1
|
Huang M, Yu H, Wei X, Li R, Zhang Z, Zhang X, Zhang Y. A 2D Optoelectronic Logic Device with Ultralow Supply Voltage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49620-49627. [PMID: 39231382 DOI: 10.1021/acsami.4c08525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Optoelectronic logic devices (OELDs) provide a cure for many visually impaired individuals. However, traditional OELDs have limitations, such as excessive channel resistance and complex structure, leading to high supply voltage and decreased efficiency of signal transmission. We report ultralow-voltage OELDs by seriating two 2D MoTe2 transistors with sub-10 nm channel lengths. The short channel length and atomically flat interface result in a low-resistance light-sensing unit that can operate with a low supply voltage and function well in weak-light conditions. The devices achieve an on state without light signal input and an off state with light signal input at an ultralow supply voltage of 50 mV, lower than the retinal bearing voltage of 70 mV. Additionally, MoTe2's excellent optoelectronic properties allow the device to perceive light from visible to near-infrared wavelengths with high sensitivity to weak light signals. The specific perception of visible light intensity is 0.03 mW·mm-2, and the near-infrared light intensity is 0.1 mW mm-2. The device also has a response time of 8 ms, meeting human needs. Our findings provide a promising solution for developing low-voltage artificial retinas.
Collapse
Affiliation(s)
- Mengting Huang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaofu Wei
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ruishan Li
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
2
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol 2019; 11:2515841418817501. [PMID: 30729233 PMCID: PMC6350159 DOI: 10.1177/2515841418817501] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Retinal prosthesis systems have undergone significant advances in the past quarter century, resulting in the development of several different novel surgical and engineering approaches. Encouraging results have demonstrated partial visual restoration, with improvement in both coarse objective function and performance of everyday tasks. To date, four systems have received marketing approval for use in Europe or the United States, with numerous others undergoing preclinical and clinical evaluation, reflecting the established safety profile of these devices for chronic implantation. This progress represents the first notion that the field of visual restorative medicine could offer blind patients a hope of real and measurable benefit. However, there are numerous complex engineering and biophysical obstacles still to be overcome, to reconcile the gap that remains between artificial and natural vision. Current developments in the form of enhanced image processing algorithms and data transfer approaches, combined with emerging nanofabrication and conductive polymerization techniques, herald an exciting and innovative future for retinal prosthetics. This review provides an update of retinal prosthetic systems currently undergoing development and clinical trials while also addressing future challenges in the field, such as the assessment of functional outcomes in ultra-low vision and strategies for tackling existing hardware and software constraints.
Collapse
Affiliation(s)
- Edward Bloch
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Yvonne Luo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Lyndon da Cruz
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| |
Collapse
|
4
|
Gregori NZ, Callaway NF, Hoeppner C, Yuan A, Rachitskaya A, Feuer W, Ameri H, Arevalo JF, Augustin AJ, Birch DG, Dagnelie G, Grisanti S, Davis JL, Hahn P, Handa JT, Ho AC, Huang SS, Humayun MS, Iezzi R, Jayasundera KT, Kokame GT, Lam BL, Lim JI, Mandava N, Montezuma SR, Olmos de Koo L, Szurman P, Vajzovic L, Wiedemann P, Weiland J, Yan J, Zacks DN. Retinal Anatomy and Electrode Array Position in Retinitis Pigmentosa Patients After Argus II Implantation: An International Study. Am J Ophthalmol 2018; 193:87-99. [PMID: 29940167 PMCID: PMC6535141 DOI: 10.1016/j.ajo.2018.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 01/26/2023]
Abstract
PURPOSE To assess the retinal anatomy and array position in Argus II retinal prosthesis recipients. DESIGN Prospective, noncomparative cohort study. METHODS Setting: International multicenter study. PATIENTS Argus II recipients enrolled in the Post-Market Surveillance Studies. PROCEDURES Spectral-domain optical coherence tomography images collected for the Surveillance Studies (NCT01860092 and NCT01490827) were reviewed. Baseline and postoperative macular thickness, electrode-retina distance (gap), optic disc-array overlap, and preretinal membrane presence were recorded at 1, 3, 6, and 12 months. MAIN OUTCOME MEASURES Axial retinal thickness and axial gap along the array's long axis (a line between the tack and handle); maximal retinal thickness and maximal gap along a B-scan near the tack, midline, and handle. RESULTS Thirty-three patients from 16 surgical sites in the United States and Germany were included. Mean axial retinal thickness increased from month 1 through month 12 at each location, but reached statistical significance only at the array midline (P = .007). The rate of maximal thickness increase was highest near the array midline (slope = 6.02, P = .004), compared to the tack (slope = 3.60, P < .001) or the handle (slope = 1.93, P = .368). The mean axial and maximal gaps decreased over the study period, and the mean maximal gap size decrease was significant at midline (P = .032). Optic disc-array overlap was seen in the minority of patients. Preretinal membranes were common before and after implantation. CONCLUSIONS Progressive macular thickening under the array was common and corresponded to decreased electrode-retina gap over time. By month 12, the array was completely apposed to the macula in approximately half of the eyes.
