1
|
Zhao Z, Ma Y, Mushtaq A, Radhakrishnan V, Hu Y, Ren H, Song W, Tse ZTH. Engineering functional and anthropomorphic models for surgical training in interventional radiology: A state-of-the-art review. Proc Inst Mech Eng H 2023; 237:3-17. [PMID: 36377860 PMCID: PMC9841824 DOI: 10.1177/09544119221135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Training medical students in surgical procedures and evaluating their performance are both necessary steps to ensure the safety and efficacy of surgeries. Traditionally, trainees practiced on live patients, cadavers or animals under the supervision of skilled physicians, but realistic anatomical phantom models have provided a low-cost alternative because of the advance of material technology that mimics multi-layer tissue structures. This setup provides safer and more efficient training. Many research prototypes of phantom models allow rapid in-house prototyping for specific geometries and tissue properties. The gel-based method and 3D printing-based method are two major methods for developing phantom prototypes. This study excluded virtual reality based technologies and focused on physical phantoms, total 189 works published between 2015 and 2020 on anatomical phantom prototypes made for interventional radiology were reviewed in terms of their functions and applications. The phantom prototypes were first categorized based on fabrication methods and then subcategorized based on the organ or body part they simulated; the paper is organized accordingly. Engineering specifications and applications were analyzed and summarized for each study. Finally, current challenges in the development of phantom models and directions for future work were discussed.
Collapse
Affiliation(s)
- Zhuo Zhao
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA, USA
| | - Yangmyung Ma
- Hull York Medical School, University of York, Heslington, York, UK
| | - Adeel Mushtaq
- Hull York Medical School, University of York, Heslington, York, UK
| | - Vignesh Radhakrishnan
- School of Engineering and Materials Science, Queen Mary University of London, London
| | - Yihua Hu
- School of Engineering and Materials Science, Queen Mary University of London, London
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China,Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Wenzhan Song
- Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- School of Engineering and Materials Science, Queen Mary University of London, London,Zion Tsz Ho Tse, School of Engineering and Materials Science, Queen Mary University of London, Room 229 Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
2
|
Krauleidis A, Adliene D, Rutkuniene Z. The Impact of Temporal Changes in Irradiated nMAG Polymer Gels on Their Applicability in Small Field Dosimetry in Radiotherapy. Gels 2022; 8:629. [PMID: 36286130 PMCID: PMC9601347 DOI: 10.3390/gels8100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
As advanced radiotherapy techniques progress to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues using intensity-modulated beams, arcs or stereotactic radiosurgery, new challenges occur to assure that the high treatment dose is delivered homogeneously to the tumor. Small irradiation field sizes (≤1 cm2) that tightly conform to precise target regions and allow for the deliverance of doses with a high therapeutic ratio, are of particular interest. However, the small field dosimetry using conventional dosimeters is limited by the relative large size of the detector. Radiation-sensitive polymer gels have the potential to meet this dosimetry challenge due to their almost unlimited ability in resolving three-dimensional dose distributions of any shape and makes them unique and suitable for the evaluation of dose profiles and the verification of complex doses. In this work, dose distributions in nMAG gels that have been irradiated to different doses by applying a 6 MV FFF photon beam collimated to 1 cm2, were analyzed and the dose profiles were evaluated by applying a gamma passing rate criteria of 3%/3 mm and considering different post-irradiation time intervals between the irradiation and the gels read out process. X-ray CT and NMR imaging procedures were used for the dose evaluation. It was found that the shape and uniformity of the dose profiles were changing due to post-irradiation polymerization and gelation processes, indicating time dependent growing uniformity which was better expressed for the higher delivered doses. It was estimated that in order to obtain acceptably symmetric small field dose profiles, a longer post-irradiation time is needed for getting the full scope of the polymerization as compared with the recently recommended 24 h period between irradiation and the read out processes of the dose gels. An estimated overall uncertainty (double standard deviation, 95% confidence level) of 3.66% was achieved by applying R2 measurements (NMR read out), and a 3.81-applying X-ray CT read out for 12 Gy irradiated gels 56 h post-irradiation. An increasing tendency for the uncertainty was observed with a decreasing post-irradiation time. A gamma passing rate of 90.3% was estimated for the 12 Gy irradiated gels and, 56 h post-irradiation, the X-ray CT evaluated gels as well as a gamma passing rate of 92.7% was obtained for the NMR evaluated gels applying a 3%/3 mm passing criteria.
