1
|
Abstract
SIGNIFICANCE Head-mounted video display systems and image processing as a means of enhancing low vision are ideas that have been around for more than 20 years. Recent developments in virtual and augmented reality technology and software have opened up new research opportunities that will lead to benefits for low vision patients. Since the Visionics low vision enhancement system (LVES), the first head-mounted video display LVES, was engineered 20 years ago, various other devices have come and gone with a recent resurgence of the technology over the past few years. In this article, we discuss the history of the development of LVESs, describe the current state of available technology by outlining existing systems, and explore future innovation and research in this area. Although LVESs have now been around for more than two decades, there is still much that remains to be explored. With the growing popularity and availability of virtual reality and augmented reality technologies, we can now integrate these methods within low vision rehabilitation to conduct more research on customized contrast-enhancement strategies, image motion compensation, image-remapping strategies, and binocular disparity, all while incorporating eye-tracking capabilities. Future research should use this available technology and knowledge to learn more about the visual system in the low vision patient and extract this new information to create prescribable vision enhancement solutions for the visually impaired individual.
Collapse
|
2
|
Lewis PM, Ayton LN, Guymer RH, Lowery AJ, Blamey PJ, Allen PJ, Luu CD, Rosenfeld JV. Advances in implantable bionic devices for blindness: a review. ANZ J Surg 2016; 86:654-9. [PMID: 27301783 PMCID: PMC5132139 DOI: 10.1111/ans.13616] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 02/02/2023]
Abstract
Since the 1950s, vision researchers have been working towards the ambitious goal of restoring a functional level of vision to the blind via electrical stimulation of the visual pathways. Groups based in Australia, USA, Germany, France and Japan report progress in the translation of retinal visual prosthetics from the experimental to clinical domains, with two retinal visual prostheses having recently received regulatory approval for clinical use. Regulatory approval for cortical visual prostheses is yet to be obtained; however, several groups report plans to conduct clinical trials in the near future, building upon the seminal clinical studies of Brindley and Dobelle. In this review, we discuss the general principles of visual prostheses employing electrical stimulation of the visual pathways, focusing on the retina and visual cortex as the two most extensively studied stimulation sites. We also discuss the surgical and functional outcomes reported to date for retinal and cortical prostheses, concluding with a brief discussion of novel developments in this field and an outlook for the future.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia
| | - Lauren N Ayton
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia
| | - Peter J Blamey
- Bionics Institute, Department of Medical Bionics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Penelope J Allen
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia.,Department of Ophthalmology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Surgery, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia.,Monash Institute of Medical Engineering, Monash University, Melbourne, Victoria, Australia.,F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 2014; 1595:51-73. [PMID: 25446438 DOI: 10.1016/j.brainres.2014.11.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/05/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022]
Abstract
The field of neurobionics offers hope to patients with sensory and motor impairment. Blindness is a common cause of major sensory loss, with an estimated 39 million people worldwide suffering from total blindness in 2010. Potential treatment options include bionic devices employing electrical stimulation of the visual pathways. Retinal stimulation can restore limited visual perception to patients with retinitis pigmentosa, however loss of retinal ganglion cells precludes this approach. The optic nerve, lateral geniculate nucleus and visual cortex provide alternative stimulation targets, with several research groups actively pursuing a cortically-based device capable of driving several hundred stimulating electrodes. While great progress has been made since the earliest works of Brindley and Dobelle in the 1960s and 1970s, significant clinical, surgical, psychophysical, neurophysiological, and engineering challenges remain to be overcome before a commercially-available cortical implant will be realized. Selection of candidate implant recipients will require assessment of their general, psychological and mental health, and likely responses to visual cortex stimulation. Implant functionality, longevity and safety may be enhanced by careful electrode insertion, optimization of electrical stimulation parameters and modification of immune responses to minimize or prevent the host response to the implanted electrodes. Psychophysical assessment will include mapping the positions of potentially several hundred phosphenes, which may require repetition if electrode performance deteriorates over time. Therefore, techniques for rapid psychophysical assessment are required, as are methods for objectively assessing the quality of life improvements obtained from the implant. These measures must take into account individual differences in image processing, phosphene distribution and rehabilitation programs that may be required to optimize implant functionality. In this review, we detail these and other challenges facing developers of cortical visual prostheses in addition to briefly outlining the epidemiology of blindness, and the history of cortical electrical stimulation in the context of visual prosthetics.