Collapse
Affiliation(s)
- Ninel Z Gregori
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Natalia F Callaway
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Catherine Hoeppner
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - William Feuer
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hossein Ameri
- USC Roski Eye Institute, University of Southern California, Los Angeles, California, USA
| | - J Fernando Arevalo
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Gislin Dagnelie
- Lions Vision Research and Rehabilitation Center, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Salvatore Grisanti
- University Eye Clinic Luebeck at the University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Janet L Davis
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paul Hahn
- Duke University Eye Center, Durham, North Carolina, USA
| | - James T Handa
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allen C Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Suber S Huang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Retina Center of Ohio, Cleveland, Ohio, USA
| | - Mark S Humayun
- USC Roski Eye Institute, University of Southern California, Los Angeles, California, USA; USC Ginsburg Institute for Biomedical Therapeutics, Los Angeles, California, USA
| | | | | | | | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jennifer I Lim
- University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Lisa Olmos de Koo
- USC Roski Eye Institute, University of Southern California, Los Angeles, California, USA
| | - Peter Szurman
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
| | | | - Peter Wiedemann
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Leipzig, Leipzig, Germany
| | - James Weiland
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jiong Yan
- Emory Eye Center, Emory University, Atlanta, Georgia, USA
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Cheng DL, Greenberg PB, Borton DA. Advances in Retinal Prosthetic Research: A Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives. Curr Eye Res 2017; 42:334-347. [PMID: 28362177 DOI: 10.1080/02713683.2016.1270326] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To date, reviews of retinal prostheses have focused primarily on devices undergoing human trials in the Western Hemisphere and fail to capture significant advances in materials and engineering research in countries such as Japan and Korea, as well as projects in early stages of development. To address these gaps, this systematic review examines worldwide advances in retinal prosthetic research, evaluates engineering characteristics and clinical progress of contemporary device initiatives, and identifies potential directions for future research in the field of retinal prosthetics. METHODS A literature search using PubMed, Google Scholar, and IEEExplore was conducted following the PRISMA Guidelines for Systematic Review. Inclusion criteria were peer-reviewed papers demonstrating progress in human or animal trials and papers discussing the prosthetic engineering design. For each initiative, a description of the device, its engineering considerations, and recent clinical results were provided. RESULTS Ten prosthetic initiatives met our inclusion criteria and were organized by stimulation location. Of these initiatives, four have recently completed human trials, three are undergoing multi- or single-center human trials, and three are undergoing preclinical animal testing. Only the Argus II (FDA 2013, CE 2011) has obtained FDA approval for use in the United States; the Alpha-IMS (CE 2013) has achieved the highest visual acuity using a Landolt-C test to date and is the only device presently undergoing a multicenter clinical trial. CONCLUSION Several distinct approaches to retinal stimulation have been successful in eliciting visual precepts in animals and/or humans. However, many clinical needs are still not met and engineering challenges must be addressed before a retinal prosthesis with the capability to fully and safely restore functional vision can be realized.
Collapse
Affiliation(s)
- Derrick L Cheng
- a Alpert Medical School , Brown University , Providence , RI , USA
| | - Paul B Greenberg
- b Section of Ophthalmology , Providence VA Medical Center , Providence , RI , USA.,c Division of Ophthalmology, Alpert Medical School , Brown University , Providence , RI , USA
| | - David A Borton
- d School of Engineering , Brown University , Providence , RI , USA.,e Brown Institute for Brain Science , Brown University , Providence , RI , USA
| |
Collapse
|
6
|
|
7
|
RETRACTED ARTICLE: Transkorneale Elektrostimulation bei Patienten mit primärem Offenwinkelglaukom. Ophthalmologe 2015; 112:694. [DOI: 10.1007/s00347-014-3071-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Light JG, Fransen JW, Adekunle AN, Adkins A, Pangeni G, Loudin J, Mathieson K, Palanker DV, McCall MA, Pardue MT. Inner retinal preservation in rat models of retinal degeneration implanted with subretinal photovoltaic arrays. Exp Eye Res 2014; 128:34-42. [PMID: 25224340 DOI: 10.1016/j.exer.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/26/2022]
Abstract
Photovoltaic arrays (PVA) implanted into the subretinal space of patients with retinitis pigmentosa (RP) are designed to electrically stimulate the remaining inner retinal circuitry in response to incident light, thereby recreating a visual signal when photoreceptor function declines or is lost. Preservation of inner retinal circuitry is critical to the fidelity of this transmitted signal to ganglion cells and beyond to higher visual targets. Post-implantation loss of retinal interneurons or excessive glial scarring could diminish and/or eliminate PVA-evoked signal transmission. As such, assessing the morphology of the inner retina in RP animal models with subretinal PVAs is an important step in defining biocompatibility and predicting success of signal transmission. In this study, we used immunohistochemical methods to qualitatively and quantitatively compare inner retinal morphology after the implantation of a PVA in two RP models: the Royal College of Surgeons (RCS) or transgenic S334ter-line 3 (S334ter-3) rhodopsin mutant rat. Two PVA designs were compared. In the RCS rat, we implanted devices in the subretinal space at 4 weeks of age and histologically examined them at 8 weeks of age and found inner retinal morphology preservation with both PVA devices. In the S334ter-3 rat, we implanted devices at 6-12 weeks of age and again, inner retinal morphology was generally preserved with either PVA design 16-26 weeks post-implantation. Specifically, the length of rod bipolar cells and numbers of cholinergic amacrine cells were maintained along with their characteristic inner plexiform lamination patterns. Throughout the implanted retinas we found nonspecific glial reaction, but none showed additional glial scarring at the implant site. Our results indicate that subretinally implanted PVAs are well-tolerated in rodent RP models and that the inner retinal circuitry is preserved, consistent with our published results showing implant-evoked signal transmission.
