1
|
Chen Y, Wang F, Li T, Zhao L, Gong A, Nan W, Ding P, Fu Y. Considerations and discussions on the clear definition and definite scope of brain-computer interfaces. Front Neurosci 2024; 18:1449208. [PMID: 39161655 PMCID: PMC11330831 DOI: 10.3389/fnins.2024.1449208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Brain-computer interface (BCI) is a revolutionizing human-computer interaction with potential applications in both medical and non-medical fields, emerging as a cutting-edge and trending research direction. Increasing numbers of groups are engaging in BCI research and development. However, in recent years, there has been some confusion regarding BCI, including misleading and hyped propaganda about BCI, and even non-BCI technologies being labeled as BCI. Therefore, a clear definition and a definite scope for BCI are thoroughly considered and discussed in the paper, based on the existing definitions of BCI, including the six key or essential components of BCI. In the review, different from previous definitions of BCI, BCI paradigms and neural coding are explicitly included in the clear definition of BCI provided, and the BCI user (the brain) is clearly identified as a key component of the BCI system. Different people may have different viewpoints on the definition and scope of BCI, as well as some related issues, which are discussed in the article. This review argues that a clear definition and definite scope of BCI will benefit future research and commercial applications. It is hoped that this review will reduce some of the confusion surrounding BCI and promote sustainable development in this field.
Collapse
Affiliation(s)
- Yanxiao Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xi’an, China
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Castro D, Grayden DB, Meffin H, Spencer M. Neural activity shaping in visual prostheses with deep learning. J Neural Eng 2024; 21:046025. [PMID: 38986450 DOI: 10.1088/1741-2552/ad6186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.The visual perception provided by retinal prostheses is limited by the overlapping current spread of adjacent electrodes. This reduces the spatial resolution attainable with unipolar stimulation. Conversely, simultaneous multipolar stimulation guided by the measured neural responses-neural activity shaping (NAS)-can attenuate excessive spread of excitation allowing for more precise control over the pattern of neural activation. However, defining effective multipolar stimulus patterns is a challenging task. Previous attempts focused on analytical solutions based on an assumed linear nonlinear model of retinal response; an analytical model inversion (AMI) approach. Here, we propose a model-free solution for NAS, using artificial neural networks (ANNs) that could be trained with data acquired from the implant.Approach.Our method consists of two ANNs trained sequentially. The measurement predictor network (MPN) is trained on data from the implant and is used to predict how the retina responds to multipolar stimulation. The stimulus generator network is trained on a large dataset of natural images and uses the trained MPN to determine efficient multipolar stimulus patterns by learning its inverse model. We validate our methodin silicousing a realistic model of retinal response to multipolar stimulation.Main results.We show that our ANN-based NAS approach produces sharper retinal activations than the conventional unipolar stimulation strategy. As a theoretical bench-mark of optimal NAS results, we implemented AMI stimulation by inverting the model used to simulate the retina. Our ANN strategy produced equivalent results to AMI, while not being restricted to any specific type of retina model and being three orders of magnitude more computationally efficient.Significance.Our novel protocol provides a method for efficient and personalized retinal stimulation, which may improve the visual experience and quality of life of retinal prosthesis users.
Collapse
Affiliation(s)
- Domingos Castro
- Neuroengineering and Computational Neuroscience Lab, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Faculty of Engineering of the University of Porto, Porto, Portugal
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Graeme Clark Institute of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Graeme Clark Institute of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Martin Spencer
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Graeme Clark Institute of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Lavoie J, Besrour M, Lemaire W, Rouat J, Fontaine R, Plourde E. Learning to see via epiretinal implant stimulation in silicowith model-based deep reinforcement learning. Biomed Phys Eng Express 2024; 10:025006. [PMID: 37595568 DOI: 10.1088/2057-1976/acf1a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Diseases such as age-related macular degeneration and retinitis pigmentosa cause the degradation of the photoreceptor layer. One approach to restore vision is to electrically stimulate the surviving retinal ganglion cells with a microelectrode array such as epiretinal implants. Epiretinal implants are known to generate visible anisotropic shapes elongated along the axon fascicles of neighboring retinal ganglion cells. Recent work has demonstrated that to obtain isotropic pixel-like shapes, it is possible to map axon fascicles and avoid stimulating them by inactivating electrodes or lowering stimulation current levels. Avoiding axon fascicule stimulation aims to remove brushstroke-like shapes in favor of a more reduced set of pixel-like shapes. APPROACH In this study, we propose the use of isotropic and anisotropic shapes to render intelligible images on the retina of a virtual patient in a reinforcement learning environment named rlretina. The environment formalizes the task as using brushstrokes in a stroke-based rendering task. MAIN RESULTS We train a deep reinforcement learning agent that learns to assemble isotropic and anisotropic shapes to form an image. We investigate which error-based or perception-based metrics are adequate to reward the agent. The agent is trained in a model-based data generation fashion using the psychophysically validated axon map model to render images as perceived by different virtual patients. We show that the agent can generate more intelligible images compared to the naive method in different virtual patients. SIGNIFICANCE This work shares a new way to address epiretinal stimulation that constitutes a first step towards improving visual acuity in artificially-restored vision using anisotropic phosphenes.
