1
|
Woodrow C, Celiker E, Montealegre-Z F. An Eocene insect could hear conspecific ultrasounds and bat echolocation. Curr Biol 2023; 33:5304-5315.e3. [PMID: 37963458 DOI: 10.1016/j.cub.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023]
Abstract
Hearing has evolved independently many times in the animal kingdom and is prominent in various insects and vertebrates for conspecific communication and predator detection. Among insects, katydid (Orthoptera: Tettigoniidae) ears are unique, as they have evolved outer, middle, and inner ear components, analogous in their biophysical principles to the mammalian ear. The katydid ear consists of two paired tympana located in each foreleg. These tympana receive sound externally on the tympanum surface (usually via pinnae) or internally via an ear canal (EC). The EC functions to capture conspecific calls and low frequencies, while the pinnae passively amplify higher-frequency ultrasounds including bat echolocation. Together, these outer ear components provide enhanced hearing sensitivity across a dynamic range of over 100 kHz. However, despite a growing understanding of the biophysics and function of the katydid ear, its precise emergence and evolutionary history remains elusive. Here, using microcomputed tomography (μCT) scanning, we recovered geometries of the outer ear components and wings of an exceptionally well-preserved katydid fossilized in Baltic amber (∼44 million years [Ma]). Using numerical and theoretical modeling of the wings, we show that this species was communicating at a peak frequency of 31.62 (± 2.27) kHz, and we demonstrate that the ear was biophysically tuned to this signal and to providing hearing at higher-frequency ultrasounds (>80 kHz), likely for enhanced predator detection. The results indicate that the evolution of the unique ear of the katydid, with its broadband ultrasonic sensitivity and analogous biophysical properties to the ears of mammals, emerged in the Eocene.
Collapse
Affiliation(s)
- Charlie Woodrow
- University of Lincoln, School of Life and Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK; Uppsala University, Department of Ecology and Genetics, Evolutionary Biology Centre, Norbyvägen 18 D, 752 36, Uppsala, Sweden.
| | - Emine Celiker
- University of Dundee, Division of Mathematics, School of Science and Engineering, Nethergate, Dundee DD1 4HN, UK; University of Leicester, School of Engineering, University Road, Leicester LE1 7RH, UK
| | - Fernando Montealegre-Z
- University of Lincoln, School of Life and Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK.
| |
Collapse
|
2
|
Lapshin DN, Vorontsov DD. Mapping the Auditory Space of Culex pipiens Female Mosquitoes in 3D. INSECTS 2023; 14:743. [PMID: 37754711 PMCID: PMC10532353 DOI: 10.3390/insects14090743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
The task of directional hearing faces most animals that possess ears. They approach this task in different ways, but a common trait is the use of binaural cues to find the direction to the source of sound. In insects, the task is further complicated by their small size and, hence, minute temporal and level differences between two ears. A single symmetric flagellar particle velocity receiver, such as the antenna of a mosquito, should not be able to discriminate between the two opposite directions along the vector of the sound wave. Paired antennae of mosquitoes presume the usage of binaural hearing, but its mechanisms are expected to be significantly different from the ones typical for the pressure receivers. However, the directionality of flagellar auditory organs has received little attention. Here, we measured the in-flight orientation of antennae in female Culex pipiens pipiens mosquitoes and obtained a detailed physiological mapping of the Johnston's organ directionality at the level of individual sensory units. By combining these data, we created a three-dimensional model of the mosquito's auditory space. The orientation of the antennae was found to be coordinated with the neuronal asymmetry of the Johnston's organs to maintain a uniformly shaped auditory space, symmetric relative to a flying mosquito. The overlap of the directional characteristics of the left and right sensory units was found to be optimal for binaural hearing focused primarily in front of, above and below a flying mosquito.
Collapse
Affiliation(s)
- Dmitry N. Lapshin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, Bolshoy Karetny per. 19, 127994 Moscow, Russia;
| | - Dmitry D. Vorontsov
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia
| |
Collapse
|
3
|
Carniel T, Cazenille L, Dalle JM, Halloy J. Using natural language processing to find research topics in Living Machines conferences and their intersections with Bioinspiration & Biomimetics publications. BIOINSPIRATION & BIOMIMETICS 2022; 17:065008. [PMID: 36106566 DOI: 10.1088/1748-3190/ac9208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The number of published scientific articles is increasing dramatically and makes it difficult to keep track of research topics. This is particularly difficult in interdisciplinary research areas where different communities from different disciplines are working together. It would be useful to develop methods to automate the detection of research topics in a research domain. Here we propose a natural language processing (NLP) based method to automatically detect topics in defined corpora. We start by automatically generating a global state of the art of Living Machines conferences. Our NLP-based method classifies all published papers into different clusters corresponding to the research topic published in these conferences. We perform the same study on all papers published in the journals Bioinspiration & Biomimetics and Soft Robotics. In total this analysis concerns 2099 articles. Next, we analyze the intersection between the research themes published in the conferences and the corpora of these two journals. We also examine the evolution of the number of papers per research theme which determines the research trends. Together, these analyses provide a snapshot of the current state of the field, help to highlight open questions, and provide insights into the future.
Collapse
Affiliation(s)
- Théophile Carniel
- Université Paris Cité, CNRS, LIED UMR 8236, F-75006 Paris, France
- Agoranov, F-75006 Paris, France
| | - Leo Cazenille
- Université Paris Cité, CNRS, LIED UMR 8236, F-75006 Paris, France
| | - Jean-Michel Dalle
- Agoranov, F-75006 Paris, France
- Sorbonne Université, F-75005 Paris, France
- École Polytechnique, F-91120 Palaiseau, France
| | - José Halloy
- Université Paris Cité, CNRS, LIED UMR 8236, F-75006 Paris, France
| |
Collapse
|
4
|
Pulver CA, Celiker E, Woodrow C, Geipel I, Soulsbury CD, Cullen DA, Rogers SM, Veitch D, Montealegre-Z F. Ear pinnae in a neotropical katydid (Orthoptera: Tettigoniidae) function as ultrasound guides for bat detection. eLife 2022; 11:77628. [PMID: 36170144 PMCID: PMC9519150 DOI: 10.7554/elife.77628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Early predator detection is a key component of the predator-prey arms race and has driven the evolution of multiple animal hearing systems. Katydids (Insecta) have sophisticated ears, each consisting of paired tympana on each foreleg that receive sound both externally, through the air, and internally via a narrowing ear canal running through the leg from an acoustic spiracle on the thorax. These ears are pressure-time difference receivers capable of sensitive and accurate directional hearing across a wide frequency range. Many katydid species have cuticular pinnae which form cavities around the outer tympanal surfaces, but their function is unknown. We investigated pinnal function in the katydid Copiphora gorgonensis by combining experimental biophysics and numerical modelling using 3D ear geometries. We found that the pinnae in C. gorgonensis do not assist in directional hearing for conspecific call frequencies, but instead act as ultrasound detectors. Pinnae induced large sound pressure gains (20–30 dB) that enhanced sound detection at high ultrasonic frequencies (>60 kHz), matching the echolocation range of co-occurring insectivorous gleaning bats. These findings were supported by behavioural and neural audiograms and pinnal cavity resonances from live specimens, and comparisons with the pinnal mechanics of sympatric katydid species, which together suggest that katydid pinnae primarily evolved for the enhanced detection of predatory bats.