Collapse
Affiliation(s)
- Jacob G Light
- Ophthalmology, Emory University, USA; Rehab R&D Center of Excellence, Atlanta VA Medical Center, USA
| | - James W Fransen
- Anatomical Sciences & Neurobiology, University of Louisville, USA
| | | | - Alice Adkins
- Rehab R&D Center of Excellence, Atlanta VA Medical Center, USA
| | - Gobinda Pangeni
- Ophthalmology & Visual Sciences, University of Louisville, USA
| | - James Loudin
- Hansen Experimental Physics Laboratory, Stanford University, USA
| | - Keith Mathieson
- Hansen Experimental Physics Laboratory, Stanford University, USA; Institute of Photonics, University of Strathclyde, UK
| | - Daniel V Palanker
- Hansen Experimental Physics Laboratory, Stanford University, USA; Ophthalmology, Stanford University, USA
| | - Maureen A McCall
- Anatomical Sciences & Neurobiology, University of Louisville, USA; Ophthalmology & Visual Sciences, University of Louisville, USA
| | - Machelle T Pardue
- Ophthalmology, Emory University, USA; Rehab R&D Center of Excellence, Atlanta VA Medical Center, USA.
| |
Collapse
|
9
|
Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F, Barca F, di Bartolo E. The Argus II Retinal Prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol 2014; 157:1282-90. [PMID: 24560994 DOI: 10.1016/j.ajo.2014.02.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 12/25/2022]
Abstract
PURPOSE To study the anatomic and functional outcomes of Argus II Retinal Prosthesis System implantation in patients with retinitis pigmentosa. DESIGN Interventional case series. METHODS The study population included 6 patients with visual acuity no better than light perception. After the Argus II Retinal Prosthesis System was implanted, complications and anatomic and functional results were studied. The main outcome measures were mobility, square localization, direction of motion, grating visual acuity, and Goldmann visual field, all of which were assessed. Optical coherence tomography was performed. RESULTS Implantation of the Argus II Retinal Prosthesis System was safely performed in all patients. One patient experienced postoperative elevation in intraocular pressure, which was controlled medically. In 1 patient, moderate detachment of the choroid occurred postoperatively, and it resolved spontaneously. One patient withdrew from the study. Wound dehiscence, endophthalmitis or retinal detachment was not observed. All patients were able to locate a bright light on the ceiling and a dark line on the floor after the surgery. Performance in square localization tests improved in 4 patients, and direction of motion improved in 3 patients. One patient achieved grating visual acuity. Goldmann visual field test results improved in all patients. CONCLUSIONS The patients showed improvement in visual tasks after the surgery, and the device was well tolerated and functional over a 1-year follow-up period. A rigorous patient-selection process is necessary to maximize patient compliance with the rigorous follow-up testing schedule. Both patients and medical staff should be prepared for a lengthy, arduous rehabilitation process.
Collapse
Affiliation(s)
- Stanislao Rizzo
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy.
| | - Claudia Belting
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy
| | - Laura Cinelli
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy
| | - Luca Allegrini
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy
| | - Federica Genovesi-Ebert
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy
| | - Francesco Barca
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy
| | - Emanuele di Bartolo
- Azienda Ospedaliero-Universitaria Pisana, Unità Operativa Chirurgia Oftalmica, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
10
|
Abstract
Retinal prosthesis has been translated from the laboratory to the clinic over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials and highlights technology breakthroughs that will contribute to next generation of retinal prostheses.
Collapse
|
11
|
Pardue MT, Ciavatta VT, Hetling JR. Neuroprotective Effects of Low Level Electrical Stimulation Therapy on Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:845-51. [DOI: 10.1007/978-1-4614-3209-8_106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
The Argus™ II retinal prosthesis: Factors affecting patient selection for implantation. Prog Retin Eye Res 2013; 36:1-23. [DOI: 10.1016/j.preteyeres.2013.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 01/20/2023]
|
13
|
|
14
|
Belokopytov M, Shulman S, Dubinsky G, Belkin M, Rosner M. Intravitreal saline injection ameliorates laser-induced retinal damage in rats. Retina 2012; 32:1165-70. [PMID: 22290081 DOI: 10.1097/iae.0b013e318234942f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Injury to the central nervous system has been shown to trigger a physiologic response in the form of some degree of natural self-repair. This beneficial reaction may be boosted by appropriate preconditioning via a reversible injury to the retina. Here we report the ameliorative effect of intravitreal saline injection on laser-induced retinal damage. METHODS Standard argon laser lesions (514 and 544 nm, 200 μm, 0.1 W, 0.05 seconds) were induced in the eyes of 36 Dark Agouti pigmented rats and immediately followed by injection of saline either intravitreally (5 μL) or intravenously (0.5 mL). Lesions were evaluated histologically and morphometrically after 3, 20, and 60 days. RESULTS At all 3 time points, the eyes of rats injected intravitreally showed less laser-induced retinal cell loss (P < 0.05) and smaller lesion diameters (P < 0.05) than those of intravenously injected rats. CONCLUSION Intravitreal saline injection evidently has a neuroprotective effect on the rat retina. The mechanism of action of this effect should be further elucidated and its clinical applicability tested.
