
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matthew A.T. Elliott
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rob Currie
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tal Sharf
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sofie R. Salama
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mircea Teodorescu
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Lead Contact
| |
Collapse
|
2
|
Voitiuk K, Seiler ST, Pessoa de Melo M, Geng J, van der Molen T, Hernandez S, Schweiger HE, Sevetson JL, Parks DF, Robbins A, Torres-Montoya S, Ehrlich D, Elliott MAT, Sharf T, Haussler D, Mostajo-Radji MA, Salama SR, Teodorescu M. A feedback-driven brain organoid platform enables automated maintenance and high-resolution neural activity monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585237. [PMID: 38559212 PMCID: PMC10979982 DOI: 10.1101/2024.03.15.585237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The analysis of tissue cultures, particularly brain organoids, requires a sophisticated integration and coordination of multiple technologies for monitoring and measuring. We have developed an automated research platform enabling independent devices to achieve collaborative objectives for feedback-driven cell culture studies. Our approach enables continuous, communicative, non-invasive interactions within an Internet of Things (IoT) architecture among various sensing and actuation devices, achieving precisely timed control of in vitro biological experiments. The framework integrates microfluidics, electrophysiology, and imaging devices to maintain cerebral cortex organoids while measuring their neuronal activity. The organoids are cultured in custom, 3D-printed chambers affixed to commercial microelectrode arrays. Periodic feeding is achieved using programmable microfluidic pumps. We developed a computer vision fluid volume estimator used as feedback to rectify deviations in microfluidic perfusion during media feeding/aspiration cycles. We validated the system with a set of 7-day studies of mouse cerebral cortex organoids, comparing manual and automated protocols. The automated protocols were validated in maintaining robust neural activity throughout the experiment. The automated system enabled hourly electrophysiology recordings for the 7-day studies. Median neural unit firing rates increased for every sample and dynamic patterns of organoid firing rates were revealed by high-frequency recordings. Surprisingly, feeding did not affect firing rate. Furthermore, performing media exchange during a recording showed no acute effects on firing rate, enabling the use of this automated platform for reagent screening studies.
Collapse
|
3
|
Vera-Choqqueccota S, Belmekki BEY, Alouini MS, Teodorescu M, Haussler D, Mostajo-Radji MA. Reducing education inequalities through cloud-enabled live-cell biotechnology. Trends Biotechnol 2024:S0167-7799(24)00209-9. [PMID: 39209603 DOI: 10.1016/j.tibtech.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Biotechnology holds the potential to drive innovations across various fields from agriculture to medicine. However, despite numerous interventions, biotechnology education remains highly unequal worldwide. Historically, the high costs and potential exposure to hazardous materials have hindered biotechnology education. Integration of cloud technologies into classrooms has emerged as an alternative solution that is already enabling biotechnology experiments to reach thousands of students globally. We describe several innovations that collectively facilitate real-time experimentation in biotechnology education in remote locations. These advances enable remote access to scientific data and live experiments, promote collaborative research, and ensure educational inclusivity. We propose cloud-enabled live-cell biotechnology as a mechanism for reducing inequalities in biotechnology education and promoting sustainable development.
Collapse
Affiliation(s)
- Samira Vera-Choqqueccota
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Baha Eddine Youcef Belmekki
- Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed-Slim Alouini
- Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mircea Teodorescu
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mohammed A Mostajo-Radji
- Live Cell Biotechnology Discovery Laboratory, University of California Santa Cruz, Santa Cruz, CA 95060, USA; Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
4
|
Zhang X, Dou Z, Kim SH, Upadhyay G, Havert D, Kang S, Kazemi K, Huang K, Aydin O, Huang R, Rahman S, Ellis‐Mohr A, Noblet HA, Lim KH, Chung HJ, Gritton HJ, Saif MTA, Kong HJ, Beggs JM, Gazzola M. Mind In Vitro Platforms: Versatile, Scalable, Robust, and Open Solutions to Interfacing with Living Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306826. [PMID: 38161217 PMCID: PMC10953569 DOI: 10.1002/advs.202306826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Motivated by the unexplored potential of in vitro neural systems for computing and by the corresponding need of versatile, scalable interfaces for multimodal interaction, an accurate, modular, fully customizable, and portable recording/stimulation solution that can be easily fabricated, robustly operated, and broadly disseminated is presented. This approach entails a reconfigurable platform that works across multiple industry standards and that enables a complete signal chain, from neural substrates sampled through micro-electrode arrays (MEAs) to data acquisition, downstream analysis, and cloud storage. Built-in modularity supports the seamless integration of electrical/optical stimulation and fluidic interfaces. Custom MEA fabrication leverages maskless photolithography, favoring the rapid prototyping of a variety of configurations, spatial topologies, and constitutive materials. Through a dedicated analysis and management software suite, the utility and robustness of this system are demonstrated across neural cultures and applications, including embryonic stem cell-derived and primary neurons, organotypic brain slices, 3D engineered tissue mimics, concurrent calcium imaging, and long-term recording. Overall, this technology, termed "mind in vitro" to underscore the computing inspiration, provides an end-to-end solution that can be widely deployed due to its affordable (>10× cost reduction) and open-source nature, catering to the expanding needs of both conventional and unconventional electrophysiology.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Zhi Dou