Collapse
Affiliation(s)
| | - Diana Adliene
- Physics Department, Kaunas University of Technology, Studentu Str. 50, 51368 Kaunas, Lithuania
| | | |
Collapse
|
3
|
Elter A, Dorsch S, Mann P, Runz A, Johnen W, Spindeldreier CK, Klüter S, Karger CP. End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures. ACTA ACUST UNITED AC 2019; 64:225003. [DOI: 10.1088/1361-6560/ab4d8e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Alhujaili SF, Davis JA, Davies J, Lerch MLF, Rosenfeld AB, Petasecca M. Characterization of an “Edgeless” Dosimeter for Angular Independent Measurements in Advanced Radiotherapy Treatments. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2906842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Ramm D. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development. Phys Med Biol 2018; 63:045019. [PMID: 29363617 DOI: 10.1088/1361-6560/aaaa45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.
Collapse
Affiliation(s)
- Daniel Ramm
- Department of Medical Physics, Royal Adelaide Hospital Cancer Centre, South Australia, Australia. School of Physical Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Mann P, Witte M, Moser T, Lang C, Runz A, Johnen W, Berger M, Biederer J, Karger CP. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom. Phys Med Biol 2016; 62:573-595. [DOI: 10.1088/1361-6560/aa51b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Pushpavanam K, Narayanan E, Chang J, Sapareto S, Rege K. A Colorimetric Plasmonic Nanosensor for Dosimetry of Therapeutic Levels of Ionizing Radiation. ACS NANO 2015; 9:11540-11550. [PMID: 26434692 DOI: 10.1021/acsnano.5b05113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Modern radiation therapy using highly automated linear accelerators is a complex process that maximizes doses to tumors and minimizes incident dose to normal tissues. Dosimeters can help determine the radiation dose delivered to target diseased tissue while minimizing damage to surrounding healthy tissue. However, existing dosimeters can be complex to fabricate, expensive, and cumbersome to operate. Here, we demonstrate studies of a liquid phase, visually evaluated plasmonic nanosensor that detects radiation doses commonly employed in fractionated radiotherapy (1-10 Gy) for tumor ablation. We accomplished this by employing ionizing radiation, in concert with templating lipid surfactant micelles, in order to convert colorless salt solutions of univalent gold ions (Au(1)) to maroon-colored dispersions of plasmonic gold nanoparticles. Differences in color intensities of nanoparticle dispersions were employed as quantitative indicators of the radiation dose. The nanoparticles thus formed were characterized using UV-vis absorbance spectroscopy, dynamic light scattering, and transmission electron microscopy. The role of lipid surfactants on nanoparticle formation was investigated by varying the chain lengths while maintaining the same headgroup and counterion; the effect of surfactant concentration on detection efficacy was also investigated. The plasmonic nanosensor was able to detect doses as low as 0.5 Gy and demonstrated a linear detection range of 0.5-2 Gy or 5-37 Gy depending on the concentration of the lipid surfactant employed. The plasmonic nanosensor was also able to detect radiation levels in anthropomorphic prostate phantoms when administered together with endorectal balloons, indicating its potential utility as a dosimeter in fractionated radiotherapy for prostate cancer. Taken together, our results indicate that this simple visible nanosensor has strong potential to be used as a dosimeter for validating delivered radiation doses in fractionated radiotherapies in a variety of clinical settings.
Collapse
Affiliation(s)
- Karthik Pushpavanam
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| | - Eshwaran Narayanan
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| | - John Chang
- Banner-MD Anderson Cancer Center , Gilbert, Arizona 85234, United States
| | - Stephen Sapareto
- Banner-MD Anderson Cancer Center , Gilbert, Arizona 85234, United States
| | - Kaushal Rege
- Chemical Engineering, Arizona State University , Tempe, Arizona 85287-6106, United States
| |
Collapse
|
8
|
Schreiner LJ. True 3D chemical dosimetry (gels, plastics): Development and clinical role. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/573/1/012003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Nasr AT, Olding T, Schreiner LJ, McAuley KB. Evaluation of the potential for diacetylenes as reporter molecules in 3D micelle gel dosimetry. Phys Med Biol 2013; 58:787-805. [DOI: 10.1088/0031-9155/58/4/787] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Nasr AT, Schreiner LJ, McAuley KB. Mathematical Modeling of the Response of Polymer Gel Dosimeters to HDR and LDR Brachytherapy Radiation. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Sedaghat M, Bujold R, Lepage M. Severe dose inaccuracies caused by an oxygen-antioxidant imbalance in normoxic polymer gel dosimeters. Phys Med Biol 2011; 56:601-25. [DOI: 10.1088/0031-9155/56/3/006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Baldock C, De Deene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ. Polymer gel dosimetry. Phys Med Biol 2010; 55:R1-63. [PMID: 20150687 DOI: 10.1088/0031-9155/55/5/r01] [Citation(s) in RCA: 454] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.
