1
|
Kish KE, Yuan A, Weiland JD. Patient-specific computational models of retinal prostheses. Sci Rep 2023; 13:22271. [PMID: 38097732 PMCID: PMC10721907 DOI: 10.1038/s41598-023-49580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
Retinal prostheses stimulate inner retinal neurons to create visual perception for blind patients. Implanted arrays have many small electrodes. Not all electrodes induce perception at the same stimulus amplitude, requiring clinicians to manually establish a visual perception threshold for each one. Phosphenes created by single-electrode stimuli can also vary in shape, size, and brightness. Computational models provide a tool to predict inter-electrode variability and automate device programming. In this study, we created statistical and patient-specific field-cable models to investigate inter-electrode variability across seven epiretinal prosthesis users. Our statistical analysis revealed that retinal thickness beneath the electrode correlated with perceptual threshold, with a significant fixed effect across participants. Electrode-retina distance and electrode impedance also correlated with perceptual threshold for some participants, but these effects varied by individual. We developed a novel method to construct patient-specific field-cable models from optical coherence tomography images. Predictions with these models significantly correlated with perceptual threshold for 80% of participants. Additionally, we demonstrated that patient-specific field-cable models could predict retinal activity and phosphene size. These computational models could be beneficial for determining optimal stimulation settings in silico, circumventing the trial-and-error testing of a large parameter space in clinic.
Collapse
Affiliation(s)
- Kathleen E Kish
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA
- BioInterfaces Institute, University of Michigan, Ann Arbor, 48105, USA
| | - Alex Yuan
- Ophthalmology and Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, 44195, USA
| | - James D Weiland
- Biomedical Engineering, University of Michigan, Ann Arbor, 48105, USA.
- BioInterfaces Institute, University of Michigan, Ann Arbor, 48105, USA.
- Ophthalmology and Visual Science, University of Michigan, Ann Arbor, 48105, USA.
| |
Collapse
|
2
|
Kish KE, Yuan A, Weiland JD. Patient-specific computational models of retinal prostheses. RESEARCH SQUARE 2023:rs.3.rs-3168193. [PMID: 37577674 PMCID: PMC10418526 DOI: 10.21203/rs.3.rs-3168193/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Retinal prostheses stimulate inner retinal neurons to create visual perception for blind patients. Implanted arrays have many small electrodes, which act as pixels. Not all electrodes induce perception at the same stimulus amplitude, requiring clinicians to manually establish a visual perception threshold for each one. Phosphenes created by single-electrode stimuli can also vary in shape, size, and brightness. Computational models provide a tool to predict inter-electrode variability and automate device programming. In this study, we created statistical and patient-specific field-cable models to investigate inter-electrode variability across seven epiretinal prosthesis users. Our statistical analysis revealed that retinal thickness beneath the electrode correlated with perceptual threshold, with a significant fixed effect across participants. Electrode-retina distance and electrode impedance also correlated with perceptual threshold for some participants, but these effects varied by individual. We developed a novel method to construct patient-specific field-cable models from optical coherence tomography images. Predictions with these models significantly correlated with perceptual threshold for 80% of participants. Additionally, we demonstrated that patient-specific field-cable models could predict retinal activity and phosphene size. These computational models could be beneficial for determining optimal stimulation settings in silico, circumventing the trial-and-error testing of a large parameter space in clinic.
Collapse
Affiliation(s)
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic Foundation
| | | |
Collapse
|
3
|
Alqahtani A, Alabed A, Alharbi Y, Bakouri M, Lovell NH, Dokos S. A varying-radius cable equation for the modelling of impulse propagation in excitable fibres. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3616. [PMID: 35582823 DOI: 10.1002/cnm.3616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present a varying-radius cable equation for nerve fibres taking into account the varying diameter along the neuronal segments. Finite element neuronal models utilising the classical (fixed-radius) and varying-radius cable formulations were compared using simple and realistic morphologies under intra- and extracellular electrical stimulation protocols. We found that the use of the classical cable equation to model intracellular neural electrical stimulation exhibited an error of 17% in a passive resistive cable model with abrupt change in radius from 1 to 2 μm, when compared to the known analytical solution and varying-radius cable formulation. This error was observed to increase substantially using more realistic neuron morphologies and branching structures. In the case of extracellular stimulation however, the difference between the classical and varying-radius formulations was less pronounced, but we expect this difference will increase under more complex stimulation paradigms such as high-frequency stimulation. We conclude that for computational neuroscience applications, it is essential to use the varying-radius cable equation for accurate prediction of neuronal responses under electrical stimulation.