Collapse
Affiliation(s)
- Jacob Lavoie
- Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Marwan Besrour
- Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - William Lemaire
- Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Jean Rouat
- Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Réjean Fontaine
- Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Eric Plourde
- Department of Electrical Engineering and Computer Engineering, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada
| |
Collapse
|
4
|
Ramirez KA, Drew-Bear LE, Vega-Garces M, Betancourt-Belandria H, Arevalo JF. An update on visual prosthesis. Int J Retina Vitreous 2023; 9:73. [PMID: 37996905 PMCID: PMC10668475 DOI: 10.1186/s40942-023-00498-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/17/2023] [Indexed: 11/25/2023] Open
Abstract
PURPOSE To review the available evidence on the different retinal and visual prostheses for patients with retinitis pigmentosa and new implants for other indications including dry age-related macular degeneration. METHODS The PubMed, GoogleScholar, ScienceDirect, and ClinicalTrials databases were the main resources used to conduct the medical literature search. An extensive search was performed to identify relevant articles concerning the worldwide advances in retinal prosthesis, clinical trials, status of devices and potential future directions up to December 2022. RESULTS Thirteen devices were found to be current and were ordered by stimulation location. Six have active clinical trials. Four have been discontinued, including the Alpha IMS, Alpha AMS, IRIS II, and ARGUS II which had FDA and CE mark approval. Future directions will be presented in the review. CONCLUSION This review provides an update of retinal prosthetic devices, both current and discontinued. While some devices have achieved visual perception in animals and/or humans, the main issues impeding the commercialization of these devices include: increased length of time to observe outcomes, difficulties in finding validated meaures for use in studies, unknown long-term effects, lack of funding, and a low amount of patients simultaneously diagnosed with RP lacking other comorbid conditions. The ARGUS II did get FDA and CE mark approval so it was deemed safe and also effective. However, the company became more focused on a visual cortical implant. Future efforts are headed towards more biocompatible, safe, and efficacious devices.
Collapse
Affiliation(s)
- Kailyn A Ramirez
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Laura E Drew-Bear
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 713, Baltimore, MD, 21287, USA
| | | | | | - J Fernando Arevalo
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Maumenee 713, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Fauvel T, Chalk M. Human-in-the-loop optimization of visual prosthetic stimulation. J Neural Eng 2022; 19. [PMID: 35667363 DOI: 10.1088/1741-2552/ac7615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Retinal prostheses are a promising strategy to restore sight to patients with retinal degenerative diseases. These devices compensate for the loss of photoreceptors by electrically stimulating neurons in the retina. Currently, the visual function that can be recovered with such devices is very limited. This is due, in part, to current spread, unintended axonal activation, and the limited resolution of existing devices. Here we show, using a recent model of prosthetic vision, that optimizing how visual stimuli are encoded by the device can help overcome some of these limitations, leading to dramatic improvements in visual perception. APPROACH We propose a strategy to do this in practice, using patients' feedback in a visual task. The main challenge of our approach comes from the fact that, typically, one only has access to a limited number of noisy responses from patients. We propose two ways to deal with this: first, we use a model of prosthetic vision to constrain and simplify the optimization. We show that, if one knew the parameters of this model for a given patient, it would be possible to greatly improve their perceptual performance. Second we propose a preferential Bayesian optimization to efficiently learn these model parameters for each patient, using minimal trials. MAIN RESULTS To test our approach, we presented healthy subjects with visual stimuli generated by a recent model of prosthetic vision, to replicate the perceptual experience of patients fitted with an implant. Our optimization procedure led to significant and robust improvements in perceived image quality, that transferred to increased performance in other tasks. SIGNIFICANCE Importantly, our strategy is agnostic to the type of prosthesis and thus could readily be implemented in existing implants.
Collapse
Affiliation(s)
- Tristan Fauvel
- Institut de la Vision, INSERM, 17 Rue Moreau, Paris, Île-de-France, 75014, FRANCE
| | - Matthew Chalk
- Institut de l a Vision, INSERM, 17 Rue Moreau, Paris, 75014, FRANCE
| |
Collapse
|
6
|
Mounier E, Abdullah B, Mahdi H, Eldawlatly S. A deep convolutional visual encoding model of neuronal responses in the LGN. Brain Inform 2021; 8:11. [PMID: 34129111 PMCID: PMC8206408 DOI: 10.1186/s40708-021-00132-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
The Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.
Collapse
Affiliation(s)
- Eslam Mounier
- Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, Egypt
| | - Bassem Abdullah
- Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, Egypt
| | - Hani Mahdi
- Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, Egypt
| | - Seif Eldawlatly
- Computer and Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1 El-Sarayat St., Abbassia, Cairo, Egypt.
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
7
|
Moleirinho S, Whalen AJ, Fried SI, Pezaris JS. The impact of synchronous versus asynchronous electrical stimulation in artificial vision. J Neural Eng 2021; 18. [PMID: 33900206 DOI: 10.1088/1741-2552/abecf1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/09/2021] [Indexed: 11/12/2022]
Abstract
Visual prosthesis devices designed to restore sight to the blind have been under development in the laboratory for several decades. Clinical translation continues to be challenging, due in part to gaps in our understanding of critical parameters such as how phosphenes, the electrically-generated pixels of artificial vision, can be combined to form images. In this review we explore the effects that synchronous and asynchronous electrical stimulation across multiple electrodes have in evoking phosphenes. Understanding how electrical patterns influence phosphene generation to control object binding and perception of visual form is fundamental to creation of a clinically successful prosthesis.
