1
|
Witzdam L, Garay-Sarmiento M, Gagliardi M, Meurer YL, Rutsch Y, Englert J, Philipsen S, Janem A, Alsheghri R, Jakob F, Molin DGM, Schwaneberg U, van den Akker NMS, Rodriguez-Emmenegger C. Brush-Like Coatings Provide a Cloak of Invisibility to Titanium Implants. Macromol Biosci 2024; 24:e2300434. [PMID: 37994518 DOI: 10.1002/mabi.202300434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure. Here, two readily applicable titanium-coatings based on hydrophilic carboxybetaine polymers that turn the surface stealth thereby preventing bacterial adhesion and colonization are developed. These coatings are biocompatible, do not affect cell functionality, exhibit great antifouling properties, and do not cause additional inflammation during the healing process. In this way, the coatings can prevent implant-related infections, while at the same time being completely innocuous to its biological environment. Thus, these coating strategies are a promising route to enhance the biocompatibility of orthopedic implants and have a high potential for clinical use, while being easy to implement in the implant manufacturing process.
Collapse
Affiliation(s)
- Lena Witzdam
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mick Gagliardi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Yannick L Meurer
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yannik Rutsch
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Jenny Englert
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Sandra Philipsen
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Anisa Janem
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Rawan Alsheghri
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Daniël G M Molin
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Nynke M S van den Akker
- Cardiovascular Research Institute Maastricht (CARIM), Department of Physiology, Maastricht University, FHML, Universiteitssingel (UNS) 50, Maastricht, 6229ER, The Netherlands
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
2
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
3
|
Gouda M, Khalaf MM, Abou Taleb MF, Abd El-Lateef HM. Fabrication of silver nanoparticles loaded acacia gum/chitosan nanogel to coat the pipe surface for sustainable inhibiting microbial adhesion and biofilm growth in water distribution systems. Int J Biol Macromol 2024; 262:130085. [PMID: 38346613 DOI: 10.1016/j.ijbiomac.2024.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Biofilm formation on the inner surfaces of pipes poses significant threats to water distribution systems, increasing maintenance costs and public health risks. To address this immense issue, we synthesized a nanogel formulation comprising acacia gum (AG) and chitosan (Cs), loaded with varying concentrations of silver nanoparticles (AgNPs), for using as an antimicrobial coating material. AgNPs were synthesized using AG as a reducing and stabilizing agent, exhibiting absorbance at 414 nm. The preparation of AgNPs was proved using TEM. Bactericidal efficacy was assessed against E. coli, Klebsiella pneumoniae, Enterococcus faecalis, and Bacillus subtilis. Using the dipping coating method, two pipe materials (polypropylene (PP) and ductile iron (DI)) were successfully coated. Notably, AgNPs2@AGCsNG nanogel exhibited potent antibacterial action against a wide range of pathogenic bacteria. Toxicity tests confirmed nanogel safety, suggesting broad applications. High EC50% values underscored their non-toxic nature. This research proposes an effective strategy for biofilm prevention in water systems, offering excellent antibacterial properties and biocompatibility. AG and Cs nanogels loaded with AgNPs promise to enhance water quality, reduce maintenance prices, and protect human public health in water distribution networks.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
4
|
Qiao Y, He Q, Huang HH, Mastropietro D, Jiang Z, Zhou H, Liu Y, Tirrell MV, Chen W. Stretching of immersed polyelectrolyte brushes in shear flow. NANOSCALE 2023; 15:19282-19291. [PMID: 37997161 DOI: 10.1039/d3nr04187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The way that polymer brushes respond to shear flow has important implications in various applications, including antifouling, corrosion protection, and stimuli-responsive materials. However, there is still much to learn about the behaviours and mechanisms that govern these responses. To address this gap in knowledge, our study uses in situ X-ray reflectivity to investigate how poly(styrene sulfonate) (PSS) brushes stretch and change in different environments, such as isopropanol (a poor solvent), water (a good solvent), and aqueous solutions containing various cations (Cs+, Ba2+, La3+, and Y3+). We have designed a custom apparatus that exposes the PSS brushes to both tangential shear forces from the primary flow and upward drag forces from a secondary flow. Our experimental findings clearly show that shear forces have a significant impact on how the chains in PSS brushes are arranged. At low shear rates, the tangential shear force causes the chains to tilt, leading to brush contraction. In contrast, higher shear rates generate an upward shear force that stretches and expands the chains. By analysing electron density profiles obtained from X-ray reflectivity, we gain valuable insights into how the PSS brushes respond structurally, especially the role of the diffuse layer in this dynamic behaviour. Our results highlight the importance of the initial chain configuration, which is influenced by the solvent and cations present, in shaping how polymer brushes respond to shear flow. The strength of the salt bridge network also plays a crucial role in determining how easily the brushes can stretch, with stronger networks offering more resistance to stretching. Ultimately, our study aims to enhance our understanding of polymer physics at interfaces, with a particular focus on practical applications involving polymer brushes.