Collapse
Affiliation(s)
- Christian A Pulver
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Emine Celiker
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Charlie Woodrow
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Inga Geipel
- Smithsonian Tropical Research Institute, Balboa, Panama.,CoSys Lab, Faculty of Applied Engineering, University of Antwerp, Antwerp, Belgium.,Flanders Make Strategic Research Centre, Lommel, Belgium
| | - Carl D Soulsbury
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Darron A Cullen
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Stephen M Rogers
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Daniel Veitch
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Fernando Montealegre-Z
- University of Lincoln, School of Life & Environmental Sciences, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| |
Collapse
|
5
|
Patrick SC, Assink JD, Basille M, Clusella-Trullas S, Clay TA, den Ouden OFC, Joo R, Zeyl JN, Benhamou S, Christensen-Dalsgaard J, Evers LG, Fayet AL, Köppl C, Malkemper EP, Martín López LM, Padget O, Phillips RA, Prior MK, Smets PSM, van Loon EE. Infrasound as a Cue for Seabird Navigation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.740027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements.
Collapse
|
6
|
Duncan J, Soulsbury CD, Montealegre-Z F. Differentiation between left and right wing stridulatory files in the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101076. [PMID: 34482021 DOI: 10.1016/j.asd.2021.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/13/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Male crickets produce acoustic signals by wing stridulation, attracting females for mating. A plectrum on the left forewing's (or tegmen) anal margin rapidly strikes along a serrated vein (stridulatory file, SF) on the opposite tegmen as they close, producing vibrations, ending in a tonal sound. The tooth strike rate of the plectrum across file teeth is equal to the sound frequency produced by the cricket (i.e., ∼5k teeth/s for ∼5 kHz in field crickets) and is specific to the forewing's resonant frequency. Sound is subsequently amplified using specialised wing cells. Anatomically, the forewings appear to mirror each other: both tegmina bear a SF and plectrum; however, most cricket species stridulate using right-over-left wing overlap making the stridulatory mechanism asymmetrical by default, rendering the left tegmen's SF unused. Therefore, we hypothesised structural differences between functional and unfunctional SFs. Three-dimensional mapping was used to accurately measure SF structures in Gryllus bimaculatus wings. We found that the left SF shows significantly greater variation in inter-tooth distance than the right, but less variation within the first sixty teeth (the functional part) than the right file. The left SF's slow evolutionary change over millions of years is discussed considering modern molecular phylogenies and fossil records.
Collapse
Affiliation(s)
- Jacob Duncan
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7TS, United Kingdom
| | - Carl D Soulsbury
- School of Life Sciences, University of Lincoln, Lincoln, LN6 7TS, United Kingdom
| | | |
Collapse
|
7
|
Dong Q, Song X, Chen JSJ, Kim A, Liu H. A bio-inspired optical directional microphone with cavity-coupled diaphragms. JASA EXPRESS LETTERS 2021; 1:072802. [PMID: 36154648 DOI: 10.1121/10.0005667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A bio-inspired acoustic sensor for sound source localization is presented, mimicking the internally coupled ears found in many terrestrial vertebrates and insects. It consists of two aluminum diaphragms coupled by a U-shaped cavity and detected by a low-coherence fiber optic interferometer system. A large-scale prototype with a center-to-center separation of 1″ is fabricated and experimentally demonstrated to amplify the interaural phase difference by a factor of 2 to 4 for a wide frequency range (0.5-2 kHz), which agrees well with simulation. This work presents a mechanism of using cavity-coupled diaphragms to develop acoustic sensors for sound source localization.
Collapse
Affiliation(s)
- Qian Dong
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Xiaolei Song
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jim Shih-Jiun Chen
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Albert Kim
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA , , , ,
| | - Haijun Liu
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
8
|
Jonsson T, Montealegre-Z F, Soulsbury CD, Robert D. Tenors Not Sopranos: Bio-Mechanical Constraints on Calling Song Frequencies in the Mediterranean Field-Cricket. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.647786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Male crickets and their close relatives bush-crickets (Gryllidae and Tettigoniidae, respectively; Orthoptera and Ensifera) attract distant females by producing loud calling songs. In both families, sound is produced by stridulation, the rubbing together of their forewings, whereby the plectrum of one wing is rapidly passed over a serrated file on the opposite wing. The resulting oscillations are amplified by resonating wing regions. A striking difference between Gryllids and Tettigoniids lies in wing morphology and composition of song frequency: Crickets produce mostly low-frequency (2–8 kHz), pure tone signals with highly bilaterally symmetric wings, while bush-crickets use asymmetric wings for high-frequency (10–150 kHz) calls. The evolutionary reasons for this acoustic divergence are unknown. Here, we study the wings of actively stridulating male field-crickets (Gryllus bimaculatus) and present vibro-acoustic data suggesting a biophysical restriction to low-frequency song. Using laser Doppler vibrometry (LDV) and brain-injections of the neuroactivator eserine to elicit singing, we recorded the topography of wing vibrations during active sound production. In freely vibrating wings, each wing region resonated differently. When wings coupled during stridulation, these differences vanished and all wing regions resonated at an identical frequency, that of the narrow-band song (∼5 kHz). However, imperfections in wing-coupling caused phase shifts between both resonators, introducing destructive interference with increasing phase differences. The effect of destructive interference (amplitude reduction) was observed to be minimal at the typical low frequency calls of crickets, and by maintaining the vibration phase difference below 80°. We show that, with the imperfect coupling observed, cricket song production with two symmetric resonators becomes acoustically inefficient above ∼8 kHz. This evidence reveals a bio-mechanical constraint on the production of high-frequency song whilst using two coupled resonators and provides an explanation as to why crickets, unlike bush-crickets, have not evolved to exploit ultrasonic calling songs.