Collapse
Affiliation(s)
- Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied Medical Science, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Amr Alabed
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| | - Yousef Alharbi
- Department of Medical Equipment Technology, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohsen Bakouri
- Department of Medical Equipment Technology, College of Applied Medical Science, Majmaah University, AL-Majmaah, Saudi Arabia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Abstract
Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Lauryn Barrett
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
5
|
Retinal Drug Delivery: Rethinking Outcomes for the Efficient Replication of Retinal Behavior. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The retina is a highly organized structure that is considered to be "an approachable part of the brain." It is attracting the interest of development scientists, as it provides a model neurovascular system. Over the last few years, we have been witnessing significant development in the knowledge of the mechanisms that induce the shape of the retinal vascular system, as well as knowledge of disease processes that lead to retina degeneration. Knowledge and understanding of how our vision works are crucial to creating a hardware-adaptive computational model that can replicate retinal behavior. The neuronal system is nonlinear and very intricate. It is thus instrumental to have a clear view of the neurophysiological and neuroanatomic processes and to take into account the underlying principles that govern the process of hardware transformation to produce an appropriate model that can be mapped to a physical device. The mechanistic and integrated computational models have enormous potential toward helping to understand disease mechanisms and to explain the associations identified in large model-free data sets. The approach used is modulated and based on different models of drug administration, including the geometry of the eye. This work aimed to review the recently used mathematical models to map a directed retinal network.
Collapse
|
6
|
Lyu Q, Lu Z, Li H, Qiu S, Guo J, Sui X, Sun P, Li L, Chai X, Lovell NH. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study. Int J Neural Syst 2020; 30:2050006. [DOI: 10.1142/s0129065720500069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite many advances in the development of retinal prostheses, clinical reports show that current retinal prosthesis subjects can only perceive prosthetic vision with poor visual acuity. A possible approach for improving visual acuity is to produce virtual electrodes (VEs) through electric field modulation. Generating controllable and localized VEs is a crucial factor in effectively improving the perceptive resolution of the retinal prostheses. In this paper, we aimed to design a microelectrode array (MEA) that can produce converged and controllable VEs by current steering stimulation strategies. Through computational modeling, we designed a three-dimensional concentric ring–disc MEA and evaluated its performance with different stimulation strategies. Our simulation results showed that electrode–retina distance (ERD) and inter-electrode distance (IED) can dramatically affect the distribution of electric field. Also the converged VEs could be produced when the parameters of the three-dimensional MEA were appropriately set. VE sites can be controlled by manipulating the proportion of current on each adjacent electrode in a current steering group (CSG). In addition, spatial localization of electrical stimulation can be greatly improved under quasi-monopolar (QMP) stimulation. This study may provide support for future application of VEs in epiretinal prosthesis for potentially increasing the visual acuity of prosthetic vision.
Collapse
Affiliation(s)
- Qing Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuofan Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shirong Qiu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiahui Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Pengcheng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Finn KE, Zander HJ, Graham RD, Lempka SF, Weiland JD. A Patient-Specific Computational Framework for the Argus II Implant. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:190-196. [PMID: 33748766 PMCID: PMC7971167 DOI: 10.1109/ojemb.2020.3001563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Goal Retinal prosthesis performance is limited by the variability of elicited phosphenes. The stimulating electrode's position with respect to retinal ganglion cells (RGCs) affects both perceptual threshold and phosphene shape. We created a modeling framework incorporating patient-specific anatomy and electrode location to investigate RGC activation and predict inter-electrode differences for one Argus II user. Methods We used ocular imaging to build a three-dimensional finite element model characterizing retinal morphology and implant placement. To predict the neural response to stimulation, we coupled electric fields with multi-compartment cable models of RGCs. We evaluated our model predictions by comparing them to patient-reported perceptual threshold measurements. Results Our model was validated by the ability to replicate clinical impedance and threshold values, along with known neurophysiological trends. Inter-electrode threshold differences in silico correlated with in vivo results. Conclusions We developed a patient-specific retinal stimulation framework to quantitatively predict RGC activation and better explain phosphene variations.