Collapse
Affiliation(s)
- Philip M Lewis
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia.
| | - Helen M Ackland
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Arthur J Lowery
- Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; Department of Electrical and Computer Systems Engineering, Faculty of Engineering, Monash University, Melbourne, Australia.
| | - Jeffrey V Rosenfeld
- Department of Neurosurgery, Alfred Hospital, Melbourne, Australia; Department of Surgery, Monash University, Central Clinical School, Melbourne, Australia; Monash Vision Group, Faculty of Engineering, Monash University, Melbourne, Australia; Monash Institute of Medical Engineering, Monash University, Melbourne, Australia; F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA.
| |
Collapse
|
4
|
Wang J, Wu X, Lu Y, Wu H, Kan H, Chai X. Face recognition in simulated prosthetic vision: face detection-based image processing strategies. J Neural Eng 2014; 11:046009. [PMID: 24921713 DOI: 10.1088/1741-2560/11/4/046009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Given the limited visual percepts elicited by current prosthetic devices, it is essential to optimize image content in order to assist implant wearers to achieve better performance of visual tasks. This study focuses on recognition of familiar faces using simulated prosthetic vision. APPROACH Combined with region-of-interest (ROI) magnification, three face extraction strategies based on a face detection technique were used: the Viola-Jones face region, the statistical face region (SFR) and the matting face region. MAIN RESULTS These strategies significantly enhanced recognition performance compared to directly lowering resolution (DLR) with Gaussian dots. The inclusion of certain external features, such as hairstyle, was beneficial for face recognition. Given the high recognition accuracy achieved and applicable processing speed, SFR-ROI was the preferred strategy. DLR processing resulted in significant face gender recognition differences (i.e. females were more easily recognized than males), but these differences were not apparent with other strategies. SIGNIFICANCE Face detection-based image processing strategies improved visual perception by highlighting useful information. Their use is advisable for face recognition when using low-resolution prosthetic vision. These results provide information for the continued design of image processing modules for use in visual prosthetics, thus maximizing the benefits for future prosthesis wearers.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | | | | | | | | | | |
Collapse
|
5
|
Lu Y, Wang J, Wu H, Li L, Cao X, Chai X. Recognition of objects in simulated irregular phosphene maps for an epiretinal prosthesis. Artif Organs 2013; 38:E10-20. [PMID: 24117959 DOI: 10.1111/aor.12174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visual prostheses offer a possibility of restoring vision to the blind. It is necessary to determine minimum requirements for daily visual tasks. To investigate the recognition of common objects in daily life based on the simulated irregular phosphene maps, the effect of four parameters (resolution, distortion, dropout percentage, and gray scale) on object recognition was investigated. The results showed that object recognition accuracy significantly increased with an increase of resolution. Distortion and dropout percentage had significant impact on the object recognition; with the increase of distortion level and dropout percentage, the recognition decreased considerably. The accuracy decreased significantly only at gray level 2, whereas the other three gray levels showed no obvious difference. The two image processing methods (merging pixels to lower the resolution and edge extraction before lowering resolution) showed significant difference on the object recognition when there was a high degree of distortion level or dot dropout.
Collapse
Affiliation(s)
- Yanyu Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
6
|
Barriga-Rivera A, Suaning GJ. Digital image processing for visual prosthesis: filtering implications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:4860-3. [PMID: 22255427 DOI: 10.1109/iembs.2011.6091204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Investigators around the world are working on retinal neurostimulation as it may restore functional vision to the blind. The image is captured by a camera and after being processed, a series of electrical stimuli are applied to the surviving ganglion cells of the retina. This visual perception is expected to have low resolution. Therefore, there is a need of new algorithms that present the information contained in a visual scene understandable to humans. This study presents a novel multi-resolution algorithm based on wavelet analysis to extract the useful features of an image. Participants in this experiment were able to configure a filter bank to complete a set of everyday tasks. This study shows that wavelet-based algorithms may facilitate improved functional performance in prosthetic vision.
Collapse
|