Collapse
Affiliation(s)
- Susana Moleirinho
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
| | - Andrew J Whalen
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America.,Boston VA Healthcare System, Boston, MA, United States of America
| | - John S Pezaris
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America.,Department of Neurosurgery, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
8
|
Abbasi B, Rizzo JF. Advances in Neuroscience, Not Devices, Will Determine the Effectiveness of Visual Prostheses. Semin Ophthalmol 2021; 36:168-175. [PMID: 33734937 DOI: 10.1080/08820538.2021.1887902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Innovations in engineering and neuroscience have enabled the development of sophisticated visual prosthetic devices. In clinical trials, these devices have provided visual acuities as high as 20/460, enabled coarse navigation, and even allowed for reading of short words. However, long-term commercial viability arguably rests on attaining even better vision and more definitive improvements in tasks of daily living and quality of life. Purpose: Here we review technological and biological obstacles in the implementation of visual prosthetics. Conclusions: Research in the visual prosthetic field has tackled significant technical challenges, including biocompatibility, signal spread through neural tissue, and inadvertent activation of passing axons; however, significant gaps in knowledge remain in the realm of neuroscience, including the neural code of vision and visual plasticity. We assert that further optimization of prosthetic devices alone will not provide markedly improved visual outcomes without significant advances in our understanding of neuroscience.
Collapse
Affiliation(s)
- Bardia Abbasi
- Neuro-Ophthalmology Service, Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| | - Joseph F Rizzo
- Neuro-Ophthalmology Service, Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Melanitis N, Nikita KS. Biologically-inspired image processing in computational retina models. Comput Biol Med 2019; 113:103399. [PMID: 31472425 DOI: 10.1016/j.compbiomed.2019.103399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 11/19/2022]
Abstract
Retinal Prosthesis (RP) is an approach to restore vision, using an implanted device to electrically stimulate the retina. A fundamental problem in RP is to translate the visual scene to retina neural spike patterns, mimicking the computations normally done by retina neural circuits. Towards the perspective of improved RP interventions, we propose a Computer Vision (CV) image preprocessing method based on Retinal Ganglion Cells functions and then use the method to reproduce retina output with a standard Generalized Integrate & Fire (GIF) neuron model. "Virtual Retina" simulation software is used to provide the stimulus-retina response data to train and test our model. We use a sequence of natural images as model input and show that models using the proposed CV image preprocessing outperform models using raw image intensity (interspike-interval distance 0.17 vs 0.27). This result is aligned with our hypothesis that raw image intensity is an improper image representation for Retinal Ganglion Cells response prediction.
Collapse
Affiliation(s)
- Nikos Melanitis
- Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| | - Konstantina S Nikita
- Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol 2019; 11:2515841418817501. [PMID: 30729233 PMCID: PMC6350159 DOI: 10.1177/2515841418817501] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Retinal prosthesis systems have undergone significant advances in the past quarter century, resulting in the development of several different novel surgical and engineering approaches. Encouraging results have demonstrated partial visual restoration, with improvement in both coarse objective function and performance of everyday tasks. To date, four systems have received marketing approval for use in Europe or the United States, with numerous others undergoing preclinical and clinical evaluation, reflecting the established safety profile of these devices for chronic implantation. This progress represents the first notion that the field of visual restorative medicine could offer blind patients a hope of real and measurable benefit. However, there are numerous complex engineering and biophysical obstacles still to be overcome, to reconcile the gap that remains between artificial and natural vision. Current developments in the form of enhanced image processing algorithms and data transfer approaches, combined with emerging nanofabrication and conductive polymerization techniques, herald an exciting and innovative future for retinal prosthetics. This review provides an update of retinal prosthetic systems currently undergoing development and clinical trials while also addressing future challenges in the field, such as the assessment of functional outcomes in ultra-low vision and strategies for tackling existing hardware and software constraints.
Collapse
Affiliation(s)
- Edward Bloch
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Yvonne Luo
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Lyndon da Cruz
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| |
Collapse
|
11
|
Strasburger H. Ewald Hering's (1899) On the Limits of Visual Acuity: A Translation and Commentary: With a Supplement on Alfred Volkmann's (1863) Physiological Investigations in the Field of Optics. Iperception 2018; 9:2041669518763675. [PMID: 29899967 PMCID: PMC5990881 DOI: 10.1177/2041669518763675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 11/17/2022] Open
Abstract
Towards the end of the 19th Century, Hering and Helmholtz were arguing about the fineness of visual acuity. In a talk given in 1899, Hering finally established beyond reasonable doubt that humans can see spatial displacements smaller than the diameter of a foveal cone receptor, an ability we nowadays call 'hyperacuity' and still the topic of active research. Hering suggested that this ability is made manifest by averaging across the range of locations stimulated during miniature eye movements. However, this idea was made most clear only in a footnote to this (not well known) publication of his talk and so was missed by many subsequent workers. Accordingly, particularly towards the end of the 20th Century, Hering has commonly been mis-cited as having proposed in this paper that averaging occurs purely along the lengths of the edges in the image. Here, we present in translation what Hering actually said and why. In Supplementary Material, we additionally translate accounts of some background experiments by Volkmann (1863) that were cited by Hering.