Collapse
|
9
|
A narrow ear canal reduces sound velocity to create additional acoustic inputs in a microscale insect ear. Proc Natl Acad Sci U S A 2021; 118:2017281118. [PMID: 33658360 PMCID: PMC7958352 DOI: 10.1073/pnas.2017281118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The katydid tympanal ears have outer, middle, and inner ear components analogous to mammalian ears. Unlike mammals, each ear has two tympana exposed to sound both externally and internally, with a delayed internal version arriving via the gas-filled ear canal (EC). The two combined inputs in each ear play a significant role in directional hearing. Here, we demonstrate that the major factor causing the internal delay is the EC geometry. The EC bifurcates asymmetrically, producing two additional internal paths that impose different sound velocities for each tympanum. Therefore, various versions of the same signal reach the ears at various times, increasing the chance to pinpoint the sound source. Findings could inspire algorithms for accurate acoustic triangulation in detection sensors. Located in the forelegs, katydid ears are unique among arthropods in having outer, middle, and inner components, analogous to the mammalian ear. Unlike mammals, sound is received externally via two tympanic membranes in each ear and internally via a narrow ear canal (EC) derived from the respiratory tracheal system. Inside the EC, sound travels slower than in free air, causing temporal and pressure differences between external and internal inputs. The delay was suspected to arise as a consequence of the narrowing EC geometry. If true, a reduction in sound velocity should persist independently of the gas composition in the EC (e.g., air, CO2). Integrating laser Doppler vibrometry, microcomputed tomography, and numerical analysis on precise three-dimensional geometries of each experimental animal EC, we demonstrate that the narrowing radius of the EC is the main factor reducing sound velocity. Both experimental and numerical data also show that sound velocity is reduced further when excess CO2 fills the EC. Likewise, the EC bifurcates at the tympanal level (one branch for each tympanic membrane), creating two additional narrow internal sound paths and imposing different sound velocities for each tympanic membrane. Therefore, external and internal inputs total to four sound paths for each ear (only one for the human ear). Research paths and implication of findings in avian directional hearing are discussed.
Collapse
|
10
|
Römer H. Directional hearing in insects: biophysical, physiological and ecological challenges. ACTA ACUST UNITED AC 2020; 223:223/14/jeb203224. [PMID: 32737067 DOI: 10.1242/jeb.203224] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
11
|
Vedurmudi AP, Young BA, van Hemmen JL. Active tympanic tuning facilitates sound localization in animals with internally coupled ears. Hear Res 2020; 387:107861. [PMID: 31911335 DOI: 10.1016/j.heares.2019.107861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
Earlier studies have reported that numerous vertebrate taxa have skeletal muscle(s) attaching directly, or indirectly, onto the tympanic membrane. The present study links these prior studies by quantitatively modeling the influence of skeletal muscle contraction on tympanic tension, tympanic dampening, and, ultimately, the fundamental frequency. In this way, the efficacy of these tympanic muscles to dynamically alter the sensory response of the vertebrate ear is quantified. Changing the tension modifies the eardrum's fundamental frequency, a key notion in understanding hearing through internally coupled ears (ICE) as used by the majority of terrestrial vertebrates. Tympanic tension can also be modulated by altering the pressure acting on the deep (medial) surface of the tympanum. Herein we use the monitor lizard Varanus as an example to demonstrate how active modulation of the pharyngeal volume permits tuning of an ICE auditory system. The present contribution offers a behaviorally and biologically realistic perspective on the ICE system, by demonstrating how an organism can dynamically alter its morphology to tune the auditory response. Through quantification of the relationships between tympanic surface tension, damping, membrane fundamental frequency, and auditory cavity volume, it can be shown that an ICE system affords a biologically relevant range of tuning.
Collapse
Affiliation(s)
- Anupam P Vedurmudi
- Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Technische Universität München, 85748, Garching bei München, Germany.
| | - Bruce A Young
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA.
| | - J Leo van Hemmen
- Physik Department, Technische Universität München, 85747, Garching bei München, Germany.
| |
Collapse
|
12
|
Celiker E, Jonsson T, Montealegre-Z F. The Auditory Mechanics of the Outer Ear of the Bush Cricket: A Numerical Approach. Biophys J 2020; 118:464-475. [PMID: 31874708 DOI: 10.1016/j.bpj.2019.11.3394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 11/29/2022] Open
Abstract
Bush crickets have tympanal ears located in the forelegs. Their ears are elaborate, as they have outer-, middle-, and inner-ear components. The outer ear comprises an air-filled tube derived from the respiratory trachea, the acoustic trachea (AT), which transfers sound from the mesothoracic acoustic spiracle to the internal side of the ear drums in the legs. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces of the tympanum (the ear drum), producing differences in sound pressure and time between the left and right sides, therefore aiding the directional hearing of the animal. It has been demonstrated experimentally that the tracheal sound transmission generates a gain of ∼15 dB and a propagation velocity of 255 ms-1, an approximately 25% reduction from free-field propagation. However, the mechanism responsible for this change in sound pressure level and velocity remains elusive. In this study, we investigate the mechanical processes behind the sound pressure gain in the AT by numerically modeling the tracheal acoustic behavior using the finite-element method and real three-dimensional geometries of the tracheae of the bush cricket Copiphora gorgonensis. Taking into account the thermoviscous acoustic-shell interaction on the propagation of sound, we analyze the effects of the horn-shaped domain, material properties of the tracheal wall, and the thermal processes on the change in sound pressure level in the AT. Through the numerical results obtained, it is discerned that the tracheal geometry is the main factor contributing to the observed pressure gain.
Collapse
Affiliation(s)
- Emine Celiker
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, United Kingdom.
| | - Thorin Jonsson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom; Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| | - Fernando Montealegre-Z
- University of Lincoln, School of Life Sciences, Joseph Banks Laboratories, Lincoln, United Kingdom.
| |
Collapse
|
13
|
Lv M, Zhang X, Hedwig B. Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket. J Neurophysiol 2020; 123:865-875. [PMID: 31913780 DOI: 10.1152/jn.00737.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Directional hearing is crucial for animals depending on acoustic signals to locate a mate. We focused on crickets to explore the reliability of directional information forwarded to the brain by the ascending auditory interneuron AN1, which is crucial for phonotactic behavior. We presented calling song from -45° to +45° in steps of 3° and compared the phonotactic steering of females walking on a trackball with the directional responses of AN1. Forty percent of females showed good steering behavior and changed their walking direction when the speaker passed the body's longitudinal axis. The bilateral latency difference between right and left AN1 responses was small and may not be reliable for auditory steering. In respect to spike count, all AN1 recordings presented significant bilateral differences for angles larger than ±18°, yet 35% showed a mean significant difference of 1-3 action potentials per chirp when the frontal stimulus deviated by 3° from their length axis. For small angles, some females had a very similar AN1 activity forwarded to the brain, but the accuracy of their steering behavior was substantially different. Our results indicate a correlation between directional steering and the response strength of AN1, especially for large angles. The reliable steering of animals at small angles would have to be based on small bilateral differences of AN1 activity, if AN1 is the only source providing directional information. We discuss whether such bilateral response difference at small angles can provide a reliable measure to generate auditory steering commands descending from the brain, as pattern recognition is intensity independent.NEW & NOTEWORTHY The ascending auditory interneuron AN1 has been implicated in cricket auditory steering, but at small acoustic stimulation angles, it does not provide reliable directional information. We conclude that either the small bilateral auditory activity differences of the AN1 neurons are enhanced to generate reliable descending steering commands or, more likely, directional auditory steering is mediated via a thoracic pathway, as indicated by the reactive steering hypothesis.