Collapse
Affiliation(s)
- Mark Belokopytov
- Goldschleger Eye Research Institute, Sackler School of Medicine, Tel Aviv University, Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | | | |
Collapse
|
15
|
O'Brien EE, Greferath U, Vessey KA, Jobling AI, Fletcher EL. Electronic restoration of vision in those with photoreceptor degenerations. Clin Exp Optom 2012; 95:473-83. [PMID: 22823954 DOI: 10.1111/j.1444-0938.2012.00783.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 06/06/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022] Open
Abstract
Complete loss of vision is one of the most feared sequelae of retinal disease. Currently, there are few if any treatment options available to patients that may slow or prevent blindness in diseases caused by photoreceptor loss, such as retinitis pigmentosa and age-related macular degeneration. Electronic restoration of vision has emerged over recent years as a safe and viable option for those who have lost substantial numbers of photoreceptors and who are severely vision impaired. Indeed, there has been a dramatic increase in our understanding of what is required to restore vision using an electronic retinal prosthesis. Recent reports show that for some patients, restoration of vision to the point of reading large letters is possible. In this review, we examine the types of implants currently under investigation and the results these devices have achieved clinically. We then consider a range of engineering and biological factors that may need to be considered to improve the visual performance of newer-generation devices. With added research, it is hoped that the level of vision achieved with newer generation devices will steadily improve, resulting in enhanced quality of life for those with severe vision impairment.
Collapse
Affiliation(s)
- Emily E O'Brien
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | |
Collapse
|
16
|
Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, Galambos L, Smith R, Harris JS, Sher A, Palanker D. Photovoltaic Retinal Prosthesis with High Pixel Density. NATURE PHOTONICS 2012; 6:391-397. [PMID: 23049619 PMCID: PMC3462820 DOI: 10.1038/nphoton.2012.104] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/04/2012] [Indexed: 05/21/2023]
Abstract
Retinal degenerative diseases lead to blindness due to loss of the "image capturing" photoreceptors, while neurons in the "image processing" inner retinal layers are relatively well preserved. Electronic retinal prostheses seek to restore sight by electrically stimulating surviving neurons. Most implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We present a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel receive power and data directly through pulsed near-infrared illumination and electrically stimulate neurons. Stimulation was produced in normal and degenerate rat retinas, with pulse durations from 0.5 to 4 ms, and threshold peak irradiances from 0.2 to 10 mW/mm(2), two orders of magnitude below the ocular safety limit. Neural responses were elicited by illuminating a single 70 μm bipolar pixel, demonstrating the possibility of a fully-integrated photovoltaic retinal prosthesis with high pixel density.
Collapse
Affiliation(s)
- Keith Mathieson
- Hansen Experimental Physics Laboratory, Stanford University ; Santa Cruz Institute for Particle Physics, UC Santa Cruz
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neuroprotective dose response in RCS rats implanted with microphotodiode arrays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:115-20. [PMID: 22183323 DOI: 10.1007/978-1-4614-0631-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
18
|
Non-viral gene therapy for GDNF production in RCS rat: the crucial role of the plasmid dose. Gene Ther 2011; 19:886-98. [DOI: 10.1038/gt.2011.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Mocko JA, Kim M, Faulkner AE, Cao Y, Ciavatta VT, Pardue MT. Effects of subretinal electrical stimulation in mer-KO mice. Invest Ophthalmol Vis Sci 2011; 52:4223-30. [PMID: 21467171 DOI: 10.1167/iovs.10-6750] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether mer(kd) mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. METHODS Mer(kd) mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between mer(kd) mice and RCS rats from P28 to P42. RESULTS SES-treated mer(kd) mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated mer(kd) retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in mer(kd) mice than in RCS rats. CONCLUSIONS Although SES upregulated Fgf2 in mer(kd) retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from mer(kd) mice and RCS rats across different ages showed inner retinal dysfunction in mer(kd) mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in mer(kd) mice may produce a retinal environment that is not responsive to neuroprotection from SES.
Collapse
Affiliation(s)
- Julie A Mocko
- Rehabilitation Research and Development Service, Atlanta Department of Veterans Affairs, Decatur, Georgia 30033, USA
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Effects of common anesthetics on eye movement and electroretinogram. Doc Ophthalmol 2011; 122:163-76. [PMID: 21519880 DOI: 10.1007/s10633-011-9271-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
High-resolution magnetic resonance imaging (MRI) provides non-invasive images of retinal anatomy, physiology, and function with depth-resolved laminar resolution. Eye movement and drift, however, could limit high spatial resolution imaging, and anesthetics that minimize eye movement could significantly attenuate retinal function. The aim of this study was to determine the optimal anesthetic preparations to minimize eye movement and maximize visual-evoked retinal response in rats. Eye movements were examined by imaging of the cornea with a charge-coupled device (CCD) camera under isoflurane, urethane, ketamine/xylazine, and propofol anesthesia at typical dosages in rats. Combination of the paralytic pancuronium bromide with isoflurane or ketamine/xylazine anesthesia was also examined for the eye movement studies. Visual-evoked retinal responses were evaluated using full-field electroretinography (ERG) under isoflurane, ketamine/xylazine, urethane, and ketamine/xylazine + pancuronium anesthesia in rats. The degree of eye movement, measured as displacement per unit time, was the smallest under 1% isoflurane + pancuronium anesthesia. The ketamine/xylazine groups showed larger dark-adapted ERG a- and b-waves than other anesthetics tested. The isoflurane group showed the shortest b-wave implicit times. Photopic ERGs in the ketamine/xylazine groups showed the largest b-waves with the isoflurane group showing slightly shorter implicit times at the higher flash intensities. Oscillatory potentials revealed an early peak in the isoflurane group compared with ketamine/xylazine and urethane groups. Pancuronium did not affect the a- and b-wave, but did increase oscillatory potential amplitudes. Compared with the other anesthetics tested here, ketamine/xylazine + pancuronium was the best combination to minimize eye movement and maximize retinal function. These findings should set the stage for further development and application of high-resolution functional imaging techniques, such as MRI, to study retinal anatomy, physiology, and function in anesthetized rats.
