1
|
Shin Y, Ryu J, Bai T, Qiang Y, Qi Y, Li G, Huang Y, Seo KJ, Fang H. Array-wide uniform PEDOT:PSS electroplating from potentiostatic deposition. Biosens Bioelectron 2024; 261:116418. [PMID: 38875864 PMCID: PMC11214878 DOI: 10.1016/j.bios.2024.116418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Electroplating of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is important in many neuroelectronic applications but is challenging to achieve uniformity on large-scale microelectrode arrays (MEA) using conventional galvanostatic methods. In this study, we address this challenge through a potentiostatic method and demonstrate highly uniform electroplating of PEDOT:PSS on MEA with more than one hundred electrodes, all at cellular sizes. The validation of this approach involves comparisons with galvanostatic deposition methods, showcasing unparalleled deposition yield and uniformity. Systematic electrochemical characterizations reveal similarities in structure and stability from potentiostatic deposited coatings. The advances developed here establish the potentiostatic method and detailed process to achieve a uniform coating of PEDOT:PSS on large-scale MEA, with broad utility in neuroelectronics.
Collapse
Affiliation(s)
- Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jaehyeon Ryu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yi Qiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yongli Qi
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Kyung Jin Seo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Zhang Y, Li L, He B. Influences of solvents and monomer concentrations on the electrochemical performance and structural properties of electrodeposited PEDOT films: a comparative study in water and acetonitrile. RSC Adv 2024; 14:30045-30054. [PMID: 39309656 PMCID: PMC11413736 DOI: 10.1039/d4ra03543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) has emerged as a promising coating for neural electrodes especially through convenient electrodeposition methods. To investigate the influences of solvents and EDOT monomer concentrations on the electrochemical performance and structural characteristics of PEDOT, both aqueous and acetonitrile solutions were employed with varying monomer concentrations during deposition. The prepared PEDOT films were examined for the surface morphology, electrochemical performance, and chemical structures. The results showed that an increase in EDOT concentration in either solvent led to PEDOT films with improved charge storage capacity and reduced impedance magnitude. At equivalent monomer concentrations, PEDOT films generated in acetonitrile exhibited a rougher surface texture and better electrochemical performance. Notably, the growth rate of charge storage capacity of PEDOT prepared in acetonitrile relative to the deposited charge density was 2.5 times that of PEDOT prepared in water. These findings could help to the optimization of PEDOT coating preparation to enhance electrode performance.
Collapse
Affiliation(s)
- Yang Zhang
- School of Mechanical Engineering and Automation, Fuzhou University Fuzhou 350108 China
| | - Linze Li
- School of Mechanical Engineering and Automation, Fuzhou University Fuzhou 350108 China
| | - Bingwei He
- School of Mechanical Engineering and Automation, Fuzhou University Fuzhou 350108 China
| |
Collapse
|
3
|
Shoup AM, Porwal N, Fakharian MA, Hage P, Orozco SP, Shadmehr R. Rejuvenating silicon probes for acute neurophysiology. J Neurophysiol 2024; 132:308-315. [PMID: 38865216 PMCID: PMC11383388 DOI: 10.1152/jn.00121.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.
Collapse
Affiliation(s)
- Alden M Shoup
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Natasha Porwal
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Mohammad Amin Fakharian
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Paul Hage
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Simon P Orozco
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Reza Shadmehr
- Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Li T, Nie M, Morimoto Y, Takeuchi S. Pillar electrodes embedded in the skeletal muscle tissue for selective stimulation of biohybrid actuators with increased contractile distance. Biofabrication 2024; 16:035022. [PMID: 38744312 DOI: 10.1088/1758-5090/ad4ba1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Electrodes are crucial for controlling the movements of biohybrid robots, but their external placement outside muscle tissue often leads to inefficient and non-selective stimulation of nearby biohybrid actuators. To address this, we propose embedding pillar electrodes within the skeletal muscle tissue, resulting in enhanced contraction of the target muscle without affecting the neighbor tissue with a 4 mm distance. We use finite element method simulations to establish a selectivity model, correlating the VIE(volume integration of electric field intensity within muscle tissue) with actual contractile distances under different amplitudes of electrical pulses. The simulated selective index closely aligns with experimental results, showing the potential of pillar electrodes for effective and selective biohybrid actuator stimulation. In experiments, we validated that the contractile distance and selectivity achieved with these pillar electrodes exceed conventional Au rod electrodes. This innovation has promising implications for building biohybrid robots with densely arranged muscle tissue, ultimately achieving more human-like movements. Additionally, our selectivity model offers valuable predictive tools for assessing electrical stimulation effects with different electrode designs.