Collapse
Affiliation(s)
- M Lv
- Department of Range Land Ecology, China Agricultural University, Beijing, China
| | - X Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - B Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Köppl C. Internally coupled middle ears enhance the range of interaural time differences heard by the chicken. ACTA ACUST UNITED AC 2019; 222:jeb.199232. [PMID: 31138639 DOI: 10.1242/jeb.199232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022]
Abstract
Interaural time differences (ITDs) are one of several principal cues for localizing sounds. However, ITDs are in the sub-millisecond range for most animals. Because the neural processing of such small ITDs pushes the limit of temporal resolution, the precise ITD range for a given species and its usefulness - relative to other localization cues - has been a powerful selective force in the evolution of the neural circuits involved. Birds and other non-mammals have internally coupled middle ears working as pressure-difference receivers that may significantly enhance ITDs, depending on the precise properties of the interaural connection. Here, the extent of this internal coupling was investigated in chickens, specifically under the same experimental conditions as typically used in investigations of the neurophysiology of ITD-coding circuits, i.e. with headphone stimulation and skull openings. Cochlear microphonics (CM) were recorded simultaneously from both ears of anesthetized chickens under monaural and binaural stimulation, using pure tones from 0.1 to 3 kHz. Interaural transmission peaked at 1.5 kHz at a loss of only -5.5 dB; the mean interaural delay was 264 µs. CM amplitude was strongly modulated as a function of ITD, confirming significant interaural coupling. The 'ITD heard' derived from the CM phases in both ears showed enhancement, compared with the acoustic stimuli, by a factor of up to 1.8. However, the experimental conditions impaired interaural transmission at low frequencies (<1 kHz). I identify factors that need to be considered when interpreting neurophysiological data obtained under these conditions and relating them to the natural free-field condition.
Collapse
Affiliation(s)
- Christine Köppl
- Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany .,Cluster of Excellence "Hearing4all" and Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
15
|
Kettler L, Carr CE. Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs. J Neurosci 2019; 39:3882-3896. [PMID: 30886018 PMCID: PMC6520516 DOI: 10.1523/jneurosci.2989-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.
Collapse
Affiliation(s)
- Lutz Kettler
- Lehrstuhl für Zoologie, Technische Universität München, 85354 Freising, Germany, and
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
16
|
Vedurmudi AP, Christensen-Dalsgaard J, van Hemmen JL. Modeling underwater hearing and sound localization in the frog Xenopus laevis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3010. [PMID: 30522324 DOI: 10.1121/1.5079647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Animals that are small compared to sound wavelengths face the challenge of localizing a sound source since the main cues to sound direction-interaural time differences (ITD) and interaural level differences (ILD)-both depend on size. Remarkably, the majority of terrestrial vertebrates possess internally coupled ears (ICE) with an air-filled cavity connecting the two eardrums and producing an inherently directional middle-ear system. Underwater, longer wavelengths and faster sound-speed reduce both ITD and ILD cues. Nonetheless, many animals communicate through and localize underwater sound. Here, a typical representative equipped with ICE is studied: the fully aquatic clawed frog Xenopus laevis. It is shown that two factors improve underwater sound-localization quality. First, inflated lungs function as Helmholtz resonator and generate directional amplitude differences between eardrum vibrations in the high-frequency (1.7-2.2 kHz) and low-frequency (0.8-1.2 kHz) range of the male advertisement calls. Though the externally arriving ILDs practically vanish, the perceived internal level differences are appreciable, more than 10 dB. As opposed to, e.g., lizards with thin and flexible eardrums, plate-like eardrums are shown to be Xenopus' second key to successfully handling aquatic surroundings. Based on ICE, both plate-like eardrums and inflated lungs functioning as Helmholtz resonators explain the phonotaxis performance of Xenopus.
Collapse
Affiliation(s)
- Anupam P Vedurmudi
- Physik Department T35, Technische Universität München, 85747 Garching bei München, Germany
| | | | - J Leo van Hemmen
- Physik Department T35, Technische Universität München, 85747 Garching bei München, Germany
| |
Collapse
|
17
|
Sun P, Mhatre N, Mason AC, Yack JE. In that vein: inflated wing veins contribute to butterfly hearing. Biol Lett 2018; 14:rsbl.2018.0496. [PMID: 30333263 DOI: 10.1098/rsbl.2018.0496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Abstract
Insects have evolved a diversity of hearing organs specialized to detect sounds critical for survival. We report on a unique structure on butterfly wings that enhances hearing. The Satyrini are a diverse group of butterflies occurring throughout the world. One of their distinguishing features is a conspicuous swelling of their forewing vein, but the functional significance of this structure is unknown. Here, we show that wing vein inflations function in hearing. Using the common wood nymph, Cercyonis pegala, as a model, we show that (i) these butterflies have ears on their forewings that are most sensitive to low frequency sounds (less than 5 kHz); (ii) inflated wing veins are directly connected to the ears; and (iii) when vein inflations are ablated, sensitivity to low frequency sounds is impaired. We propose that inflated veins contribute to low frequency hearing by impedance matching.
Collapse
Affiliation(s)
- Penghui Sun
- Department of Biology, Carleton University, Nesbitt Building, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Natasha Mhatre
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, Toronto, ON, Canada M1C 1A4
| | - Andrew C Mason
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, Toronto, ON, Canada M1C 1A4
| | - Jayne E Yack
- Department of Biology, Carleton University, Nesbitt Building, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
18
|
Kettler L, Christensen-Dalsgaard J, Larsen ON, Wagner H. Low frequency eardrum directionality in the barn owl induced by sound transmission through the interaural canal. BIOLOGICAL CYBERNETICS 2016; 110:333-343. [PMID: 27209198 DOI: 10.1007/s00422-016-0689-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 05/09/2016] [Indexed: 05/22/2023]
Abstract
The middle ears of birds are typically connected by interaural cavities that form a cranial canal. Eardrums coupled in this manner may function as pressure difference receivers rather than pressure receivers. Hereby, the eardrum vibrations become inherently directional. The barn owl also has a large interaural canal, but its role in barn owl hearing and specifically in sound localization has been controversial so far. We discuss here existing data and the role of the interaural canal in this species and add a new dataset obtained by laser Doppler vibrometry in a free-field setting. Significant sound transmission across the interaural canal occurred at low frequencies. The sound transmission induces considerable eardrum directionality in a narrow band from 1.5 to 3.5 kHz. This is below the frequency range used by the barn owl for locating prey, but may conceivably be used for locating conspecific callers.