Collapse
|
22
|
Matthaei M, Zeitz O, Keserü M, Wagenfeld L, Hornig R, Post N, Richard G. Progress in the Development of Vision Prostheses. Ophthalmologica 2011; 225:187-92. [DOI: 10.1159/000318042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 11/19/2022]
|
23
|
Abstract
Once the topic of folklore and science fiction, the notion of restoring vision to the blind is now approaching a tractable reality. Technological advances have inspired numerous multidisciplinary groups worldwide to develop visual neuroprosthetic devices that could potentially provide useful vision and improve the quality of life of profoundly blind individuals. While a variety of approaches and designs are being pursued, they all share a common principle of creating visual percepts through the stimulation of visual neural elements using appropriate patterns of electrical stimulation. Human clinical trials are now well underway and initial results have been met with a balance of excitement and cautious optimism. As remaining technical and surgical challenges continue to be solved and clinical trials move forward, we now enter a phase of development that requires careful consideration of a new set of issues. Establishing appropriate patient selection criteria, methods of evaluating long-term performance and effectiveness, and strategies to rehabilitate implanted patients will all need to be considered in order to achieve optimal outcomes and establish these devices as viable therapeutic options.
Collapse
|
24
|
|
25
|
Ni YQ, Gan DK, Xu HD, Xu GZ, Da CD. Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp Neurol 2009; 219:439-52. [PMID: 19576889 DOI: 10.1016/j.expneurol.2009.06.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 06/17/2009] [Accepted: 06/20/2009] [Indexed: 10/20/2022]
Abstract
Direct electrical stimulation of neural tissues is a strategic approach to treat injured axons by accelerating their outgrowth [Al-Majed, A.A., Neumann, C.M., Brushart, T.M., Gordon, T., 2000. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20, 2602-2608] and promoting their regeneration [Geremia, N.M., Gordon, T., Brushart, T.M., Al-Majed, A.A., Verge, V.M.K., 2007. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 205, 347-359]. Recently, transcorneal electrical stimulation (TCES), a novel less invasive method, has been shown to rescue axotomized and damaged retinal ganglion cells [Morimoto, T., Miyoshi, T., Matsuda, S., Tano, Y., Fujikado, T., Fukuda, Y., 2005. Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system. Invest. Ophthalmol. Vis. Sci. 46(6), 2147-2155]. Here, we investigated the neuroprotection of TCES on light-induced photoreceptor degeneration and the underlying mechanism. Adult male Sprague-Dawley (SD) rats received TCES before (pre-TCES) or after (post-TCES) intense light exposure. After fourteen days of light exposure, retinal histology and electroretinography were performed to evaluate the neuroprotective effect of TCES. The mRNA and protein levels of apoptotic-associated genes including Bcl-2, Bax, Caspase-3 as well as ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) in the retinas were determined by real-time PCR and Western blot analysis. The localization of these gene products in the retinas was examined by immunohistochemistry. Both pre- and post-TCES ameliorated the progressive photoreceptor degeneration. The degree of rescue depended on the strength of the electric charge. Post-TCES showed a relatively better and longer-term protective effect than pre-TCES. Real-time PCR and Western blot analysis revealed an upregulation of Bcl-2, CNTF, and BDNF and a downregulation of Bax in the retinas after TCES. Immunohistochemical studies showed that Bcl-2 and CNTF were selectively upregulated in Müller cells. These findings provide a new therapeutic method to prevent or delay photoreceptor degeneration through activating the intrinsic survival system.