Collapse
Affiliation(s)
- Hans Strasburger
- Department of Medical Psychology and Medical Sociology, Georg-August-Universität Göttingen, Germany; Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
12
|
Li H, Su X, Wang J, Kan H, Han T, Zeng Y, Chai X. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision. Artif Intell Med 2018; 84:64-78. [PMID: 29129481 DOI: 10.1016/j.artmed.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofan Su
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Wang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Han Kan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingting Han
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yajie Zeng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Ryu SB, Choi JW, Ahn KN, Goo YS, Kim KH. Amplitude Modulation-based Electrical Stimulation for Encoding Multipixel Spatiotemporal Visual Information in Retinal Neural Activities. J Korean Med Sci 2017; 32:900-907. [PMID: 28480646 PMCID: PMC5426244 DOI: 10.3346/jkms.2017.32.6.900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022] Open
Abstract
Retinal implants have been developed as a promising way to restore partial vision for the blind. The observation and analysis of neural activities can offer valuable insights for successful prosthetic electrical stimulation. Retinal ganglion cell (RGC) activities have been investigated to provide knowledge on the requirements for electrical stimulation, such as threshold current and the effect of stimulation waveforms. To develop a detailed 'stimulation strategy' for faithful delivery of spatiotemporal visual information to the brain, it is essential to examine both the temporal and spatial characteristics of RGC responses, whereas previous studies were mainly focused on one or the other. In this study, we investigate whether the spatiotemporal visual information can be decoded from the RGC network activity evoked by patterned electrical stimulation. Along with a thorough characterization of spatial spreading of stimulation current and temporal information encoding, we demonstrated that multipixel spatiotemporal visual information can be accurately decoded from the population activities of RGCs stimulated by amplitude-modulated pulse trains. We also found that the details of stimulation, such as pulse amplitude range and pulse rate, were crucial for accurate decoding. Overall, the results suggest that useful visual function may be restored by amplitude modulation-based retinal stimulation.
Collapse
Affiliation(s)
- Sang Baek Ryu
- Department of Biomedical Engineering, Yonsei University Wonju College of Health Science, Wonju, Korea
| | - Jeong Woo Choi
- Department of Biomedical Engineering, Yonsei University Wonju College of Health Science, Wonju, Korea
| | - Kun No Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju, Korea
| | - Kyung Hwan Kim
- Department of Biomedical Engineering, Yonsei University Wonju College of Health Science, Wonju, Korea.
| |
Collapse
|
14
|
Cheng DL, Greenberg PB, Borton DA. Advances in Retinal Prosthetic Research: A Systematic Review of Engineering and Clinical Characteristics of Current Prosthetic Initiatives. Curr Eye Res 2017; 42:334-347. [PMID: 28362177 DOI: 10.1080/02713683.2016.1270326] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To date, reviews of retinal prostheses have focused primarily on devices undergoing human trials in the Western Hemisphere and fail to capture significant advances in materials and engineering research in countries such as Japan and Korea, as well as projects in early stages of development. To address these gaps, this systematic review examines worldwide advances in retinal prosthetic research, evaluates engineering characteristics and clinical progress of contemporary device initiatives, and identifies potential directions for future research in the field of retinal prosthetics. METHODS A literature search using PubMed, Google Scholar, and IEEExplore was conducted following the PRISMA Guidelines for Systematic Review. Inclusion criteria were peer-reviewed papers demonstrating progress in human or animal trials and papers discussing the prosthetic engineering design. For each initiative, a description of the device, its engineering considerations, and recent clinical results were provided. RESULTS Ten prosthetic initiatives met our inclusion criteria and were organized by stimulation location. Of these initiatives, four have recently completed human trials, three are undergoing multi- or single-center human trials, and three are undergoing preclinical animal testing. Only the Argus II (FDA 2013, CE 2011) has obtained FDA approval for use in the United States; the Alpha-IMS (CE 2013) has achieved the highest visual acuity using a Landolt-C test to date and is the only device presently undergoing a multicenter clinical trial. CONCLUSION Several distinct approaches to retinal stimulation have been successful in eliciting visual precepts in animals and/or humans. However, many clinical needs are still not met and engineering challenges must be addressed before a retinal prosthesis with the capability to fully and safely restore functional vision can be realized.
Collapse
Affiliation(s)
- Derrick L Cheng
- a Alpert Medical School , Brown University , Providence , RI , USA
| | - Paul B Greenberg
- b Section of Ophthalmology , Providence VA Medical Center , Providence , RI , USA.,c Division of Ophthalmology, Alpert Medical School , Brown University , Providence , RI , USA
| | - David A Borton
- d School of Engineering , Brown University , Providence , RI , USA.,e Brown Institute for Brain Science , Brown University , Providence , RI , USA
| |
Collapse
|
15
|
Abstract
Sensory neuroprostheses for restoration of vision are a technical approach for treatment of previously untreatable blindness. These systems consist of a technical sensor such as a camera and an implanted multi-electrode array within the visual system. The image information from the sensor is processed with specially designed integrated circuits in such a way that the stimulation pulses can be determined and presented to the implanted multi-electrode matrix. Energy supply and the transfer of the stimulus pulse information is realized either via direct cable connections within the site of the implant or by telemetric inductive links. Currently, two retinal implant systems are approved in the European Union (EU) to be used in blind patients with retinitis pigmentosa. With both systems basic visual functions can be restored. The complication rate is relatively low given the complexity of the surgical procedure. Other systems are still under development but approval studies by several manufacturers and consortia are already in preparation.