Collapse
Affiliation(s)
- Lutz Kettler
- Department of Biology, Center for Comparative and Evolutionary Biology of Hearing, University of Maryland College Park, College Park, MD, 20742, USA.
- Department of Zoology and Animal Physiology, Institute of Biology II, RWTH Aachen, Worringerweg 3, 52074, Aachen, Germany.
| | | | - Ole Næsbye Larsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hermann Wagner
- Department of Zoology and Animal Physiology, Institute of Biology II, RWTH Aachen, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
19
|
Larsen ON, Christensen-Dalsgaard J, Jensen KK. Role of intracranial cavities in avian directional hearing. BIOLOGICAL CYBERNETICS 2016; 110:319-331. [PMID: 27209199 DOI: 10.1007/s00422-016-0688-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/03/2016] [Indexed: 05/22/2023]
Abstract
Whereas it is clear from anatomical studies that all birds have complex interaural canals connecting their middle ears, the effect of interaural coupling on directional hearing has been disputed. A reason for conflicting results in earlier studies may have been that the function of the tympanic ear and hence of the interaural coupling is sensitive to variations in the intracranial air pressure. In awake birds, the middle ears and connected cavities are vented actively through the pharyngotympanic tube. This venting reflex seems to be suppressed in anesthetized birds, leading to increasingly lower pressure in the interaural cavities, stiffening the eardrums, and displacing them medially. This causes the sensitivity, as well as the interaural coupling, to drop. Conversely, when the middle ears are properly vented, robust directional eardrum responses, most likely caused by internal coupling, have been reported. The anatomical basis of this coupling is the 'interaural canal,' which turns out to be a highly complex canal and cavity system, which we describe for the zebra finch. Surprisingly, given the complexity of the interaural canals, simple models of pipe-coupled middle ears fit the eardrum directionality data quite well, but future models taking the complex anatomy into consideration should be developed.
Collapse
Affiliation(s)
- Ole Næsbye Larsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| | | | - Kenneth Kragh Jensen
- Starkey Hearing Technologies, 6600 Washington Ave. S, Eden Prairie, MN, 55344, USA
| |
Collapse
|
20
|
Vedurmudi AP, Young BA, van Hemmen JL. Internally coupled ears: mathematical structures and mechanisms underlying ICE. BIOLOGICAL CYBERNETICS 2016; 110:359-382. [PMID: 27778100 DOI: 10.1007/s00422-016-0696-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 05/22/2023]
Abstract
In internally coupled ears (ICE), the displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull, causing a displacement of the opposing eardrum and vice versa. In this review, a thorough mathematical analysis of the membranes, passages, and propagating pressure waves reveals how internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both of these cues are directionally dependent. On the basis of the geometry of the interaural cavity and the elastic properties of the two eardrums confining it at both ends, the present paper reviews the mathematical theory underlying hearing through ICE and derives analytical expressions for eardrum vibrations as well as the pressures inside the internal passages, which ultimately lead to the emergence of highly directional hearing cues. The derived expressions enable one to explicitly see the influence of different parts of the system, e.g., the interaural cavity and the eardrum, on the internal coupling, and the frequency dependence of the coupling. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification (time dilation factor) from a high-frequency domain with considerable amplitude magnification. By exploiting the physical properties of the coupling, we describe a concrete method to numerically estimate the eardrum's fundamental frequency and damping solely through measurements taken from a live animal.
Collapse
Affiliation(s)
- Anupam P Vedurmudi
- Physik Department T35 and BCCN-Munich, Technische Universität München, 85747, Garching bei München, Germany
| | - Bruce A Young
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, 63501, USA
| | - J Leo van Hemmen
- Physik Department T35 and BCCN-Munich, Technische Universität München, 85747, Garching bei München, Germany.
| |
Collapse
|
21
|
van Hemmen JL, Christensen-Dalsgaard J, Carr CE, Narins PM. Animals and ICE: meaning, origin, and diversity. BIOLOGICAL CYBERNETICS 2016; 110:237-246. [PMID: 27838890 PMCID: PMC6020042 DOI: 10.1007/s00422-016-0702-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ICE stands for internally coupled ears. More than half of the terrestrial vertebrates, such as frogs, lizards, and birds, as well as many insects, are equipped with ICE that utilize an air-filled cavity connecting the two eardrums. Its effect is pronounced and twofold. On the basis of a solid experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction iTD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source.
Collapse
Affiliation(s)
- J Leo van Hemmen
- Physik Department T35 and BCCN-Munich, Technische Universität München, 85747, Garching bei München, Germany.
| | | | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, 20742-4415, USA
| | - Peter M Narins
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
22
|
Carr CE, Christensen-Dalsgaard J, Bierman H. Coupled ears in lizards and crocodilians. BIOLOGICAL CYBERNETICS 2016; 110:291-302. [PMID: 27734148 PMCID: PMC6003244 DOI: 10.1007/s00422-016-0698-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/17/2016] [Indexed: 05/22/2023]
Abstract
Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve the processing of low-frequency directional signals, while higher frequency signals appear to be progressively uncoupled. In both lizards and crocodilians, the increased directionality of the coupled ears leads to an effectively larger head and larger physiological range of ITDs. This increased physiological range is reviewed in the light of current theories of sound localization.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | | | - Hilary Bierman
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|
23
|
Römer H, Schmidt AKD. Directional hearing in insects with internally coupled ears. BIOLOGICAL CYBERNETICS 2016; 110:247-254. [PMID: 26696000 DOI: 10.1007/s00422-015-0672-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/05/2015] [Indexed: 05/22/2023]
Abstract
Compared to all other hearing animals, insects are the smallest ones, both in absolute terms and in relation to the wavelength of most biologically relevant sounds. The ears of insects can be located at almost any possible body part, such as wings, legs, mouthparts, thorax or abdomen. The interaural distances are generally so small that cues for directional hearing such as interaural time and intensity differences (IITs and IIDs) are also incredibly small, so that the small body size should be a strong constraint for directional hearing. Yet, when tested in behavioral essays for the precision of sound source localization, some species demonstrate hyperacuity in directional hearing and can track a sound source deviating from the midline by only [Formula: see text]-[Formula: see text]. They can do so by using internally coupled ears, where sound pressure can act on both sides of a tympanic membrane. Here we describe their varying anatomy and mode of operation for some insect groups, with a special focus on crickets, exhibiting probably one of the most sophisticated of all internally coupled ears in the animal kingdom.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Zoology, University of Graz, Universitaetsplatz 2, Graz, Austria.