Collapse
Affiliation(s)
- C Baldock
- Institute of Medical Physics, School of Physics, University of Sydney, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Warman JM, de Haas MP, Luthjens LH. High-energy radiation monitoring based on radio-fluorogenic co-polymerization. I: Small volume in situ probe. Phys Med Biol 2009; 54:3185-200. [PMID: 19420430 DOI: 10.1088/0031-9155/54/10/015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method of radiation dosimetry is described which is based on the radiation-induced initiation of polymerization of a bulk monomer (e.g. methyl methacrylate) containing a small concentration (about 100 ppm) of a compound which is non-fluorescent but which becomes highly fluorescent when it is incorporated into a growing polymer chain of the bulk monomer. We call the overall process 'radio-fluorogenic co-polymerization' or RFCP for short. The method is illustrated by results on the in situ monitoring of the accumulated dose within the irradiation chamber of a cobalt-60 gamma-ray source using a small plastic capsule containing about 0.2 ml of an RFCP solution. Remote monitoring of the fluorescence is carried out on a timescale of seconds using optical fibres connecting the probe to a 360 nm LED excitation source and a miniature spectrophotometer. The fluorescence is permanent and the intensity is linearly proportional to the accumulated dose from a few tenths of a gray up to hundreds of gray. The sensitivity to dose depends on the polymerizable monomer used and obeys a square root dependence on dose rate over the range studied, 0.27-3.76 Gy min(-1). The polymeric nature of the fluorescent product suggests that the RFCP effect could be used to provide fixed two- or three-dimensional fluorescent images of dose deposition in gel films or phantoms.
Collapse
Affiliation(s)
- J M Warman
- Reactor Institute R3/RIH, Technical University of Delft, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | | | | |
Collapse
|
14
|
Bosi SG, Naseri P, Baldock C. Light-scattering-induced artifacts in a complex polymer gel dosimetry phantom. APPLIED OPTICS 2009; 48:2427-2434. [PMID: 19412199 DOI: 10.1364/ao.48.002427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Certain polymer gels become turbid on exposure to ionizing radiation, a property exploited in medical dosimetry to produce three-dimensional dose maps for radiotherapy. These maps can be read using optical computed tomography (CT). A test phantom of complex shape ("layered tube") was developed to investigate the optical properties of polymer gel dosimeters when read using optical CT. Extinction coefficient profiles from tomographically reconstructed slices of the phantom exhibited several artifacts. A simple model invoking scattered light in the gel was able to account for all artifacts, which in a real dosimeter may have been mistaken for other phenomena, resulting in incorrect readings of dose.
Collapse
Affiliation(s)
- Stephen G Bosi
- Department of Radiation Oncology, Prince of Wales Hospital, Randwick NSW 2031, Australia.
| | | | | |
Collapse
|
15
|
Collomb-Patton V, Boher P, Leroux T, Fontbonne JM, Batalla A, Vela A. DOSIMAP: a high-resolution 2-D tissue equivalent dosemeter for linac QA and IMRT verification. RADIATION PROTECTION DOSIMETRY 2008; 131:100-109. [PMID: 18757897 DOI: 10.1093/rpd/ncn228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
New generation of radiation therapy accelerators requires highly accurate dose measurements with high spatial resolution patterns. IMRT is especially demanding since the positioning accuracy of all the multi-leafs should be verified for each applied field and at any incidence. A new 2-D tissue equivalent dosemeter is presented with high spatial resolution that can fulfil these tasks. A plastic scintillator sheet is sandwiched between two polystyrene cubes, and the emitted light is observed by a high-resolution camera. A patented procedure allows efficient discrimination of the scintillation proportional to the dose from the parasitic Cerenkov radiation. This extraction made on the cumulated images taken during an irradiation field at a rate of 10 images s(-1) provides high-resolution mapping of the dose rate and cumulated dose in quasi real time. The dosemeter is tissue equivalent (ICRU-44) and works both for electrons and photons without complex parameter adjustment, since phantom and detector materials are identical. The calibration is simple and independent of the irradiation conditions (energy, fluence, quality and so on). The principle of the dosemeter and its calibration procedure are discussed in this paper. The results and, in particular, the dose depth profiles are compared with standard ionisation chamber measurements in polystyrene for both photons and electrons. Finally, the detector specifications are summarised and one example of complex IMRT field is discussed.
Collapse
|