Collapse
Affiliation(s)
- Kathleen E Finn
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - Hans J Zander
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - Robert D Graham
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - Scott F Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA and are associated with the Biointerfaces Institute
| |
Collapse
|
8
|
Fellner A, Stiennon I, Rattay F. Analysis of upper threshold mechanisms of spherical neurons during extracellular stimulation. J Neurophysiol 2019; 121:1315-1328. [PMID: 30726157 DOI: 10.1152/jn.00700.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exceeding a certain stimulation strength can prevent the generation of somatic action potentials, as has been demonstrated in vitro with extracellularly stimulated dorsal root ganglion cells as well as retinal ganglion cells. This phenomenon, termed upper threshold, is currently thought to be a consequence of sodium current reversal in strongly depolarized regions. Here we analyze the contribution of membrane kinetics, using spherical model neurons that are stimulated externally with a microelectrode, in more detail. During extracellular pulse application, the electric field depolarizes one part and hyperpolarizes the other part of the cell. Strong transmembrane currents are generated only in the active depolarized region, changing the overall polarization level. The asymmetric membrane voltage distribution caused by the stimulus strongly influences the cell's behavior during and even after the stimulus. Effects on membrane voltage and transmembrane currents during and after the stimulus are shown and discussed in detail. Aside from the sodium current reversal, two more key mechanisms were identified in causing the upper threshold: strong potassium currents and inactivation of sodium channels. The contributions of the mechanisms involved strongly depend on cell properties, stimulus parameters, and other factors such as temperature. The conclusions presented here are based on several retinal ganglion cell models of the Fohlmeister group, a model with original Hodgkin-Huxley membrane, and a pyramidal cell model. NEW & NOTEWORTHY The upper threshold phenomenon in extracellular stimulation is analyzed in detail for spherical cells. Three main mechanisms were identified that prevent the generation of action potentials at high stimulation strengths: 1) strong potassium currents, 2) inactivating sodium ion channels, and 3) sodium current reversal. Ion channel kinetics in retinal ganglion cells, pyramidal cells, and the original Hodgkin-Huxley model were investigated under the influence of an extracellular stimulus.
Collapse
Affiliation(s)
- Andreas Fellner
- Institute for Analysis and Scientific Computing, Vienna University of Technology , Vienna , Austria
| | - Isabel Stiennon
- Institute for Analysis and Scientific Computing, Vienna University of Technology , Vienna , Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology , Vienna , Austria
| |
Collapse
|
9
|
Alqahtani A, Al Abed A, Lovell NH, Dokos S. A continuum model of electrical stimulation of multi-compartmental retinal ganglion cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:2716-2719. [PMID: 29060460 DOI: 10.1109/embc.2017.8037418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A continuum multi-domain model of electrical stimulation of the retina is presented. Each point in the retinal ganglion cell layer could be thought of as representing a single cell, whose biophysics is described using a four-compartment formulation incorporating varying ion channel expressions in the soma, axon initial segment, dendrites and axon. Our continuum model was validated against a discrete morphologically-realistic OFF RGC model, using intra- and extra-cellular electrical stimulation scenarios. Simulations from the continuum model reproduced the same results as that of the discrete model. Our continuum model is the first multi-domain model to represent all main RGC compartments, not just the soma. Moreover, we demonstrated that this model allows the investigation of axonal activation which has been observed to influence the perception of phosphenes.
Collapse
|
10
|
Bareket L, Barriga-Rivera A, Zapf MP, Lovell NH, Suaning GJ. Progress in artificial vision through suprachoroidal retinal implants. J Neural Eng 2018; 14:045002. [PMID: 28541930 DOI: 10.1088/1741-2552/aa6cbb] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal implants have proven their ability to restore visual sensation to people with degenerative retinopathy, characterized by photoreceptor cell death and the retina's inability to sense light. Retinal bionics operate by electrically stimulating the surviving neurons in the retina, thus triggering the transfer of visual sensory information to the brain. Suprachoroidal implants were first investigated in Australia in the 1950s. In this approach, the neuromodulation hardware is positioned between the sclera and the choroid, thus providing significant surgical and safety benefits for patients, with the potential to maintain residual vision combined with the artificial input from the device. Here we review the latest advances and state of the art devices for suprachoroidal prostheses, highlight future technologies and discuss challenges and perspectives towards improved rehabilitation of vision.
Collapse
Affiliation(s)
- Lilach Bareket
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
11
|
Loizos K, Marc R, Humayun M, Anderson JR, Jones BW, Lazzi G. Increasing Electrical Stimulation Efficacy in Degenerated Retina: Stimulus Waveform Design in a Multiscale Computational Model. IEEE Trans Neural Syst Rehabil Eng 2018; 26:1111-1120. [PMID: 29877835 PMCID: PMC6005361 DOI: 10.1109/tnsre.2018.2832055] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A computational model of electrical stimulation of the retina is proposed for investigating current waveforms used in prosthetic devices for restoring partial vision lost to retinal degenerative diseases. The model framework combines a connectome-based neural network model characterized by accurate morphological and synaptic properties with an admittance method model of bulk tissue and prosthetic electronics. In this model, the retina was computationally "degenerated," considering cellular death and anatomical changes that occur early in disease, as well as altered neural behavior that develops throughout the neurodegeneration and is likely interfering with current attempts at restoring vision. A resulting analysis of stimulation range and threshold of ON ganglion cells within the retina that are either healthy or in beginning stages of degeneration is presented for currently used stimulation waveforms, and an asymmetric biphasic current stimulation for subduing spontaneous firing to allow increased control over ganglion cell firing patterns in degenerated retina is proposed. Results show that stimulation thresholds of retinal ganglion cells do not notably vary after beginning stages of retina degeneration. In addition, simulation of proposed asymmetric waveforms showed the ability to enhance the control of ganglion cell firing via electrical stimulation.