| | - Arne K D Schmidt
- Institute of Zoology, University of Graz, Universitaetsplatz 2, Graz, Austria
| |
Collapse
|
24
|
Jonsson T, Montealegre-Z F, Soulsbury CD, Robson Brown KA, Robert D. Auditory mechanics in a bush-cricket: direct evidence of dual sound inputs in the pressure difference receiver. J R Soc Interface 2016; 13:rsif.2016.0560. [PMID: 27683000 DOI: 10.1098/rsif.2016.0560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/02/2016] [Indexed: 11/12/2022] Open
Abstract
The ear of the bush-cricket, Copiphora gorgonensis, consists of a system of paired eardrums (tympana) on each foreleg. In these insects, the ear is backed by an air-filled tube, the acoustic trachea (AT), which transfers sound from the prothoracic acoustic spiracle to the internal side of the eardrums. Both surfaces of the eardrums of this auditory system are exposed to sound, making it a directionally sensitive pressure difference receiver. A key feature of the AT is its capacity to reduce the velocity of sound propagation and alter the acoustic driving forces at the tympanum. The mechanism responsible for reduction in sound velocity in the AT remains elusive, yet it is deemed to depend on adiabatic or isothermal conditions. To investigate the biophysics of such multiple input ears, we used micro-scanning laser Doppler vibrometry and micro-computed X-ray tomography. We measured the velocity of sound propagation in the AT, the transmission gains across auditory frequencies and the time-resolved mechanical dynamics of the tympanal membranes in C. gorgonensis Tracheal sound transmission generates a gain of approximately 15 dB SPL, and a propagation velocity of ca 255 m s-1, an approximately 25% reduction from free field propagation. Modelling tracheal acoustic behaviour that accounts for thermal and viscous effects, we conclude that reduction in sound velocity within the AT can be explained, among others, by heat exchange between the sound wave and the tracheal walls.
Collapse
Affiliation(s)
- Thorin Jonsson
- School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - Carl D Soulsbury
- School of Life Sciences, Joseph Banks Laboratories, Green Lane, Lincoln LN6 7DL, UK
| | - Kate A Robson Brown
- Imaging Lab, Archaeology and Anthropology, University of Bristol, 43 Woodland Road, Bristol BS8 1UG, UK
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Inherent Directionality Determines Spatial Release from Masking at the Tympanum in a Vertebrate with Internally Coupled Ears. J Assoc Res Otolaryngol 2016; 17:259-70. [PMID: 27125545 DOI: 10.1007/s10162-016-0568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/10/2016] [Indexed: 10/21/2022] Open
Abstract
In contrast to humans and other mammals, many animals have internally coupled ears that function as inherently directional pressure-gradient receivers. Two important but unanswered questions are to what extent and how do animals with such ears exploit spatial cues in the perceptual analysis of noisy and complex acoustic scenes? This study of Cope's gray treefrog (Hyla chrysoscelis) investigated how the inherent directionality of internally coupled ears contributes to spatial release from masking. We used laser vibrometry and signal detection theory to determine the threshold signal-to-noise ratio at which the tympanum's response to vocalizations could be reliably detected in noise. Thresholds were determined as a function of signal location, noise location, and signal-noise separation. Vocalizations were broadcast from one of three azimuthal locations: frontal (0 °), to the right (+90 °), and to the left (-90 °). Masking noise was broadcast from each of 12 azimuthal angles around the frog (0 to 330 °, 30 ° separation). Variation in the position of the noise source resulted in, on average, 4 dB of spatial release from masking relative to co-located conditions. However, detection thresholds could be up to 9 dB lower in the "best ear for listening" compared to the other ear. The pattern and magnitude of spatial release from masking were well predicted by the tympanum's inherent directionality. We discuss how the magnitude of masking release observed in the tympanum's response to spatially separated signals and noise relates to that observed in previous behavioral and neurophysiological studies of frog hearing and communication.
Collapse
|
26
|
Abstract
Insect hearing has independently evolved multiple times in the context of intraspecific communication and predator detection by transforming proprioceptive organs into ears. Research over the past decade, ranging from the biophysics of sound reception to molecular aspects of auditory transduction to the neuronal mechanisms of auditory signal processing, has greatly advanced our understanding of how insects hear. Apart from evolutionary innovations that seem unique to insect hearing, parallels between insect and vertebrate auditory systems have been uncovered, and the auditory sensory cells of insects and vertebrates turned out to be evolutionarily related. This review summarizes our current understanding of insect hearing. It also discusses recent advances in insect auditory research, which have put forward insect auditory systems for studying biological aspects that extend beyond hearing, such as cilium function, neuronal signal computation, and sensory system evolution.
Collapse
Affiliation(s)
- Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, D-37077 Göttingen, Germany;
| | - R Matthias Hennig
- Department of Biology, Behavioral Physiology, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany;
| |
Collapse
|
27
|
Brunnhofer M, Hirtenlehner S, Römer H. Spatial release from masking in insects: contribution of peripheral directionality and central inhibition. ACTA ACUST UNITED AC 2015; 219:44-52. [PMID: 26567350 DOI: 10.1242/jeb.127514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/23/2015] [Indexed: 11/20/2022]
Abstract
The detection, identification and discrimination of sound signals in a large and noisy group of signalers are problems shared by many animals equipped with ears. While the signaling behavior of the sender may present several solutions, various properties of the sensory system in receivers may also reduce the amount of signal masking. We studied the effect of spatial release from masking, which refers to the fact that the spatial separation between the signaler and the masker can contribute to signal detection and discrimination. Except in a limited number of cases, the contribution of peripheral directionality or central nervous processing for spatial unmasking is not clear. We report the results of a study using a neurophysiological approach in two species of acoustic insects, whereby the activity of identified interneurons that either receive contralateral inhibitory input (crickets) or inhibit one another reciprocally in a bilateral pair (katydids) was examined. The analysis of the responses of a pair of omega neurons in katydids with reciprocal inhibition revealed that spatial separation of the masker from the signal facilitated signal detection by 19-20 dB with intact binaural hearing, but only by 2.5-7 dB in the monaural system, depending on the kind of analysis performed. The corresponding values for a behaviorally important interneuron of a field cricket (ascending neuron 1) were only 7.5 and 2.5 dB, respectively. We compare these values with those reported for hearing in vertebrates, and discuss the contribution of spatial release from masking to signal detection under real-world chorus conditions.