Collapse
Affiliation(s)
- P Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|
16
|
Yue L, Weiland JD, Roska B, Humayun MS. Retinal stimulation strategies to restore vision: Fundamentals and systems. Prog Retin Eye Res 2016; 53:21-47. [DOI: 10.1016/j.preteyeres.2016.05.002] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
|
17
|
Walter P. Sehprothesen. SPEKTRUM DER AUGENHEILKUNDE 2016. [DOI: 10.1007/s00717-016-0299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Barnes N, Scott AF, Lieby P, Petoe MA, McCarthy C, Stacey A, Ayton LN, Sinclair NC, Shivdasani MN, Lovell NH, McDermott HJ, Walker JG. Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering. J Neural Eng 2016; 13:036013. [DOI: 10.1088/1741-2560/13/3/036013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Guo BB, Zheng XL, Lu ZG, Wang X, Yin ZQ, Hou WS, Meng M. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses. Neural Regen Res 2015; 10:1622-7. [PMID: 26692860 PMCID: PMC4660756 DOI: 10.4103/1673-5374.167761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
Collapse
Affiliation(s)
- Bing-Bing Guo
- Department of Biomedical Engineering, Chongqing University, Chongqing, China ; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Xiao-Lin Zheng
- Department of Biomedical Engineering, Chongqing University, Chongqing, China
| | - Zhen-Gang Lu
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Xing Wang
- Department of Biomedical Engineering, Chongqing University, Chongqing, China
| | - Zheng-Qin Yin
- Key Lab of Visual Damage and Regeneration & Restoration, Third Military Medical University, Chongqing, China
| | - Wen-Sheng Hou
- Department of Biomedical Engineering, Chongqing University, Chongqing, China
| | - Ming Meng
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
20
|
Abstract
Retinal prosthesis has been translated from the laboratory to the clinic over the past two decades. Currently, two devices have regulatory approval for the treatment of retinitis pigmentosa. These devices provide partial sight restoration and patients use this improved vision in their everyday lives. Improved mobility and object detection are some of the more notable findings from the clinical trials. However, significant vision restoration will require both better technology and improved understanding of the interaction between electrical stimulation and the retina. This paper reviews the recent clinical trials and highlights technology breakthroughs that will contribute to next generation of retinal prostheses.
Collapse
|
21
|
Guenther T, Lovell NH, Suaning GJ. Bionic vision: system architectures – a review. Expert Rev Med Devices 2014; 9:33-48. [DOI: 10.1586/erd.11.58] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Abstract
INTRODUCTION/BACKGROUND The Argus® II is the first retinal prosthesis approved for the treatment of patients blind from retinitis pigmentosa (RP), receiving CE (Conformité Européenne) marking in March 2011 and FDA approval in February 2013. Alpha-IMS followed closely and obtained CE marking in July 2013. Other devices are being developed, some of which are currently in clinical trials. SOURCES OF DATA A systematic literature search was conducted on PubMED, Google Scholar and IEEExplore. AREAS OF AGREEMENT Retinal prostheses play a part in restoring vision in blind RP patients providing stable, safe and long-term retinal stimulation. AREAS OF CONTROVERSY Objective improvement in visual function does not always translate into consistent improvement in the patient's quality of life. Controversy exists over the use of an external image-capturing device versus internally placed photodiode devices. GROWING POINTS The alpha-IMS, a photovoltaic-based retinal prosthesis recently obtained its CE marking in July 2013. AREAS TIMELY FOR DEVELOPING RESEARCH Improvement in retinal prosthetic vision depends on: (i) improving visual resolution, (ii) improving the visual field, (iii) developing an accurate neural code for image processing and (iv) improving the biocompatibility of the device to ensure longevity.
Collapse
Affiliation(s)
- Yvonne H-L Luo
- Biomedical Research Centre, National Institute of Health Research, Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London EC1V 2PD, UK
| | | |
Collapse
|
23
|
Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, Ren Q, Chai X. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil 2013; 10:48. [PMID: 23718827 PMCID: PMC3671245 DOI: 10.1186/1743-0003-10-48] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 05/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Epiretinal implants based on microelectro-mechanical system (MEMS) technology with a polyimide (PI) material are being proposed for application. Many kinds of non-photosensitive PIs have good biocompatibility and stability as typical MEMS materials for implantable electrodes. However, the effects of MEMS microfabrication, sterilization and implantation using a photosensitive polyimide (PSPI) microelectrode array for epiretinal electrical stimulation has not been extensively examined. Methods A novel PSPI (Durimide 7510) microelectrode array for epiretinal electrical stimulation was designed, fabricated based on MEMS processing and microfabrication techniques. The biocompatibility of our new microelectrode was tested in vitro using an MTT assay and direct contact tests between the microelectrode surface and cells. Electrochemical impedance characteristics were tested based on a three-electrode testing method. The reliability and stability was evaluated by a chronic implantation of a non-functional array within the rabbit eye. Histological examination and SEM were performed to monitor possible damage of the retina and microelectrodes. Electrically evoked potentials (EEPs) were recorded during the acute stimulation of the retina. Results The substrate was made of PSPI and the electrode material was platinum (Pt). The PSPI microelectrode array showed good biocompatibility and appropriate impedance characteristics for epiretinal stimulation. After a 6-month epiretinal implantation in the eyes of rabbits, we found no local retinal toxicity and no mechanical compression caused by the array. The Pt electrodes adhesion to the PSPI remained stable. A response to electrical stimuli was with recording electrodes lying on the visual cortex. Conclusion We provide a relevant design and fundamental characteristics of a PSPI microelectrode array. Strong evidences on testing indicate that implantation is safe in terms of mechanical pressure and biocompatibility of PSPI microelectrode arrays on the retina. The dual-layer process we used proffers considerable advantages over the more traditional single-layer approach and can accommodate much many electrode sites. This lays the groundwork for a future, high-resolution retinal prosthesis with many more electrode sites based on the flexible PSPI thin film substrate.
Collapse
Affiliation(s)
- Xia Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Retinal prosthetic strategy with the capacity to restore normal vision. Proc Natl Acad Sci U S A 2012; 109:15012-7. [PMID: 22891310 DOI: 10.1073/pnas.1207035109] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinal prosthetics offer hope for patients with retinal degenerative diseases. There are 20-25 million people worldwide who are blind or facing blindness due to these diseases, and they have few treatment options. Drug therapies are able to help a small fraction of the population, but for the vast majority, their best hope is through prosthetic devices [reviewed in Chader et al. (2009) Prog Brain Res 175:317-332]. Current prosthetics, however, are still very limited in the vision that they provide: for example, they allow for perception of spots of light and high-contrast edges, but not natural images. Efforts to improve prosthetic capabilities have focused largely on increasing the resolution of the device's stimulators (either electrodes or optogenetic transducers). Here, we show that a second factor is also critical: driving the stimulators with the retina's neural code. Using the mouse as a model system, we generated a prosthetic system that incorporates the code. This dramatically increased the system's capabilities--well beyond what can be achieved just by increasing resolution. Furthermore, the results show, using 9,800 optogenetically stimulated ganglion cell responses, that the combined effect of using the code and high-resolution stimulation is able to bring prosthetic capabilities into the realm of normal image representation.