Collapse
Affiliation(s)
- Yijun Qiao
- Materials Science Division and Centre for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Qiming He
- Materials Science Division and Centre for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Hsin-Hsiang Huang
- Materials Science Division and Centre for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Dean Mastropietro
- Materials Science Division and Centre for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Zhang Jiang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Matthew V Tirrell
- Materials Science Division and Centre for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wei Chen
- Materials Science Division and Centre for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Stiefelmaier J, Strieth D, Schaefer S, Wrabl B, Kronenberger D, Bröckel U, Ulber R. A new easy method for determination of surface adhesion of phototrophic biofilms. Biotechnol Bioeng 2023; 120:3518-3528. [PMID: 37641171 DOI: 10.1002/bit.28536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Terrestrial cyanobacteria grow as phototrophic biofilms and offer a wide spectrum of interesting products. For cultivation of phototrophic biofilms different reactor concepts have been developed in the last years. One of the main influencing factors is the surface material and the adhesion strength of the chosen production strain. In this work a flow chamber was developed, in which, in combination with optical coherence tomography and computational fluid dynamics simulation, an easy analysis of adhesion forces between different biofilms and varied surface materials is possible. Hereby, differences between two cyanobacteria strains and two surface materials were shown. With longer cultivation time of biofilms adhesion increased in all experiments. Additionally, the content of extracellular polymeric substances was analyzed and its role in surface adhesion was evaluated. To test the comparability of obtained results from the flow chamber with other methods, analogous experiments were conducted with a rotational rheometer, which proved to be successful. Thus, with the presented flow chamber an easy to implement method for analysis of biofilm adhesion was developed, which can be used in future research for determination of suitable combinations of microorganisms with cultivation surfaces on lab scale in advance of larger processes.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Dorina Strieth
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Susanne Schaefer
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Björn Wrabl
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Daniel Kronenberger
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Ulrich Bröckel
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| |
Collapse
|
6
|
Witzdam L, Meurer YL, Garay-Sarmiento M, Vorobii M, Söder D, Quandt J, Haraszti T, Rodriguez-Emmenegger C. Brush-Like Interface on Surface-Attached Hydrogels Repels Proteins and Bacteria. Macromol Biosci 2022; 22:e2200025. [PMID: 35170202 DOI: 10.1002/mabi.202200025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Indexed: 11/10/2022]
Abstract
Interfacing artificial materials with biological tissues remains a challenge. The direct contact of their surface with the biological milieu results in multiscale interactions, in which biomacromolecules adsorb and act as transducers mediating the interactions with cells and tissues. So far, only antifouling polymer brushes have been able to conceal the surface of synthetic materials. However, their complex synthesis has precluded their translation to applications. Here, we show that ultra-thin surface-attached hydrogel coatings of N-(2-hydroxypropyl) methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) provided the same level of protection as brushes. In spite of being readily applicable, these coatings prevented the fouling from whole blood plasma and provided a barrier to the adhesion of Gram positive and negative bacteria. The analysis of the components of the surface free energy and nanoindentation experiments revealed that the excellent antifouling properties stem from the strong surface hydrophilicity and the presence of a brush-like structure at the water interface. Moreover, these coatings could be functionalized to achieve antimicrobial activity while remaining stealth and non-cytotoxic to eukaryotic cells. Such level of performance was previously only achieved with brushes. Thus, we anticipate that this readily applicable strategy is a promising route to enhance the biocompatibility of real biomedical devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lena Witzdam
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Yannick L Meurer
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany.,Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, Freiburg im Breisgau, 79110, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen, 52074, Germany
| | - Mariia Vorobii
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Jonas Quandt
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | - Tamás Haraszti
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen, 52074, Germany
| | | |
Collapse
|
7
|
Maryami F, Olad A, Nofouzi K. Fabrication of slippery lubricant-infused porous surface for inhibition of microorganism adhesion on the porcelain surface. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021; 9:microorganisms9091993. [PMID: 34576888 PMCID: PMC8468346 DOI: 10.3390/microorganisms9091993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.
