1
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
2
|
Conlon B, Hamilton C, Hughes S, Meade E, Hall DA, Vanneste S, Langguth B, Lim HH. Noninvasive Bimodal Neuromodulation for the Treatment of Tinnitus: Protocol for a Second Large-Scale Double-Blind Randomized Clinical Trial to Optimize Stimulation Parameters. JMIR Res Protoc 2019; 8:e13176. [PMID: 31573942 PMCID: PMC6789422 DOI: 10.2196/13176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/13/2023] Open
Abstract
Background There is increasing evidence from animal and human studies that bimodal neuromodulation combining sound and electrical somatosensory stimulation of the tongue can induce extensive brain changes and treat tinnitus. Objective The main objectives of the proposed clinical study are to confirm the efficacy, safety, and tolerability of treatment demonstrated in a previous large-scale study of bimodal auditory and trigeminal nerve (tongue) stimulation (Treatment Evaluation of Neuromodulation for Tinnitus - Stage A1); evaluate the therapeutic effects of adjusting stimulation parameters over time; and determine the contribution of different features of bimodal stimulation in improving tinnitus outcomes. Methods This study will be a prospective, randomized, double-blind, parallel-arm, comparative clinical trial of a 12-week treatment for tinnitus using a Conformité Européenne (CE)–marked device with a pre-post and 12-month follow-up design. Four treatment arms will be investigated, in which each arm consists of two different stimulation settings, with the first setting presented during the first 6 weeks and the second setting presented during the next 6 weeks of treatment. The study will enroll 192 participants, split in a ratio of 80:80:16:16 across the four arms. Participants will be randomized to one of four arms and stratified to minimize baseline variability in four categories: two separate strata for sound level tolerance (using loudness discomfort level as indicators for hyperacusis severity), high tinnitus symptom severity based on the Tinnitus Handicap Inventory (THI), and tinnitus laterality. The primary efficacy endpoints are within-arm changes in THI and Tinnitus Functional Index as well as between-arm changes in THI after 6 weeks of treatment for the full cohort and two subgroups of tinnitus participants (ie, one hyperacusis subgroup and a high tinnitus symptom severity subgroup). Additional efficacy endpoints include within-arm or between-arm changes in THI after 6 or 12 weeks of treatment and in different subgroups of tinnitus participants as well as at posttreatment assessments at 6 weeks, 6 months, and 12 months. Treatment safety, attrition rates, and compliance rates will also be assessed and reported. Results This study protocol was approved by the Tallaght University Hospital/St. James’s Hospital Joint Research Ethics Committee in Dublin, Ireland. The first participant was enrolled on March 20, 2018. The data collection and database lock are expected to be completed by February 2020, and the data analysis and manuscript submission are expected to be conducted in autumn of 2020. Conclusions The findings of this study will be disseminated to relevant research, clinical, and health services and patient communities through publications in peer-reviewed journals and presentations at scientific and clinical conferences. Trial Registration ClinicalTrials.gov NCT03530306; https://clinicaltrials.gov/ct2/show/NCT03530306 International Registered Report Identifier (IRRID) DERR1-10.2196/13176
Collapse
Affiliation(s)
- Brendan Conlon
- Department of Otolaryngology, St James Hospital Dublin and Tallaght University Hospital Dublin, Dublin, Ireland.,Neuromod Devices Limited, Dublin, Ireland.,Trinity College Dublin, Dublin, Ireland
| | | | | | - Emma Meade
- Neuromod Devices Limited, Dublin, Ireland
| | - Deborah A Hall
- Hearing Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sven Vanneste
- Trinity College Dublin, Dublin, Ireland.,University of Texas at Dallas, Richardson, TX, United States
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Hubert H Lim
- Neuromod Devices Limited, Dublin, Ireland.,University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Guo H, Hamilton M, Offutt SJ, Gloeckner CD, Li T, Kim Y, Legon W, Alford JK, Lim HH. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron 2018; 98:1020-1030.e4. [PMID: 29804919 DOI: 10.1016/j.neuron.2018.04.036] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/21/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
Ultrasound (US) can noninvasively activate intact brain circuits, making it a promising neuromodulation technique. However, little is known about the underlying mechanism. Here, we apply transcranial US and perform brain mapping studies in guinea pigs using extracellular electrophysiology. We find that US elicits extensive activation across cortical and subcortical brain regions. However, transection of the auditory nerves or removal of cochlear fluids eliminates the US-induced activity, revealing an indirect auditory mechanism for US neural activation. Our findings indicate that US activates the ascending auditory system through a cochlear pathway, which can activate other non-auditory regions through cross-modal projections. This cochlear pathway mechanism challenges the idea that US can directly activate neurons in the intact brain, suggesting that future US stimulation studies will need to control for this effect to reach reliable conclusions.