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Seung Hyun Kim
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Gaurav Upadhyay
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Daniel Havert
- Department of PhysicsIndiana University BloomingtonBloomingtonIN47405USA
| | - Sehong Kang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Kimia Kazemi
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Kai‐Yu Huang
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Onur Aydin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Raymond Huang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Saeedur Rahman
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Austin Ellis‐Mohr
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hayden A. Noblet
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Ki H. Lim
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hee Jung Chung
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Molecular and Integrative PhysiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Neuroscience ProgramUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Howard J. Gritton
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Comparative BiosciencesUniversity of Illinois at Urbana–ChampaignUrbanaIL61802USA
| | - M. Taher A. Saif
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - Hyun Joon Kong
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| | - John M. Beggs
- Department of PhysicsIndiana University BloomingtonBloomingtonIN47405USA
| | - Mattia Gazzola
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana–ChampaignUrbanaIL61801USA
| |
Collapse
|
5
|
Elliott MAT, Schweiger HE, Robbins A, Vera-Choqqueccota S, Ehrlich D, Hernandez S, Voitiuk K, Geng J, Sevetson JL, Core C, Rosen YM, Teodorescu M, Wagner NO, Haussler D, Mostajo-Radji MA. Internet-Connected Cortical Organoids for Project-Based Stem Cell and Neuroscience Education. eNeuro 2023; 10:ENEURO.0308-23.2023. [PMID: 38016807 PMCID: PMC10755643 DOI: 10.1523/eneuro.0308-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.
Collapse
Affiliation(s)
- Matthew A T Elliott
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Hunter E Schweiger
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Ash Robbins
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Samira Vera-Choqqueccota
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Drew Ehrlich
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Computational Media, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Sebastian Hernandez
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Kateryna Voitiuk
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Jinghui Geng
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Jess L Sevetson
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Cordero Core
- Scientific Software Engineering Center, eScience Institute, University of Washington, Seattle, WA 98195
| | - Yohei M Rosen
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Nico O Wagner
- College of Arts and Sciences, University of San Francisco, San Francisco, CA 94117
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
| |
Collapse
|
6
|
Elliott MA, Schweiger HE, Robbins A, Vera-Choqqueccota S, Ehrlich D, Hernandez S, Voitiuk K, Geng J, Sevetson JL, Rosen YM, Teodorescu M, Wagner NO, Haussler D, Mostajo-Radji MA. Internet-connected cortical organoids for project-based stem cell and neuroscience education. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.546418. [PMID: 37503236 PMCID: PMC10369936 DOI: 10.1101/2023.07.13.546418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.
Collapse
Affiliation(s)
- Matthew A.T. Elliott
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Hunter E. Schweiger
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Ash Robbins
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Samira Vera-Choqqueccota
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Drew Ehrlich
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Computational Media, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sebastian Hernandez
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Kateryna Voitiuk
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jinghui Geng
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jess L. Sevetson
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Yohei M. Rosen
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Nico O. Wagner
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, 94117, USA
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammed A. Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| |
Collapse
|
7
|
Wilson CG, Altamirano AE, Hillman T, Tan JB. Data analytics in a clinical setting: Applications to understanding breathing patterns and their relevance to neonatal disease. Semin Fetal Neonatal Med 2022; 27:101399. [PMID: 36396542 DOI: 10.1016/j.siny.2022.101399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this review, we focus on the use of contemporary linear and non-linear data analytics as well as machine learning/artificial intelligence algorithms to inform treatment of pediatric patients. We specifically focus on methods used to quantify changes in breathing that can lead to increased risk for apnea of prematurity, retinopathy of prematurity (ROP), necrotizing enterocolitis (NEC) and provide a list of potentially useful algorithms that comprise a suite of software tools to enhance prediction of outcome. Next, we provide a brief overview of machine learning/artificial intelligence methods and applications within the sphere of perinatal care. Finally, we provide an overview of the infrastructure needed to use these tools in a clinical setting for real-time data acquisition, data synchrony, data storage and access, and bedside data visualization to assist in clinical decision making and support the medical informatics mission. Our goal is to provide an overview and inspire other investigators to adopt these tools for their own research and optimization of perinatal patient care.
Collapse
Affiliation(s)
- Christopher G Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA; Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - A Erika Altamirano
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Tyler Hillman
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - John B Tan
- Department of Pediatrics, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA; Huckleberry Care, Irvine, CA, 92618, USA.
| |
Collapse
|
8
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
9
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|