Collapse
Affiliation(s)
- M Brunnhofer
- Institute of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, Graz A-8010, Austria
| | - S Hirtenlehner
- Institute of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, Graz A-8010, Austria
| | - H Römer
- Institute of Zoology, Karl-Franzens-University Graz, Universitätsplatz 2, Graz A-8010, Austria
| |
Collapse
|
28
|
Carr CE, Christensen-Dalsgaard J. Sound Localization Strategies in Three Predators. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:17-27. [PMID: 26398572 DOI: 10.1159/000435946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper, we compare some of the neural strategies for sound localization and encoding interaural time differences (ITDs) in three predatory species of Reptilia, alligators, barn owls and geckos. Birds and crocodilians are sister groups among the extant archosaurs, while geckos are lepidosaurs. Despite the similar organization of their auditory systems, archosaurs and lizards use different strategies for encoding the ITDs that underlie localization of sound in azimuth. Barn owls encode ITD information using a place map, which is composed of neurons serving as labeled lines tuned for preferred spatial locations, while geckos may use a meter strategy or population code composed of broadly sensitive neurons that represent ITD via changes in the firing rate.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland Center for the Comparative and Evolutionary Biology of Hearing, College Park, Md., USA
| | | |
Collapse
|
29
|
Montealegre-Z F, Robert D. Biomechanics of hearing in katydids. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:5-18. [DOI: 10.1007/s00359-014-0976-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 12/19/2022]
|
30
|
Römer H. Directional hearing: from biophysical binaural cues to directional hearing outdoors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:87-97. [PMID: 25231204 PMCID: PMC4282874 DOI: 10.1007/s00359-014-0939-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
When insects communicate by sound, or use acoustic cues to escape predators or detect prey or hosts they have to localize the sound in most cases, to perform adaptive behavioral responses. In the case of particle velocity receivers such as the antennae of mosquitoes, directionality is no problem because such receivers are inherently directional. Insects equipped with bilateral pairs of tympanate ears could principally make use of binaural cues for sound localization, like all other animals with two ears. However, their small size is a major problem to create sufficiently large binaural cues, with respect to both interaural time differences (ITDs, because interaural distances are so small), but also with respect to interaural intensity differences (IIDs), since the ratio of body size to the wavelength of sound is rather unfavorable for diffractive effects. In my review, I will only shortly cover these biophysical aspects of directional hearing. Instead, I will focus on aspects of directional hearing which received relatively little attention previously, the evolution of a pressure difference receiver, 3D-hearing, directional hearing outdoors, and directional hearing for auditory scene analysis.
Collapse
Affiliation(s)
- Heiner Römer
- Institute of Zoology, Karl-Franzens University Graz, Universitätsplatz 2, 8010, Graz, Austria,
| |
Collapse
|
31
|
Hager FA, Kirchner WH. Directional vibration sensing in the termite Macrotermes natalensis. J Exp Biol 2014; 217:2526-30. [DOI: 10.1242/jeb.103184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although several behavioural studies demonstrate the ability of insects to localise the source of vibrations, it is still unclear how insects are able to perceive directional information from vibratory signals on solid substrates, because time-of-arrival and amplitude difference between receptory structures are thought to be too small to be processed by insect nervous systems. The termite Macrotermes natalensis communicates using vibrational drumming signals transmitted along subterranean galleries. When soldiers are attacked by predators, they tend to drum with their heads against the substrate and create a pulsed vibration. Workers respond by a fast retreat into the nest. Soldiers in the vicinity start to drum themselves, leading to an amplification and propagation of the signal. Here we show that M. natalensis makes use of a directional vibration sensing in the context of colony defence. In the field, soldiers are recruited towards the source of the signal. In arena experiments on natural nest material, soldiers are able to localise the source of vibration. Using two movable platforms allowing us to vibrate the legs of the left and right sides of the body with a time delay, we show that the difference in time-of-arrival is the directional cue used for orientation. Delays as short as 0.2 ms are sufficient to be detected. Soldiers show a significant positive tropotaxis to the platform stimulated earlier, demonstrating for the first time perception of time-of-arrival delays and vibrotropotaxis on solid substrates in insects.
Collapse
Affiliation(s)
- Felix A. Hager
- Ruhr University Bochum, Faculty of Biology and Biotechnology, D-44780 Bochum, Germany
| | - Wolfgang H. Kirchner
- Ruhr University Bochum, Faculty of Biology and Biotechnology, D-44780 Bochum, Germany
| |
Collapse
|
32
|
Seagraves KM, Hedwig B. Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus. ACTA ACUST UNITED AC 2014; 217:2390-8. [PMID: 24737767 DOI: 10.1242/jeb.101402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cricket's auditory system is a highly directional pressure difference receiver whose function is hypothesised to depend on phase relationships between the sound waves propagating through the auditory trachea that connects the left and right hearing organs. We tested this hypothesis by measuring the effect of experimentally constructed phase shifts in acoustic stimuli on phonotactic behavior of Gryllus bimaculatus, the oscillatory response patterns of the tympanic membrane, and the activity of the auditory afferents. The same artificial calling song was played simultaneously at the left and right sides of the cricket, but one sound pattern was shifted in phase by 90 deg (carrier frequencies between 3.6 and 5.4 kHz). All three levels of auditory processing are sensitive to experimentally induced acoustic phase shifts, and the response characteristics are dependent on the carrier frequency of the sound stimulus. At lower frequencies, crickets steered away from the sound leading in phase, while tympanic membrane vibrations and auditory afferent responses were smaller when the ipsilateral sound was leading. In contrast, opposite responses were observed at higher frequencies in all three levels of auditory processing. Minimal responses occurred near the carrier frequency of the cricket's calling song, suggesting a stability at this frequency. Our results indicate that crickets may use directional cues arising from phase shifts in acoustic signals for sound localisation, and that the response properties of pressure difference receivers may be analysed with phase-shifted sound stimuli to further our understanding of how insect auditory systems are adapted for directional processing.
Collapse
Affiliation(s)
- Kelly M Seagraves
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Howard Hughes Medical Institute, Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
33
|
Hirtenlehner S, Römer H, Schmidt AKD. Out of phase: relevance of the medial septum for directional hearing and phonotaxis in the natural habitat of field crickets. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:139-48. [PMID: 24281354 PMCID: PMC3896795 DOI: 10.1007/s00359-013-0869-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/05/2013] [Accepted: 11/09/2013] [Indexed: 11/29/2022]
Abstract
A modified tracheal system is the anatomical basis for a pressure difference receiver in field crickets, where sound has access to the inner and outer side of the tympanum of the ear in the forelegs. A thin septum in the midline of a connecting trachea coupling both ears is regarded to be important in producing frequency-dependent interaural intensity differences (IIDs) for sound localization. However, the fundamental role of the septum in directional hearing has recently been challenged by the finding that the localization ability is ensured even with a perforated septum, at least under controlled laboratory conditions. Here, we investigated the influence of the medial septum on phonotaxis of female Gryllus bimaculatus under natural conditions. Surprisingly, even with a perforated septum, females reliably tracked a male calling song in the field. Although reduced by 5.2 dB, IIDs still averaged at 7.9 dB and provided a reliable proximate basis for the observed behavioural performance of operated females in the field. In contrast, in the closely related species Gryllus campestris the same septum perforation caused a dramatic decline in IIDs over all frequencies tested. We discuss this discrepancy with respect to a difference in the phenotype of their tracheal systems.