Collapse
|
9
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
10
|
Faria SI, Teixeira-Santos R, Morais J, Vasconcelos V, Mergulhão FJ. The association between initial adhesion and cyanobacterial biofilm development. FEMS Microbiol Ecol 2021; 97:6204666. [PMID: 33784393 DOI: 10.1093/femsec/fiab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Although laboratory assays provide valuable information about the antifouling effectiveness of marine surfaces and the dynamics of biofilm formation, they may be laborious and time-consuming. This study aimed to determine the potential of short-time adhesion assays to estimate how biofilm development may proceed. The initial adhesion and cyanobacterial biofilm formation were evaluated using glass and polymer epoxy resin surfaces under different hydrodynamic conditions and were compared using linear regression models. For initial adhesion, the polymer epoxy resin surface was significantly associated with a lower number of adhered cells compared with glass (-1.27 × 105 cells.cm-2). Likewise, the number of adhered cells was significantly lower (-1.16 × 105 cells.cm-2) at 185 than at 40 rpm. This tendency was maintained during biofilm development and was supported by the biofilm wet weight, thickness, chlorophyll a content and structure. Results indicated a significant correlation between the number of adhered and biofilm cells (r = 0.800, p < 0.001). Moreover, the number of biofilm cells on day 42 was dependent on the number of adhered cells at the end of the initial adhesion and hydrodynamic conditions (R2 = 0.795, p < 0.001). These findings demonstrate the high potential of initial adhesion assays to estimate marine biofilm development.
Collapse
Affiliation(s)
- Sara I Faria
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - João Morais
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007, Porto, Portugal
| | - Filipe J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| |
Collapse
|
11
|
Shear-induced unidirectional deposition of bacterial cellulose microfibrils using rising bubble stream cultivation. Carbohydr Polym 2021; 255:117328. [DOI: 10.1016/j.carbpol.2020.117328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 01/20/2023]
|
12
|
Senevirathne SWMAI, Hasan J, Mathew A, Woodruff M, Yarlagadda PKDV. Bactericidal efficiency of micro- and nanostructured surfaces: a critical perspective. RSC Adv 2021; 11:1883-1900. [PMID: 35424086 PMCID: PMC8693530 DOI: 10.1039/d0ra08878a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/12/2020] [Indexed: 12/21/2022] Open
Abstract
Micro/nanostructured surfaces (MNSS) have shown the ability to inactivate bacterial cells by physical means. An enormous amount of research has been conducted in this area over the past decade. Here, we review the various surface factors that affect the bactericidal efficiency. For example, surface hydrophobicity of the substrate has been accepted to be influential on the bactericidal effect of the surface, but a review of the literature suggests that the influence of hydrophobicity differs with the bacterial species. Also, various bacterial viability quantification methods on MNSS are critically reviewed for their suitability for the purpose, and limitations of currently used protocols are discussed. Presently used static bacterial viability assays do not represent the conditions of which those surfaces could be applied. Such application conditions do have overlaying fluid flow, and bacterial behaviours are drastically different under flow conditions compared to under static conditions. Hence, it is proposed that the bactericidal effect should be assessed under relevant fluid flow conditions with factors such as shear stress and flowrate given due significance. This review will provide a range of opportunities for future research in design and engineering of micro/nanostructured surfaces with varying experimental conditions.