Collapse
Affiliation(s)
- Hongsun Guo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Mark Hamilton
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah J Offutt
- Restorative Therapies Group, Medtronic, Inc., Minneapolis, MN 55432, USA
| | - Cory D Gloeckner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tianqi Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yohan Kim
- Restorative Therapies Group, Medtronic, Inc., Minneapolis, MN 55432, USA
| | - Wynn Legon
- Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jamu K Alford
- Restorative Therapies Group, Medtronic, Inc., Minneapolis, MN 55432, USA
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges. Curr Opin Otolaryngol Head Neck Surg 2016. [PMID: 26208122 DOI: 10.1097/moo.0000000000000187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Electric stimulation is a potent means of neuromodulation that has been used to restore hearing and minimize tremor, but its application on tinnitus symptoms has been limited. We examine recent evidence to identify the knowledge gaps in the use of electric stimulation for tinnitus treatment. RECENT FINDINGS Recent studies using electric stimulation to suppress tinnitus in humans are categorized according to their points of attacks. First, noninvasive, direct current stimulation uses an active electrode in the ear canal, tympanic membrane, or temporal scalp. Second, inner ear stimulation uses charge-balanced biphasic stimulation by placing an active electrode on the promontory or round window, or a cochlear implant array in the cochlea. Third, intraneural implants can provide targeted stimulation of specific sites along the auditory pathway. Although these studies demonstrated some success in tinnitus suppression, none established a link between tinnitus suppression efficacy and tinnitus-generating mechanisms. SUMMARY Electric stimulation provides a unique opportunity to suppress tinnitus. Challenges include matching electric stimulation sites and patterns to tinnitus locus and type, meeting the oftentimes-contradictory demands between tinnitus suppression and other indications, such as speech understanding, and justifying the costs and risks of electric stimulation for tinnitus symptoms.
Collapse
|
5
|
Hamilton C, D'Arcy S, Pearlmutter BA, Crispino G, Lalor EC, Conlon BJ. An Investigation of Feasibility and Safety of Bi-Modal Stimulation for the Treatment of Tinnitus: An Open-Label Pilot Study. Neuromodulation 2016; 19:832-837. [PMID: 27310062 PMCID: PMC5157761 DOI: 10.1111/ner.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/31/2016] [Accepted: 04/22/2016] [Indexed: 01/23/2023]
Abstract
Objectives Tinnitus is the perception of sound in the absence of an external auditory stimulus. It is widely believed that tinnitus, in patients with associated hearing loss, is a neurological phenomenon primarily affecting the central auditory structures. However, there is growing evidence for the involvement of the somatosensory system in this form of tinnitus. For this reason it has been suggested that the condition may be amenable to bi‐modal stimulation of the auditory and somatosensory systems. We conducted a pilot study to investigate the feasibility and safety of a device that delivers simultaneous auditory and somatosensory stimulation to treat the symptoms of chronic tinnitus. Methods A cohort of 54 patients used the stimulation device for 10 weeks. Auditory stimulation was delivered via headphones and somatosensory stimulation was delivered via electrical stimulation of the tongue. Patient usage, logged by the device, was used to classify patients as compliant or noncompliant. Safety was assessed by reported adverse events and changes in tinnitus outcome measures. Response to treatment was assessed using tinnitus outcome measures: Minimum Masking Level (MML), Tinnitus Loudness Matching (TLM), and Tinnitus Handicap Inventory (THI). Results The device was well tolerated by patients and no adverse events or serious difficulties using the device were reported. Overall, 68% of patients met the defined compliance threshold. Compliant patients (N = 30) demonstrated statistically significant improvements in mean outcome measures after 10 weeks of treatment: THI (−11.7 pts, p < 0.001), TLM (−7.5dB, p < 0.001), and MML (−9.7dB, p < 0.001). The noncompliant group (N = 14) demonstrated no statistical improvements. Conclusion This study demonstrates the feasibility and safety of a new bi‐modal stimulation device and supports the potential efficacy of this new treatment for tinnitus.
Collapse
Affiliation(s)
- Caroline Hamilton
- Brain and Computation Lab, National University of Ireland Maynooth, Co. Kildare, Ireland.,ENT Department, Hermitage Medical Centre, Dublin, Ireland
| | | | - Barak A Pearlmutter
- Brain and Computation Lab, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | - Edmund C Lalor
- Neural-Engineering, School of Engineering, Trinity College Institute of Neuroscience and Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland
| | - Brendan J Conlon
- ENT Department, Hermitage Medical Centre, Dublin, Ireland.,Department of Otolaryngology, St. James's Hospital, Dublin, Ireland
| |
Collapse
|