Collapse
|
12
|
Esler TB, Kerr RR, Tahayori B, Grayden DB, Meffin H, Burkitt AN. Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration. PLoS One 2018; 13:e0193598. [PMID: 29494655 PMCID: PMC5833203 DOI: 10.1371/journal.pone.0193598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Abstract
Currently, a challenge in electrical stimulation of the retina with a visual prosthesis (bionic eye) is to excite only the cells lying directly under the electrode in the ganglion cell layer, while avoiding excitation of axon bundles that pass over the surface of the retina in the nerve fiber layer. Stimulation of overlying axons results in irregular visual percepts, limiting perceptual efficacy. This research explores how differences in fiber orientation between the nerve fiber layer and ganglion cell layer leads to differences in the electrical activation of the axon initial segment and axons of passage. Approach. Axons of passage of retinal ganglion cells in the nerve fiber layer are characterized by a narrow distribution of fiber orientations, causing highly anisotropic spread of applied current. In contrast, proximal axons in the ganglion cell layer have a wider distribution of orientations. A four-layer computational model of epiretinal extracellular stimulation that captures the effect of neurite orientation in anisotropic tissue has been developed using a volume conductor model known as the cellular composite model. Simulations are conducted to investigate the interaction of neural tissue orientation, stimulating electrode configuration, and stimulation pulse duration and amplitude. Main results. Our model shows that simultaneous stimulation with multiple electrodes aligned with the nerve fiber layer can be used to achieve selective activation of axon initial segments rather than passing fibers. This result can be achieved while reducing required stimulus charge density and with only modest increases in the spread of activation in the ganglion cell layer, and is shown to extend to the general case of arbitrary electrode array positioning and arbitrary target volume. Significance. These results elucidate a strategy for more targeted stimulation of retinal ganglion cells with experimentally-relevant multi-electrode geometries and achievable stimulation requirements.
Collapse
Affiliation(s)
- Timothy B. Esler
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Robert R. Kerr
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Seer Medical, Melbourne, Victoria, Australia
| | - Bahman Tahayori
- Monash Institute of Medical Engineering, Monash University, Clayton, Victoria, Australia
| | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Neural Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Hamish Meffin
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia
- ARC Centre of Excellence for Integrative Brain Function, Optometry & Vision Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
13
|
Grosberg LE, Ganesan K, Goetz GA, Madugula SS, Bhaskhar N, Fan V, Li P, Hottowy P, Dabrowski W, Sher A, Litke AM, Mitra S, Chichilnisky EJ. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. J Neurophysiol 2017; 118:1457-1471. [PMID: 28566464 DOI: 10.1152/jn.00750.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Epiretinal prostheses for treating blindness activate axon bundles, causing large, arc-shaped visual percepts that limit the quality of artificial vision. Improving the function of epiretinal prostheses therefore requires understanding and avoiding axon bundle activation. This study introduces a method to detect axon bundle activation on the basis of its electrical signature and uses the method to test whether epiretinal stimulation can directly elicit spikes in individual retinal ganglion cells without activating nearby axon bundles. Combined electrical stimulation and recording from isolated primate retina were performed using a custom multielectrode system (512 electrodes, 10-μm diameter, 60-μm pitch). Axon bundle signals were identified by their bidirectional propagation, speed, and increasing amplitude as a function of stimulation current. The threshold for bundle activation varied across electrodes and retinas, and was in the same range as the threshold for activating retinal ganglion cells near their somas. In the peripheral retina, 45% of electrodes that activated individual ganglion cells (17% of all electrodes) did so without activating bundles. This permitted selective activation of 21% of recorded ganglion cells (7% of expected ganglion cells) over the array. In one recording in the central retina, 75% of electrodes that activated individual ganglion cells (16% of all electrodes) did so without activating bundles. The ability to selectively activate a subset of retinal ganglion cells without axon bundles suggests a possible novel architecture for future epiretinal prostheses.NEW & NOTEWORTHY Large-scale multielectrode recording and stimulation were used to test how selectively retinal ganglion cells can be electrically activated without activating axon bundles. A novel method was developed to identify axon activation on the basis of its unique electrical signature and was used to find that a subset of ganglion cells can be activated at single-cell, single-spike resolution without producing bundle activity in peripheral and central retina. These findings have implications for the development of advanced retinal prostheses.