Collapse
Affiliation(s)
- Ying-qin Ni
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai 200031, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Ciavatta VT, Kim M, Wong P, Nickerson JM, Shuler RK, McLean GY, Pardue MT. Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array. Invest Ophthalmol Vis Sci 2009; 50:4523-30. [PMID: 19264883 DOI: 10.1167/iovs.08-2072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To test the hypothesis that subretinal electrical stimulation from a microphotodiode array (MPA) exerts a neuroprotective effect in Royal College of Surgeons (RCS) rats through the induction of growth factors. METHODS At postnatal day 21, RCS rats were divided into four groups in which one eye per rat received treatment: (A) active MPA, (M) minimally active MPA, (S) sham surgery, or (C) no surgery and the opposite eye was unoperated. Dark- and light-adapted ERGs were recorded 1 week after surgery. A second set of A-, M-, and C-treated RCS rats had weekly ERG recordings for 4 weeks. Real-time RT-PCR was used to measure relative expression of mRNAs (Bdnf, Fgf2, Fgf1, Cntf, Gdnf, and Igf1) in retina samples collected 2 days after the final ERG. RESULTS One week after surgery, there was a slight difference in dark-adapted ERG b-wave at the brightest flash intensity. Mean retinal Fgf2 expression in the treated eye relative to the opposite eye was greater for the A group (4.67 +/- 0.72) than for the M group (2.80 +/- 0.45; P = 0.0501), S group (2.03 +/- 0.45; P < 0.01), and C group (1.30 +/- 0.22; P < 0.001). No significant change was detected for Bdnf, Cntf, Fgf1, Gdnf, and Igf1. Four weeks after surgery, the A group had significantly larger dark- and light-adapted ERG b-waves than for the M and C groups (P < 0.01). Simultaneously, mean relative Fgf2 expression was again greater for the A group (3.28 +/- 0.61) than for the M (1.28 +/- 0.32; P < 0.05) and C (1.05 +/- 0.04; P < 0.05) groups. CONCLUSIONS The results show subretinal implantation of an MPA induces selective expression of Fgf2 above that expected from a retina-piercing injury. Preservation of ERG b-wave amplitude 4 weeks after implantation is accompanied by elevated Fgf2 expression. These results suggest that Fgf2 may play a role in the neuroprotection provided by subretinal electrical stimulation.
Collapse
|
27
|
Schmid H, Herrmann T, Kohler K, Stett A. Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina. Brain Res Bull 2009; 79:15-25. [PMID: 19150490 DOI: 10.1016/j.brainresbull.2008.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 10/03/2008] [Accepted: 12/18/2008] [Indexed: 11/17/2022]
Abstract
Electrical stimulation has been shown to have neuroprotective effects on ganglion cells and photoreceptors in axotomized and dystrophic retinas from Royal College of Surgeons (RCS) rats. This study determined whether electrical stimulation also has a neuroprotective effect on cells in the inner nuclear layer (INL) of retinas. We cultivated retinas from adult RCS rats on microelectrode arrays and stimulated them continuously with 20 Hz for up to 5 days. Afterwards, we subjected them to quantitative immunohistochemical analysis. Using TUNEL assay we found that transretinal electrical stimulation (TRES) with charge densities within the range of 100-500 microC/cm2 reduced apoptosis of neurons in the INL of degenerated retinas from RCS -/- rats by 20% after 1 day of continuous stimulation. Antibody staining (OX-42, ED1) revealed a reduced activation of migroglial cells in RCS -/- and congenic control (RCS +/+) rat retinas by up to 50% after 1 day of stimulation. The effect of electrical stimulation on apoptosis and reduced activation of microglial cells was closely correlated with the strength and duration of the stimulation. The neuroprotective effect of TRES on neuronal cells in the INL of degenerated RCS rat retinas supports the idea that electrical stimulation may be a therapeutic option to delay the progression of retinal degeneration in patients suffering from retinitis pigmentosa.
Collapse
Affiliation(s)
- Heiko Schmid
- NMI Natural & Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | | | | | | |
Collapse
|
28
|
Chader GJ, Weiland J, Humayun MS. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. PROGRESS IN BRAIN RESEARCH 2009; 175:317-32. [DOI: 10.1016/s0079-6123(09)17522-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Shinoda K, Imamura Y, Matsuda S, Seki M, Uchida A, Grossman T, Tsubota K. Transcutaneous electrical retinal stimulation therapy for age-related macular degeneration. Open Ophthalmol J 2008; 2:132-6. [PMID: 19526044 PMCID: PMC2694606 DOI: 10.2174/1874364100802010132] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/09/2008] [Accepted: 07/25/2008] [Indexed: 11/22/2022] Open
Abstract
This reports the preliminary outcome of a transpalpebral electrical retinal stimulation therapy for age-related macular degeneration (ARMD). Twenty-one patients consisting of 16 with wet-type (Group-W) and 5 with dry-type (Group-D) ARMD with a mean age of 73.9 ± 9.5 years (range 51 to 85 years) were recruited for this study. Transpalpebral electrical retinal stimulation (20 minutes, 800 μA) was applied on the patients 4 times per day for up to 1 month. The mean best-corrected visual acuity (Early Treatment Diabetic Retinopathy Study [ETDRS] score) changed from 29.5±5.1 to 31.8±5.0 in Group-W and from 39.8±4.7 to 42.9±4.9 in Group-D. Neither ocular nor systemic adverse effects were observed with the exception of one patient who developed contact dermatitis. Due to several limitations such as lack of control, patients’ learning effect, etc, the efficacy of the therapy could not be drawn. This preliminary study, however, showed that the transpalpebral electrical retinal stimulation therapy can be non-invasively applied on wet-type ARMD patients.
Collapse
Affiliation(s)
- Kei Shinoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
A review of in vivo animal studies in retinal prosthesis research. Graefes Arch Clin Exp Ophthalmol 2008; 246:1505-17. [PMID: 18709385 DOI: 10.1007/s00417-008-0891-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The development of a functional retinal prosthesis for acquired blindness is a great challenge. Rapid progress in the field over the last 15 years would not have been possible without extensive animal experimentation pertaining to device design and fabrication, biocompatibility, stimulation parameters and functional responses. This paper presents an overview of in vivo animal research related to retinal prosthetics, and aims to summarize the relevant studies. METHODS A Pubmed search of the English language literature was performed. The key search terms were: retinal implant, retinal prosthesis, artificial vision, rat, rabbit, cat, dog, sheep, pig, minipig. In addition a manual search was performed based on references quoted in the articles retrieved through Pubmed. RESULTS We identified 50 articles relevant to in vivo animal experimentation directly related to the development of a retinal implant. The highest number of publications related to the cat (n = 18). CONCLUSION The contribution of animal models to the development of retinal prosthetic devices has been enormous, and has led to human feasibility studies. Grey areas remain regarding long-term tissue-implant interactions, biomaterials, prosthesis design and neural adaptation. Animals will continue to play a key role in this rapidly evolving field.