Collapse
|
25
|
KIEN TRANTRUNG, MAUL TOMAS, BARGIELA ANDRZEJ. A REVIEW OF RETINAL PROSTHESIS APPROACHES. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s2010194512005272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Age-related macular degeneration and retinitis pigmentosa are two of the most common diseases that cause degeneration in the outer retina, which can lead to several visual impairments up to blindness. Vision restoration is an important goal for which several different research approaches are currently being pursued. We are concerned with restoration via retinal prosthetic devices. Prostheses can be implemented intraocularly and extraocularly, which leads to different categories of devices. Cortical Prostheses and Optic Nerve Prostheses are examples of extraocular solutions while Epiretinal Prostheses and Subretinal Prostheses are examples of intraocular solutions. Some of the prostheses that are successfully implanted and tested in animals as well as humans can restore basic visual functions but still have limitations. This paper will give an overview of the current state of art of Retinal Prostheses and compare the advantages and limitations of each type. The purpose of this review is thus to summarize the current technologies and approaches used in developing Retinal Prostheses and therefore to lay a foundation for future designs and research directions.
Collapse
Affiliation(s)
- TRAN TRUNG KIEN
- School of Computer Science, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor 43500, Malaysia
| | - TOMAS MAUL
- School of Computer Science, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, Selangor 43500, Malaysia
| | - ANDRZEJ BARGIELA
- School of Computer Science, The University of Nottingham, Nottingham, NG8 1BB, UK
| |
Collapse
|
26
|
Keserü M, Feucht M, Bornfeld N, Laube T, Walter P, Rössler G, Velikay-Parel M, Hornig R, Richard G. Acute electrical stimulation of the human retina with an epiretinal electrode array. Acta Ophthalmol 2012; 90:e1-8. [PMID: 22067614 DOI: 10.1111/j.1755-3768.2011.02288.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the threshold charges needed for eliciting visual perceptions through acute electrical stimulation of the human retina in patients suffering from retinitis pigmentosa, using an epiretinal microelectrode array. METHODS In a multicentre study, 20 patients (average age 55 years) with visual acuities ranging from 4/200 to no light perception were included. The stimulation procedure was performed during a pars plana vitrectomy, for a maximum of 45 min, by using a microcontact film with IrO(x) electrodes connected by cable to a current generator. After repeated stimulation and threshold charge determination, the microelectrode array was removed. RESULTS Nineteen of 20 patients stated in the postoperative interviews that they experienced one or more visual perceptions with close time correlation to single stimulation events. Minimum threshold charges needed to generate visual perceptions could be measured and verified in 15 patients. The charge level ranged from 20 to 768 nC with single or multiple electrodes. One patient suffered a retinal detachment during the procedure; this patient's retina was successfully reattached. There were no further adverse reactions observed during the 3-month follow-up. CONCLUSION Acute epiretinal stimulation of the human retina, using a microelectrode array, can elicit visual perceptions in blind patients with retinitis pigmentosa.
Collapse
Affiliation(s)
- Matthias Keserü
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This review summarizes the current status of retinal prostheses, recent accomplishments, and major remaining research, engineering, and rehabilitation challenges. RECENT FINDINGS Retinal research, materials and biocompatibility studies, and clinical trials in patients blind from retinitis pigmentosa are representative of an emerging field with considerable promise and sobering challenges. A summary of progress in dozens of laboratories, companies, and clinics around the world is presented through a synopsis of relevant studies, not only to summarize the progress but also to convey the remarkable increase in interest, effort, and outside funding this field has enjoyed. SUMMARY At present, clinical applications of retinal implant technology are dominated by one or two groups/companies, but the field is wide open for others to take the lead through novel approaches in technology, tissue interfacing, information transfer paradigms, and rehabilitation. Where the field will go in the next few years is almost anybody's guess, but that it will move forward is a certainty.
Collapse
Affiliation(s)
- Gislin Dagnelie
- Lions Vision Research and Rehabilitation Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2020, USA.
| |
Collapse
|
28
|
|
29
|
Kusnyerik A, Resch M, Roska T, Karacs K, Gekeler F, Wilke R, Benav H, Zrenner E, Süveges I, Németh J. [Vision restoration with implants in retinal degenerations]. Orv Hetil 2011; 152:537-45. [PMID: 21436016 DOI: 10.1556/oh.2011.29064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Up until now there has been no available treatment for diseases causing the permanent impairment of retinal photoreceptors. Currently the development of the retinal prostheses is the earliest to promise a result that can be implemented in the clinical treatment of these patients. Implants with different operating principles and in various stages of progress are presented in details, highlighting the characteristics, as well as the Hungarian aspects of the development. This survey intends to provide an overview on retinal prostheses, implantable in case of degenerative diseases of the retina, by reviewing and assessing the papers published in relevant journals and based on personal experience. Developments in microelectronics in recent years made it possible and proved to be feasible to replace the degenerated elements in the retina with electrical stimulation. Multiple comparable approaches are running simultaneously. Two types of these implants are directly stimulating the remaining living cells in the retina. Hitherto the finest resolution has been achieved with the subretinal implants. Although the epiretinal implant offer lower resolution, but requires shorter surgery for implantation. Retinal implants in certain retinal diseases are proved to be capable of generating vision-like experiences. A number of types of retinal implants can be expected to appear in clinical practice a few years after the successful conclusion of clinical trials.