Collapse
Affiliation(s)
- Lauren E Grosberg
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California;
| | - Karthik Ganesan
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - Georges A Goetz
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Sasidhar S Madugula
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Nandita Bhaskhar
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - Victoria Fan
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - Peter Li
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California
| | - Pawel Hottowy
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; and
| | - Wladyslaw Dabrowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; and
| | - Alexander Sher
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California
| | - Alan M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California
| | - Subhasish Mitra
- Departments of Electrical Engineering and Computer Science, Stanford University, Stanford, California
| | - E J Chichilnisky
- Department of Neurosurgery and Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| |
Collapse
|
14
|
Barriga-Rivera A, Guo T, Yang CY, Abed AA, Dokos S, Lovell NH, Morley JW, Suaning GJ. High-amplitude electrical stimulation can reduce elicited neuronal activity in visual prosthesis. Sci Rep 2017; 7:42682. [PMID: 28209965 PMCID: PMC5314337 DOI: 10.1038/srep42682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Retinal electrostimulation is promising a successful therapy to restore functional vision. However, a narrow stimulating current range exists between retinal neuron excitation and inhibition which may lead to misperformance of visual prostheses. As the conveyance of representation of complex visual scenes may require neighbouring electrodes to be activated simultaneously, electric field summation may contribute to reach this inhibitory threshold. This study used three approaches to assess the implications of relatively high stimulating conditions in visual prostheses: (1) in vivo, using a suprachoroidal prosthesis implanted in a feline model, (2) in vitro through electrostimulation of murine retinal preparations, and (3) in silico by computing the response of a population of retinal ganglion cells. Inhibitory stimulating conditions led to diminished cortical activity in the cat. Stimulus-response relationships showed non-monotonic profiles to increasing stimulating current. This was observed in vitro and in silico as the combined response of groups of neurons (close to the stimulating electrode) being inhibited at certain stimulating amplitudes, whilst other groups (far from the stimulating electrode) being recruited. These findings may explain the halo-like phosphene shapes reported in clinical trials and suggest that simultaneous stimulation in retinal prostheses is limited by the inhibitory threshold of the retinal ganglion cells.
Collapse
Affiliation(s)
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Chih-Yu Yang
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, 2753, Australia.,School of Medical Science, UNSW, Sydney, 2052, Australia
| | - Gregg J Suaning
- Graduate School of Biomedical Engineering, UNSW, Sydney, 2052, Australia.,Sydney Medical School, University of Sydney, 2000, Australia
| |
Collapse
|
15
|
Loizos K, RamRakhyani AK, Anderson J, Marc R, Lazzi G. On the computation of a retina resistivity profile for applications in multi-scale modeling of electrical stimulation and absorption. Phys Med Biol 2016; 61:4491-505. [PMID: 27223656 DOI: 10.1088/0031-9155/61/12/4491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study proposes a methodology for computationally estimating resistive properties of tissue in multi-scale computational models, used for studying the interaction of electromagnetic fields with neural tissue, with applications to both dosimetry and neuroprosthetics. Traditionally, models at bulk tissue- and cellular-level scales are solved independently, linking resulting voltage from existing resistive tissue-scale models as extracellular sources to cellular models. This allows for solving the effects that external electric fields have on cellular activity. There are two major limitations to this approach: first, the resistive properties of the tissue need to be chosen, of which there are contradicting measurements in literature; second, the measurements of resistivity themselves may be inaccurate, leading to the mentioned contradicting results found across different studies. Our proposed methodology allows for constructing computed resistivity profiles using knowledge of only the neural morphology within the multi-scale model, resulting in a practical implementation of the effective medium theory; this bypasses concerns regarding the choice of resistive properties and accuracy of measurement setups. A multi-scale model of retina is constructed with an external electrode to serve as a test bench for analyzing existing and resulting resistivity profiles, and validation is presented through the reconstruction of a published resistivity profile of retina tissue. Results include a computed resistivity profile of retina tissue for use with a retina multi-scale model used to analyze effects of external electric fields on neural activity.
Collapse
Affiliation(s)
- Kyle Loizos
- Department of Electrical and Computer Engineering, University of Utah, UT 84112, USA
| | | | | | | | | |
Collapse
|