Collapse
Affiliation(s)
- S W M A I Senevirathne
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - J Hasan
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - A Mathew
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - M Woodruff
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| | - P K D V Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology (QUT) Brisbane Qld 4000 Australia
- Institute of Health and Biomedical Innovations 60 Musk Ave. Kelvin Grove Qld 4059 Australia
| |
Collapse
|
13
|
Neves SF, Ponmozhi J, Mergulhão FJ, Campos JBLM, Miranda JM. Cell adhesion in microchannel multiple constrictions - Evidence of mass transport limitations. Colloids Surf B Biointerfaces 2020; 198:111490. [PMID: 33262016 DOI: 10.1016/j.colsurfb.2020.111490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023]
Abstract
Biofilm growth (fouling) in microdevices is a critical concern in several industrial, engineering and health applications, particularly in novel high-performance microdevices often designed with complex geometries, narrow regions and multiple headers. Unfortunately, on these devices, the regions with local high wall shear stresses (WSS) also show high local fouling rates. Several explanations have been put forward by the scientific community, including the effect of cell transport by Brownian motion on the adhesion rate. In this work, for the first time, both WSS and convection and Brownian diffusion effects on cell adhesion were evaluated along a microchannel with intercalate constriction and expansion zones designed to mimic the hydrodynamics of the human body and biomedical devices. Convection and Brownian diffusion effects were numerically studied using a steady-state convective-diffusion model (convection, diffusion and sedimentation). According to the numerical results, the convection and Brownian diffusion effects on cell adhesion are effectively more significant in regions with high WSS. Furthermore, a good agreement was observed between experimental and predicted local Sherwood numbers, particularly at the entrance and within the multiple constrictions. However, further mechanisms should be considered to accurately predict cell adhesion in the expansion zones. The described numerical approach can be used as a way to identify possible clogging zones in microchannels, and defining solutions, even before the construction of the prototype.
Collapse
Affiliation(s)
- S F Neves
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - J Ponmozhi
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; IES- Institute of Engineering & Science IPS Academy Knowledge Village, Rajendra Nagar A.B. Road, Indore, 452012, India
| | - F J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - J B L M Campos
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - J M Miranda
- CEFT - Transport Phenomena Research Center, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Carbon Nanotube/Poly(dimethylsiloxane) Composite Materials to Reduce Bacterial Adhesion. Antibiotics (Basel) 2020; 9:antibiotics9080434. [PMID: 32707936 PMCID: PMC7459730 DOI: 10.3390/antibiotics9080434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Different studies have shown that the incorporation of carbon nanotubes (CNTs) into poly(dimethylsiloxane) (PDMS) enables the production of composite materials with enhanced properties, which can find important applications in the biomedical field. In the present work, CNT/PDMS composite materials have been prepared to evaluate the effects of pristine and chemically functionalized CNT incorporation into PDMS on the composite's thermal, electrical, and surface properties on bacterial adhesion in dynamic conditions. Initial bacterial adhesion was studied using a parallel-plate flow chamber assay performed in conditions prevailing in urinary tract devices (catheters and stents) using Escherichia coli as a model organism and PDMS as a control due to its relevance in these applications. The results indicated that the introduction of the CNTs in the PDMS matrix yielded, in general, less bacterial adhesion than the PDMS alone and that the reduction could be dependent on the surface chemistry of CNTs, with less adhesion obtained on the composites with pristine rather than functionalized CNTs. It was also shown CNT pre-treatment and incorporation by different methods affected the electrical properties of the composites when compared to PDMS. Composites enabling a 60% reduction in cell adhesion were obtained by CNT treatment by ball-milling, whereas an increase in electrical conductivity of seven orders of magnitude was obtained after solvent-mediated incorporation. The results suggest even at low CNT loading values (1%), these treatments may be beneficial for the production of CNT composites with application in biomedical devices for the urinary tract and for other applications where electrical conductance is required.
Collapse
|
15
|
Analysing the Initial Bacterial Adhesion to Evaluate the Performance of Antifouling Surfaces. Antibiotics (Basel) 2020; 9:antibiotics9070421. [PMID: 32709041 PMCID: PMC7400106 DOI: 10.3390/antibiotics9070421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this work was to study the initial events of Escherichia coli adhesion to polydimethylsiloxane, which is critical for the development of antifouling surfaces. A parallel plate flow cell was used to perform the initial adhesion experiments under controlled hydrodynamic conditions (shear rates ranging between 8 and 100/s), mimicking biomedical scenarios. Initial adhesion studies capture more accurately the cell-surface interactions as in later stages, incoming cells may interact with the surface but also with already adhered cells. Adhesion rates were calculated and results shown that after some time (between 5 and 9 min), these rates decreased (by 55% on average), from the initial values for all tested conditions. The common explanation for this decrease is the occurrence of hydrodynamic blocking, where the area behind each adhered cell is screened from incoming cells. This was investigated using a pair correlation map from which two-dimensional histograms showing the density probability function were constructed. The results highlighted a lower density probability (below 4.0 × 10−4) of the presence of cells around a given cell under different shear rates irrespectively of the radial direction. A shadowing area behind the already adhered cells was not observed, indicating that hydrodynamic blocking was not occurring and therefore it could not be the cause for the decreases in cell adhesion rates. Afterward, cell transport rates from the bulk solution to the surface were estimated using the Smoluchowski-Levich approximation and values in the range of 80–170 cells/cm2.s were obtained. The drag forces that adhered cells have to withstand were also estimated and values in the range of 3–50 × 10−14 N were determined. Although mass transport increases with the flow rate, drag forces also increase and the relative importance of these factors may change in different conditions. This work demonstrates that adjustment of operational parameters in initial adhesion experiments may be required to avoid hydrodynamic blocking, in order to obtain reliable data about cell-surface interactions that can be used in the development of more efficient antifouling surfaces.