Collapse
|
31
|
Phillips MJ, Walker TA, Choi HY, Faulkner AE, Kim MK, Sidney SS, Boyd AP, Nickerson JM, Boatright JH, Pardue MT. Tauroursodeoxycholic acid preservation of photoreceptor structure and function in the rd10 mouse through postnatal day 30. Invest Ophthalmol Vis Sci 2008; 49:2148-55. [PMID: 18436848 DOI: 10.1167/iovs.07-1012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a progressive neurodegenerative disease resulting in blindness for which there is no current treatment. Although the members of the family of RP diseases differ in etiology, their outcomes are the same: apoptosis of rods and then by cones. Recently, the bile acid tauroursodeoxycholic acid (TUDCA) has been shown to have antiapoptotic properties in neurodegenerative diseases, including those of the retina. In this study the authors examined the efficacy of TUDCA on preserving rod and cone function and morphology at postnatal day 30 (P30) in the rd10 mouse, a model of RP. METHODS Wild-type C57BL/6J and rd10 mice were systemically injected with TUDCA (500 mg/kg) every 3 days from P6 to P30 and were compared with vehicle (0.15 M NaHCO(3)). At P30, retinal function was measured with electroretinography, and morphologic preservation of the rods and cones was assessed with immunohistochemistry. RESULTS Dark-adapted electroretinographic (ERG) responses were twofold greater in rd10 mice treated with TUDCA than with vehicle, likewise light-adapted responses were twofold larger in TUDCA-treated mice than in controls at the brightest ERG flash intensities. TUDCA-treated rd10 retinas had fivefold more photoreceptors than vehicle-treated retinas. TUDCA treatments did not alter retinal function or morphology of wild-type mice when administered to age-matched mice. CONCLUSIONS TUDCA is efficacious and safe in preserving vision in the rd10 mouse model of RP when treated between P6 and P30. At P30, a developmental stage at which nearly all rods are absent in the rd10 mouse model of RP, TUDCA treatment preserved rod and cone function and greatly preserved overall photoreceptor numbers.
Collapse
Affiliation(s)
- M Joe Phillips
- Rehabilitation Research and Development Center, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
|
34
|
Colodetti L, Weiland JD, Colodetti S, Ray A, Seiler MJ, Hinton DR, Humayun MS. Pathology of damaging electrical stimulation in the retina. Exp Eye Res 2007; 85:23-33. [PMID: 17531974 DOI: 10.1016/j.exer.2007.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 02/13/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The goal of this study was to examine the characteristics of electrically induced retinal damage. A retinal prosthesis must be both effective and safe, but most research related to electrical stimulation of the retina has involved measures of efficacy (for example, stimulus threshold), while relatively little research has investigated the safety of electrical stimulation. In this study, a single platinum microelectrode was inserted into the vitreous cavity of normally-sighted adult Long Evans pigmented rats. In one group of animals, no contact was made between the electrode and the retina and current pulses of 0.05 (n=3) and 0.2 (n=6) microC/phase were applied. In a second group, visible contact (slight dimpling of the retina) was made between the electrode and the retina and current pulses of 0.09 (n=4) microC/phase were applied. In both cases, stimulus pulses (biphasic, cathodic first, 1 ms/phase) were applied for 1 h at 100 Hz. Also, control experiments were run with no electrical stimulation with retina contact (n=4) and with no retinal contact (n=3). After stimulation, the animal was survived for 2 weeks with ocular photography and electroretinography (ERG) to document changes. During the follow-up period, retinal changes were observed only when the electrode contacted the retina, with or without electrical stimulation. No difference was noted in ERG amplitude or latency comparing the test eye to the stimulated eye. Histological analysis was performed after sacrifice at 2 weeks. A semi-quantitative method for grading 18 features of retina/RPE/choroidal appearance was established and integer grades applied to both test and control eyes. Using this method and comparing the most severely affected area (highest grade), significant differences (p<0.05) were noted between experiments with retinal contact and without retinal contact in all features except inner nuclear layer thickness. No difference was noted within a group based on the intensity of electrical stimulus applied. The size of the affected area was significantly larger with both retinal contact and electrical stimulation compared to with retinal contact alone. We conclude that mechanical pressure alone and mechanical pressure with excessive electrical stimulation causes damage to the retina but that electrical stimulation coupled with mechanical pressure increases the area of the damage.