Collapse
Affiliation(s)
- Stefan Hirtenlehner
- Department of Zoology, Karl-Franzens-University, Universitätsplatz 2, 8010, Graz, Austria
| | | | | |
Collapse
|
34
|
The Malleable Middle Ear: An Underappreciated Player in the Evolution of Hearing in Vertebrates. INSIGHTS FROM COMPARATIVE HEARING RESEARCH 2013. [DOI: 10.1007/2506_2013_33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Michelsen A, Larsen ON. Directional hearing and strategies for sound communication. BIOACOUSTICS 2012. [DOI: 10.1080/09524622.2011.647665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Axel Michelsen
- a Institute of Biology, University of Southern Denmark , DK-5230 , Odense , Denmark
| | - Ole Næsbye Larsen
- a Institute of Biology, University of Southern Denmark , DK-5230 , Odense , Denmark
| |
Collapse
|
36
|
Schöneich S, Hedwig B. Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus deGeer). PLoS One 2010; 5:e15141. [PMID: 21170344 PMCID: PMC2999563 DOI: 10.1371/journal.pone.0015141] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/25/2010] [Indexed: 11/19/2022] Open
Abstract
Background Auditory mate or prey localisation is central to the lifestyle of many animals and requires precise directional hearing. However, when the incident angle of sound approaches 0° azimuth, interaural time and intensity differences gradually vanish. This poses a demanding challenge to animals especially when interaural distances are small. To cope with these limitations imposed by the laws of acoustics, crickets employ a frequency tuned peripheral hearing system. Although this enhances auditory directionality the actual precision of directional hearing and phonotactic steering has never been studied in the behaviourally important frontal range. Principal Findings Here we analysed the directionality of phonotaxis in female crickets (Gryllus bimaculatus) walking on an open-loop trackball system by measuring their steering accuracy towards male calling song presented at frontal angles of incidence. Within the range of ±30°, females reliably discriminated the side of acoustic stimulation, even when the sound source deviated by only 1° from the animal's length axis. Moreover, for angles of sound incidence between 1° and 6° the females precisely walked towards the sound source. Measuring the tympanic membrane oscillations of the front leg ears with a laser vibrometer revealed between 0° and 30° a linear increasing function of interaural amplitude differences with a slope of 0.4 dB/°. Auditory nerve recordings closely reflected these bilateral differences in afferent response latency and intensity that provide the physiological basis for precise auditory steering. Conclusions Our experiments demonstrate that an insect hearing system based on a frequency-tuned pressure difference receiver achieves directional hyperacuity which easily rivals best directional hearing in mammals and birds. Moreover, this directional accuracy of the cricket's hearing system is reflected in the animal's phonotactic motor response.
Collapse
Affiliation(s)
- Stefan Schöneich
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SS); (BH)
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (SS); (BH)
| |
Collapse
|
37
|
Christensen-Dalsgaard J. Vertebrate pressure-gradient receivers. Hear Res 2010; 273:37-45. [PMID: 20727396 DOI: 10.1016/j.heares.2010.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and strongly dependent on interaural transmission attenuation. Even though the tympanic middle ear has originated independently in the major tetrapod groups, in each group the ancestral condition probably was that the two middle ears were exposed in the mouth cavity with relatively high interaural transmission. Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural transmission and functionally isolated pressure receiver ears in the mammals. Since some of the binaural interaction already takes place at the eardrum in animals with strongly coupled ears, producing enhanced interaural time and level differences, the subsequent neural processing may be simpler. In robotic simulations of lizards, simple binaural subtraction (EI cells, found in brainstem nuclei of both frogs and lizards) produces strongly lateralized responses that are sufficient for steering the animal robustly to sound sources.
Collapse
|
38
|
Hausmann L, von Campenhausen M, Wagner H. Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:601-12. [DOI: 10.1007/s00359-010-0546-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/26/2010] [Accepted: 06/03/2010] [Indexed: 11/30/2022]
|
39
|
Abstract
The story of the evolution of hearing in land vertebrates is fascinating but complex. The water-to-land transition changed the physical environment in which hearing happens so dramatically that both the peripheral receptor structures and the central auditory circuits underwent a revolution, leading to the sensitive hearing of higher-frequency airborne sound. This (r)evolution took a very long time indeed. Most of it happened after the early divergence of the major clades of land vertebrates. Hearing, at least hearing as we commonly understand it today, is the youngest of the major senses and much of its evolutionary history is not shared between amphibians, lepidosauromorphs (lizards and snakes), archosauromorphs (birds and crocodilians) and mammals. There was no linear evolution of complexity from 'lower' to 'higher' vertebrates. We are only just beginning to appreciate the implications of this for central auditory processing. There is no consensus, yet, on the evolution of sound localisation. The multitude of physical cues involved in sound localisation means that different selective pressures interact and need to be considered. The use and neural processing of interaural time differences is just one example. It has taught us that long-standing assumptions, such as the homology of the mammalian medial superior olive and the avian nucleus laminaris, need to be questioned and that important insights may arise from unexpected directions, such as the paleontology of middle-ear ossicles. There is still much to discover.
Collapse
Affiliation(s)
- Christine Köppl
- Sydney Medical School (Physiology) and Bosch Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
40
|
Larsen ON, Dooling RJ, Michelsen A. The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:1063-72. [PMID: 16761131 DOI: 10.1007/s00359-006-0138-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/24/2006] [Accepted: 04/30/2006] [Indexed: 10/24/2022]
Abstract
In many birds, the middle ears are connected through an air-filled interaural pathway. Sound transmission through this pathway may improve directional hearing. However, attempts to demonstrate such a mechanism have produced conflicting results. One reason is that some species of birds develop a lower static air pressure in the middle ears when anaesthetized, which reduces eardrum vibrations. In anaesthetized budgerigars with vented interaural air spaces and presumed normal eardrum vibrations, we find that sound propagating through the interaural pathway considerably improves cues to the directional hearing. The directional cues in the received sound combined with amplitude gain and time delay of sound propagating through the interaural pathway quantitatively account for the observed dependence of eardrum vibration on direction of sound incidence. Interaural sound propagation is responsible for most of the frontal gradient of eardrum vibration (i.e. when a sound source is moved from a small contralateral angle to the same ipsilateral angle). Our study confirms that at low frequencies the interaural sound propagation may cause vibrations of the eardrum to differ much in time, thus providing a possible cue for directional hearing. The acoustically effective size of the head of our birds (diameter 28 mm) is much larger than expected from the dimensions of the skull, so apparently the feathers on the head have a considerable acoustical effect.
Collapse
Affiliation(s)
- Ole N Larsen
- Center for Sound Communication, Institute of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| | | | | |
Collapse
|