Collapse
|
16
|
Efficacy of A Poly(MeOEGMA) Brush on the Prevention of Escherichia coli Biofilm Formation and Susceptibility. Antibiotics (Basel) 2020; 9:antibiotics9050216. [PMID: 32365462 PMCID: PMC7277157 DOI: 10.3390/antibiotics9050216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections are one of the most common hospital-acquired infections, and they are often associated with biofilm formation in indwelling medical devices such as catheters and stents. This study aims to investigate the antibiofilm performance of a polymer brush—poly[oligo(ethylene glycol) methyl ether methacrylate], poly(MeOEGMA)—and evaluate its effect on the antimicrobial susceptibility of Escherichia coli biofilms formed on that surface. Biofilms were formed in a parallel plate flow chamber (PPFC) for 24 h under the hydrodynamic conditions prevailing in urinary catheters and stents and challenged with ampicillin. Results obtained with the brush were compared to those obtained with two control surfaces, polydimethylsiloxane (PDMS) and glass. The polymer brush reduced by 57% the surface area covered by E. coli after 24 h, as well as the number of total adhered cells. The antibiotic treatment potentiated cell death and removal, and the total cell number was reduced by 88%. Biofilms adapted their architecture, and cell morphology changed to a more elongated form during that period. This work suggests that the poly(MeOEGMA) brush has potential to prevent bacterial adhesion in urinary tract devices like ureteral stents and catheters, as well as in eradicating biofilms developed in these biomedical devices.
Collapse
|
17
|
Bosia F, Pugno NM. Editorial: Bioinspired wet and dry adhesion. BIOINSPIRATION & BIOMIMETICS 2020; 15:040401. [PMID: 32342924 DOI: 10.1088/1748-3190/ab805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Federico Bosia
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | | |
Collapse
|
18
|
Alves P, Gomes LC, Vorobii M, Rodriguez-Emmenegger C, Mergulhão FJ. The potential advantages of using a poly(HPMA) brush in urinary catheters: effects on biofilm cells and architecture. Colloids Surf B Biointerfaces 2020; 191:110976. [PMID: 32272386 DOI: 10.1016/j.colsurfb.2020.110976] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
Infections related to bacterial colonization of medical devices are a growing concern given the socio-economical impacts in healthcare systems. Colonization of a device surface with bacteria usually triggers the development of a biofilm, which is more difficult to eradicate than free-floating or adhered bacteria and can act as a reservoir for subsequent infections. Biofilms often harbor Viable but nonculturable (VBNC) cells that are likely to be more resistant to antibiotic treatment and that can become active in more favorable conditions causing infection. Biofilm formation is dependent on different factors, chiefly the properties of the surface and of the surrounding medium, and the hydrodynamic conditions. In this work, the antifouling performance of a poly[N-(2-hydroxypropyl) methacrylamide] (poly(HPMA)) brush was evaluated in vitro in conditions that mimic a urinary catheter using Escherichia coli as a model organism. The results obtained with the brush were compared to those obtained with two control surfaces, polydimethylsiloxane (PDMS) (the most common material for catheters) and glass. A decrease in initial adhesion and surface coverage was observed on the brush. This antifouling behavior was maintained during biofilm maturation and even in a simulated post-bladder infection period when the reduction in total cell number reached 87 %. Biofilms were shown to adapt their architecture during that period and VBNC cells adsorbed weakly on the brushes and were completely washed away. Taken together, these results suggest that the use of the poly(HPMA) brush in urinary tract devices such as catheters and stents may reduce biofilm formation and possibly render the formed biofilms more susceptible to antibiotic treatment and with reduced infectivity potential.
Collapse
Affiliation(s)
- P Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - L C Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M Vorobii
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - C Rodriguez-Emmenegger
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany.
| | - F J Mergulhão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|