Collapse
Affiliation(s)
- Akos Kusnyerik
- Semmelweis Egyetem, Általános Orvostudományi Kar, Szemészeti Klinika Budapest.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matthaei M, Zeitz O, Keserü M, Wagenfeld L, Hornig R, Post N, Richard G. Progress in the Development of Vision Prostheses. Ophthalmologica 2011; 225:187-92. [DOI: 10.1159/000318042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 11/19/2022]
|
31
|
Abstract
Once the topic of folklore and science fiction, the notion of restoring vision to the blind is now approaching a tractable reality. Technological advances have inspired numerous multidisciplinary groups worldwide to develop visual neuroprosthetic devices that could potentially provide useful vision and improve the quality of life of profoundly blind individuals. While a variety of approaches and designs are being pursued, they all share a common principle of creating visual percepts through the stimulation of visual neural elements using appropriate patterns of electrical stimulation. Human clinical trials are now well underway and initial results have been met with a balance of excitement and cautious optimism. As remaining technical and surgical challenges continue to be solved and clinical trials move forward, we now enter a phase of development that requires careful consideration of a new set of issues. Establishing appropriate patient selection criteria, methods of evaluating long-term performance and effectiveness, and strategies to rehabilitate implanted patients will all need to be considered in order to achieve optimal outcomes and establish these devices as viable therapeutic options.
Collapse
|
32
|
Dagnelie G. Visual prosthesis: Further Comments on the Paper by Schiller and Tehovnik. Perception 2010; 39:437-9. [DOI: 10.1068/p6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gislin Dagnelie
- Johns Hopkins University School of Medicine, JHU Lions Vision Center, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
|
34
|
Characterization of retinal ganglion cell activities evoked by temporally patterned electrical stimulation for the development of stimulus encoding strategies for retinal implants. Brain Res 2009; 1275:33-42. [PMID: 19362077 DOI: 10.1016/j.brainres.2009.03.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/21/2022]
Abstract
For successful restoration of visual function by retinal implant, a method for electrical stimulation should be devised so that the evoked activities of retinal ganglion cells (RGCs) should convey sufficient information on visual input. By observing RGC activities under different stimulation constraints, it may be possible to determine optimal pulse parameters, such as pulse rate, intensity, and duration, for faithful transmission of visual information. To test the feasibility of this approach, we analyzed RGC spike trains evoked by temporally patterned stimulation from retinal patches mounted on a planar multielectrode array. Assuming that the intensity of uniform visual input is transformed to amplitudes of pulse trains, we attempted to determine optimal methods for modulating the pulse amplitude so that the information essential for the perception of intensity variation is properly represented in RGC responses. RGC firing rates could be modulated to track the temporal pattern of pulse amplitude variations, which implies that pulse amplitude modulation is a plausible means to enable perception of temporal visual patterns by retinal implants. As expected, specific pulse amplitude modulation parameters were crucial for proper encoding of visual input. RGC firing rates increased monotonically according to the pulse amplitude in a defined pulse amplitude range (20-60 microA). The similarity between the RGC firing rate and the temporal pulse intensity pattern was highest when the pulse amplitude was modulated within this range. The optimal pulse rate range could be similarly determined.
Collapse
|
35
|
Cottaris NP, Elfar SD. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants. J Neural Eng 2009; 6:026007. [DOI: 10.1088/1741-2560/6/2/026007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Abstract
The development of retinal implants for the blind depends crucially on understanding how neurons in the retina respond to electrical stimulation. This study used multielectrode arrays to stimulate ganglion cells in the peripheral macaque retina, which is very similar to the human retina. Analysis was restricted to parasol cells, which form one of the major high-resolution visual pathways in primates. Individual cells were characterized using visual stimuli, and subsequently targeted for electrical stimulation using electrodes 9-15 microm in diameter. Results were accumulated across 16 ON and 9 OFF parasol cells. At threshold, all cells responded to biphasic electrical pulses 0.05-0.1 ms in duration by firing a single spike with latency lower than 0.35 ms. The average threshold charge density was 0.050 +/- 0.005 mC/cm(2), significantly below established safety limits for platinum electrodes. ON and OFF ganglion cells were stimulated with similar efficacy. Repetitive stimulation elicited spikes within a 0.1 ms time window, indicating that the high temporal precision necessary for spike-by-spike stimulation can be achieved in primate retina. Spatial analysis of observed thresholds suggests that electrical activation occurred near the axon hillock, and that dendrites contributed little. Finally, stimulation of a single parasol cell produced little or no activation of other cells in the ON and OFF parasol cell mosaics. The low-threshold, temporally precise, and spatially specific responses hold promise for the application of high-density arrays of small electrodes in epiretinal implants.