Collapse
Affiliation(s)
- L Colodetti
- Department of Ophthalmology, University of Southern California, 1355 San Pablo Street, Room 160, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Inomata K, Shinoda K, Ohde H, Tsunoda K, Hanazono G, Kimura I, Yuzawa M, Tsubota K, Miyake Y. Transcorneal electrical stimulation of retina to treat longstanding retinal artery occlusion. Graefes Arch Clin Exp Ophthalmol 2007; 245:1773-80. [PMID: 17593383 DOI: 10.1007/s00417-007-0610-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 04/12/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To report the outcome of transcorneal electrical stimulation (TES) of the visual system on long-standing retinal artery occlusion (RAO). DESIGN Open labeled, case series. PATIENTS AND METHODS Two patients with central RAO (15 and 33 months respectively) and one with branch RAO (26 months) underwent TES therapy. Subjective and objective ophthalmological evaluations were performed before and after the TES. The ages of the patients were 38, 49, and 63 years. The TES (20 Hz biphasic pulses, 30 minutes, up to 1100 uA) was delivered by a bipolar contact lens electrode once a month for 3 months. Perimetric and/or electrophysiological examinations were performed as outcome measures. RESULTS The visual acuity improved by more than 0.2 logMAR units in two cases, and the visual fields were improved in all three cases. The multifocal ERGs which had been reduced in the loci corresponding to the ischemic retinal area were improved after the treatment in two cases. Neither ocular nor systemic adverse effects were observed except for transient superficial keratitis. CONCLUSIONS TES of the retina can improve retinal function in eyes with long-standing RAOs.
Collapse
Affiliation(s)
- Koichi Inomata
- Laboratory of Visual Physiology, National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine-brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.
Collapse
Affiliation(s)
- Ethan D Cohen
- Division of Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, HFZ130, 12725 Twinbrook Pkwy, Rockville, MD 20852, USA.
| |
Collapse
|
37
|
Abstract
Hereditary degenerations of the human retina are genetically heterogeneous, with well over 100 genes implicated so far. This Seminar focuses on the subset of diseases called retinitis pigmentosa, in which patients typically lose night vision in adolescence, side vision in young adulthood, and central vision in later life because of progressive loss of rod and cone photoreceptor cells. Measures of retinal function, such as the electroretinogram, show that photoreceptor function is diminished generally many years before symptomic night blindness, visual-field scotomas, or decreased visual acuity arise. More than 45 genes for retinitis pigmentosa have been identified. These genes account for only about 60% of all patients; the remainder have defects in as yet unidentified genes. Findings of controlled trials indicate that nutritional interventions, including vitamin A palmitate and omega-3-rich fish, slow progression of disease in many patients. Imminent treatments for retinitis pigmentosa are greatly anticipated, especially for genetically defined subsets of patients, because of newly identified genes, growing knowledge of affected biochemical pathways, and development of animal models.
Collapse
Affiliation(s)
- Dyonne T Hartong
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
38
|
Abstract
This report provides a brief overview of blinding eye diseases for which prosthetic vision may hold promise as a treatment modality, and of current and near-term technological approaches towards the creation of prosthetic interfaces with the remaining visual system. Principal anatomical, physiological, technological and functional obstacles and possible solutions are outlined, and references are provided to pioneering work by over a dozen groups on four continents.
Collapse
Affiliation(s)
- Gislin Dagnelie
- Ophthalmology, Johns Hopkins University School of Medicine, Lions Vision Research and Rehabilitation Center, Wilmer Ophthalmological Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
39
|
Affiliation(s)
- James D Weiland
- Intraocular Retinal Prosthesis Laboratory, Keck School of Medicine, University of Southern California, USA.
| | | |
Collapse
|
40
|
Javaheri M, Hahn DS, Lakhanpal RR, Weiland JD, Humayun MS. Retinal Prostheses for the Blind. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2006. [DOI: 10.47102/annals-acadmedsg.v35n3p137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Introduction: Using artificial means to treat extreme vision impairment has come closer to reality during the past few decades. The goal of this research has been to create an implantable medical device that provides useful vision for those patients who are left with no alternatives. Analogous to the cochlear implants for some forms of hearing loss, these devices could restore useful vision by converting visual information into patterns of electrical stimulation that excite the remaining viable inner retinal neurons in patients with retinitis pigmentosa or age-related macular degeneration.
Methods: Data for this review were selected through a comprehensive literature search.
Results: Advances in microtechnology have facilitated the development of a variety of prostheses that can be implanted in the visual cortex, around the optic nerve, or in the eye. Some of these approaches have shown the promise of providing useful visual input to patients with visual impairments.
Conclusion: While the development of various retinal prostheses have shown promise in limited clinical trials, there are distinct advantages and disadvantages for each type of prosthesis. This review will focus primarily on the Epiretinal Intraocular Retinal Prosthesis, studied by our group, but will also briefly review other modalities: the subretinal prosthesis, cortical prosthesis, and optic nerve prosthesis.
Collapse
|
41
|
Abstract
The development of a subretinal prosthesis has come to a stage where human trials are forthcoming. Subretinal prostheses are designed to replace degenerated photoreceptors in diseases such as retinitis pigmentosa or age-related macular degeneration. Microphotodiode arrays are implanted between retinal pigment epithelium and retina. Our group has collected convincing evidence for the principle feasibility of a subretinal prosthesis. Animal experiments have shown that subretinal electrical stimulation can successfully elicit spatially ordered responses in the visual cortex; visual acuity is estimated to reach 0.25 degrees of visual angle. Histological long-term examinations have demonstrated that the retina tolerates a subretinal implant well and also that the implant itself sustains the ocular environments. Surgical procedures have been successfully developed to implant complex subretinal devices.
Collapse
Affiliation(s)
- F Gekeler
- Augenklinik der Universität, Tübingen.
| | | |
Collapse
|