Collapse
Affiliation(s)
- Tingyu Li
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Minghao Nie
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuya Morimoto
- Department of Electronic and Physical Systems,School of Fundamental Science and Engineering, Waseda University, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Liu X, Gong Y, Jiang Z, Stevens T, Li W. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci 2024; 18:1348434. [PMID: 38686330 PMCID: PMC11057246 DOI: 10.3389/fnins.2024.1348434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible high-density microelectrode arrays (HDMEAs) are emerging as a key component in closed-loop brain-machine interfaces (BMIs), providing high-resolution functionality for recording, stimulation, or both. The flexibility of these arrays provides advantages over rigid ones, such as reduced mismatch between interface and tissue, resilience to micromotion, and sustained long-term performance. This review summarizes the recent developments and applications of flexible HDMEAs in closed-loop BMI systems. It delves into the various challenges encountered in the development of ideal flexible HDMEAs for closed-loop BMI systems and highlights the latest methodologies and breakthroughs to address these challenges. These insights could be instrumental in guiding the creation of future generations of flexible HDMEAs, specifically tailored for use in closed-loop BMIs. The review thoroughly explores both the current state and prospects of these advanced arrays, emphasizing their potential in enhancing BMI technology.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Trevor Stevens
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Ali I, Islam MR, Yin J, Eichhorn SJ, Chen J, Karim N, Afroj S. Advances in Smart Photovoltaic Textiles. ACS NANO 2024; 18:3871-3915. [PMID: 38261716 PMCID: PMC10851667 DOI: 10.1021/acsnano.3c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Energy harvesting textiles have emerged as a promising solution to sustainably power wearable electronics. Textile-based solar cells (SCs) interconnected with on-body electronics have emerged to meet such needs. These technologies are lightweight, flexible, and easy to transport while leveraging the abundant natural sunlight in an eco-friendly way. In this Review, we comprehensively explore the working mechanisms, diverse types, and advanced fabrication strategies of photovoltaic textiles. Furthermore, we provide a detailed analysis of the recent progress made in various types of photovoltaic textiles, emphasizing their electrochemical performance. The focal point of this review centers on smart photovoltaic textiles for wearable electronic applications. Finally, we offer insights and perspectives on potential solutions to overcome the existing limitations of textile-based photovoltaics to promote their industrial commercialization.
Collapse
Affiliation(s)
- Iftikhar Ali
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Md Rashedul Islam
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| | - Junyi Yin
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Stephen J. Eichhorn
- Bristol
Composites Institute, School of Civil, Aerospace, and Design Engineering, The University of Bristol, University Walk, Bristol BS8 1TR, U.K.
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Nazmul Karim
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
- Nottingham
School of Art and Design, Nottingham Trent
University, Shakespeare Street, Nottingham NG1 4GG, U.K.
| | - Shaila Afroj
- Centre
for Print Research (CFPR), The University
of the West of England, Frenchay Campus, Bristol BS16 1QY, U.K.
| |
Collapse
|
7
|
Mo F, Kong F, Yang G, Xu Z, Liang W, Liu J, Zhang K, Liu Y, Lv S, Han M, Wang Y, Song Y, Wang M, Wu Y, Cai X. Integrated Three-Electrode Dual-Mode Detection Chip for Place Cell Analysis: Dopamine Facilitates the Role of Place Cells in Encoding Spatial Locations of Novel Environments and Rewards. ACS Sens 2023; 8:4765-4773. [PMID: 38015643 DOI: 10.1021/acssensors.3c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation. The working electrode, reference electrode, and counter electrode are all integrated within the ITDDC in electrochemical detection, enabling the real-time in situ monitoring of dopamine concentrations in animals in motion. The reference, working, and counter electrodes are surface-modified using PtNPs and polypyrrole, PtNPs and PEDOT:PSS, and PtNPs, respectively. This modification allows for the detection of dopamine concentrations as low as 20 nM. We conducted dual-mode testing on mice in a novel environment and an environment with food rewards. We found distinct dopamine concentration variations along different paths within a novel environment, implying that different dopamine levels may contribute to spatial memory. Moreover, environmental food rewards elevate dopamine significantly, followed by the intense firing of reward place cells, suggesting a crucial role of dopamine in facilitating the encoding of reward-associated locations in animals. The real-time and in situ recording capabilities of ITDDC offer new opportunities to investigate the interplay between electrophysiology and dopamine during animal exploration and reward-based memory and provide a novel glimpse into the correlation between dopamine levels and place cell activity.
Collapse
Affiliation(s)
- Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Meiqi Han
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|