Collapse
|
37
|
|
38
|
|
39
|
Niu X, Qiu Y, Tong S, Zhu Y. Application of particle swarm system as a novel parameter optimization technique on spatiotemporal retina model. ACTA ACUST UNITED AC 2007; 2007:5795-8. [PMID: 18003330 DOI: 10.1109/iembs.2007.4353664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Center-surround spatiotemporal (ST) filter is a powerful tool to simulate the spatial and temporal properties of retina ganglion cells and encode visual information with electric spikes. This paper introduces the application of particle swarm optimization (PSO) algorithm to tune the parameters in the retina model consisting of a ST filter module and a back-propagation (BP) neural network module. Images are converted into electric spikes by the ST filters whose outputs are then fed into the BP neural network to reconstruct the output images. The parameters of the ST filters determine the electric spike sequences as well as the output image from the BP network. In order to get the expected output images, we employ PSO to iteratively tune the parameters. Euclidean distance between output and input image is used as scalar criteria to optimize the ST filter. The tuning process stops until the similarity between output and input images no longer improves. The results show that 62.3% of the images trained by PSO have better output image quality and less iteration time compared with those trained by the current evolution strategy (ES).
Collapse
Affiliation(s)
- X Niu
- Biomedical Engineering Department, Shanghai Jiao Tong University, Shanghai, 200240 China.
| | | | | | | |
Collapse
|
40
|
Abstract
The possibility of using retina implants ('retinal prostheses') for the restoration of basic orientation in blind patients suffering from distal retinal diseases is presently under investigation by at least 18 independent project groups worldwide. It is a common feature of all implants to bypass degenerated retinal layers and to transfer visual information into the retinal network either by direct electrical stimulation or by neurotransmitter release. Contemporary implant designs are differing in the position of stimulating electrodes (epiretinal, subretinal, external) and the anatomical arrangement of implant components (intraocular, extraocular). The latter is of high relevance with regard to possible implant-tissue interactions and biological reactions. During the last few years new types of implants appeared that reduce intraocular components which are now deposited on the outer scleral surface or even in extraorbital position. The extreme of this trend are completely extraocular implants with transchoroidal or extraocular stimulation of the retina. The new type of implant presented in this paper combines the principle of direct retinal stimulation and minimal invasive implantation in a way that stimulating electrodes are the only implant component penetrating the eye via sclera, choroid and retinal pigment epithelium. All other device elements are positioned in extraocular position. The new concept necessitates a paradigmatic change about surgical handling of the choroid and multiple penetrations of the eye. Successful data about this type of retinal prosthesis are already available from long-term observation in non-human primates.
Collapse
Affiliation(s)
- H Gerding
- Department of Retinology, Klinik Pallas, Olten, Switzerland.
| |
Collapse
|
41
|
Alteheld N, Roessler G, Walter P. Towards the bionic eye--the retina implant: surgical, opthalmological and histopathological perspectives. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:487-93. [PMID: 17691339 DOI: 10.1007/978-3-211-33081-4_56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Degenerations of the outer retina such as retinitis pigmentosa (RP) lead to blindness due to photoreceptor loss. There is a secondary loss of inner retinal cells but significant numbers of bipolar and ganglion cells remain intact for many years. Currently, no therapeutic option to restore vision in these blind subjects is available. Short-term pattern electrical stimulation of the retina using implanted electrode arrays in subjects blind from RP showed that ambulatory vision and limited character recognition are possible. To produce artificial vision by electrical retinal stimulation, a wireless intraocular visual prosthesis was developed. Images of the environment, taken by a camera are pre-processed by an external visual encoder. The stimulus patterns are transmitted to the implanted device wirelessly and electrical impulses are released by microcontact electrodes onto the retinal surface. Towards a human application, the biocompatibility of the utilised materials and the feasibility of the surgical implantation procedure were stated. In acute stimulation tests, thresholds were determined and proved to be within a safe range. The local and retinotopic activation of the visual cortex measured by optical imaging of intrinsic signals was demonstrated upon electrical retinal stimulation with a completely wireless and remotely controlled retinal implant. Potential obstacles are reviewed and further steps towards a successful prosthesis development are discussed.
Collapse
Affiliation(s)
- N Alteheld
- Department of Ophthalmology, RWTH Aachen University, Aachen, Germany.
| | | | | |
Collapse
|
42
|
Abstract
This report provides a brief overview of blinding eye diseases for which prosthetic vision may hold promise as a treatment modality, and of current and near-term technological approaches towards the creation of prosthetic interfaces with the remaining visual system. Principal anatomical, physiological, technological and functional obstacles and possible solutions are outlined, and references are provided to pioneering work by over a dozen groups on four continents.
Collapse
Affiliation(s)
- Gislin Dagnelie
- Ophthalmology, Johns Hopkins University School of Medicine, Lions Vision Research and Rehabilitation Center, Wilmer Ophthalmological Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Javaheri M, Hahn DS, Lakhanpal RR, Weiland JD, Humayun MS. Retinal Prostheses for the Blind. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2006. [DOI: 10.47102/annals-acadmedsg.v35n3p137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Introduction: Using artificial means to treat extreme vision impairment has come closer to reality during the past few decades. The goal of this research has been to create an implantable medical device that provides useful vision for those patients who are left with no alternatives. Analogous to the cochlear implants for some forms of hearing loss, these devices could restore useful vision by converting visual information into patterns of electrical stimulation that excite the remaining viable inner retinal neurons in patients with retinitis pigmentosa or age-related macular degeneration.
Methods: Data for this review were selected through a comprehensive literature search.
Results: Advances in microtechnology have facilitated the development of a variety of prostheses that can be implanted in the visual cortex, around the optic nerve, or in the eye. Some of these approaches have shown the promise of providing useful visual input to patients with visual impairments.
Conclusion: While the development of various retinal prostheses have shown promise in limited clinical trials, there are distinct advantages and disadvantages for each type of prosthesis. This review will focus primarily on the Epiretinal Intraocular Retinal Prosthesis, studied by our group, but will also briefly review other modalities: the subretinal prosthesis, cortical prosthesis, and optic nerve prosthesis.
Collapse
|
44
|
|