1
|
Hu S, Chen W, Xiong X, Sun X, He C. Design and analysis of a passive exoskeleton with its hip joint energy-storage. Proc Inst Mech Eng H 2023; 237:1039-1051. [PMID: 37571990 DOI: 10.1177/09544119231188678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
A novel passive hip exoskeleton has been designed and built with the aim of reducing metabolic consumption during walking by a passive way of storing the negative mechanical energy in the deceleration phase and releasing it in the acceleration phase. A ratchet spiral spring mechanism with a set of double stable switches is designed inside the exoskeleton for the above purpose. An analysis is conducted on the mechanism and the switching timing for the energy management to automatically store or release the energy according to the biomechanics of walking. In addition, a gravity-balance mechanism embedded inside the exoskeleton is designed as well to minimize the influence of the lower limb weight on muscle work. Human-exoskeleton interaction has been studied using the Opensim software, and simulation results demonstrated the effectiveness of the exoskeleton in reducing metabolic consumption during walking. An exoskeleton prototype has been built and tested with experiments measuring assistive torque and surface electromyography signal, confirming the effectiveness of the gravity-balance mechanism and energy-storage method, as well as the exoskeleton's actual assistive effect.
Collapse
Affiliation(s)
- Shuhai Hu
- School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China
| | - Wenjie Chen
- School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China
| | - Xiaoyu Xiong
- School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China
| | - Xiantao Sun
- School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China
| | - Chundong He
- School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui, China
| |
Collapse
|
2
|
Kowalczyk K, Mukherjee M, Malcolm P. Can a passive unilateral hip exosuit diminish walking asymmetry? A randomized trial. J Neuroeng Rehabil 2023; 20:88. [PMID: 37438846 DOI: 10.1186/s12984-023-01212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Asymmetric walking gait impairs activities of daily living in neurological patient populations, increases their fall risk, and leads to comorbidities. Accessible, long-term rehabilitation methods are needed to help neurological patients restore symmetrical walking patterns. This study aimed to determine if a passive unilateral hip exosuit can modify an induced asymmetric walking gait pattern. We hypothesized that a passive hip exosuit would diminish initial- and post-split-belt treadmill walking after-effects in healthy young adults. METHODS We divided 15 healthy young adults evenly between three experimental groups that each completed a baseline trial, an adaptation period with different interventions for each group, and a post-adaptation trial. To isolate the contribution of the exosuit we compared a group adapting to the exosuit and split-belt treadmill (Exo-Sb) to groups adapting to exosuit-only (Exo-only) and split-belt only (Sb-only) conditions. The independent variables step length, stance time, and swing time symmetry were analyzed across five timepoints (baseline, early- and late adaptation, and early- and late post-adaptation) using a 3 × 5 mixed ANOVA. RESULTS We found significant interaction and time effects on step length, stance time and swing time symmetry. Sb-only produced increased step length asymmetry at early adaptation compared to baseline (p < 0.0001) and an after-effect with increased asymmetry at early post-adaptation compared to baseline (p < 0.0001). Exo-only increased step length asymmetry (in the opposite direction as Sb-only) at early adaptation compared to baseline (p = 0.0392) but did not influence the participants sufficiently to result in a post-effect. Exo-Sb produced similar changes in step length asymmetry in the same direction as Sb-only (p = 0.0014). However, in contrast to Sb-only there was no significant after-effect between early post-adaptation and baseline (p = 0.0885). CONCLUSION The passive exosuit successfully diminished asymmetrical step length after-effects induced by the split-belt treadmill in Exo-Sb. These results support the passive exosuit's ability to alter walking gait patterns.
Collapse
Affiliation(s)
- Kayla Kowalczyk
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Mukul Mukherjee
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA
| | - Philippe Malcolm
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE, 68182-0860, USA.
| |
Collapse
|
3
|
Scherb D, Wartzack S, Miehling J. Modelling the interaction between wearable assistive devices and digital human models-A systematic review. Front Bioeng Biotechnol 2023; 10:1044275. [PMID: 36704313 PMCID: PMC9872199 DOI: 10.3389/fbioe.2022.1044275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Exoskeletons, orthoses, exosuits, assisting robots and such devices referred to as wearable assistive devices are devices designed to augment or protect the human body by applying and transmitting force. Due to the problems concerning cost- and time-consuming user tests, in addition to the possibility to test different configurations of a device, the avoidance of a prototype and many more advantages, digital human models become more and more popular for evaluating the effects of wearable assistive devices on humans. The key indicator for the efficiency of assistance is the interface between device and human, consisting mainly of the soft biological tissue. However, the soft biological tissue is mostly missing in digital human models due to their rigid body dynamics. Therefore, this systematic review aims to identify interaction modelling approaches between wearable assistive devices and digital human models and especially to study how the soft biological tissue is considered in the simulation. The review revealed four interaction modelling approaches, which differ in their accuracy to recreate the occurring interactions in reality. Furthermore, within these approaches there are some incorporating the appearing relative motion between device and human body due to the soft biological tissue in the simulation. The influence of the soft biological tissue on the force transmission due to energy absorption on the other side is not considered in any publication yet. Therefore, the development of an approach to integrate the viscoelastic behaviour of soft biological tissue in the digital human models could improve the design of the wearable assistive devices and thus increase its efficiency and efficacy.
Collapse
Affiliation(s)
- David Scherb
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Engineering Design, Erlangen, Germany
| | | | | |
Collapse
|
4
|
Meng Q, Kong B, Zeng Q, Fei C, Yu H. Concept design of hybrid-actuated lower limb exoskeleton to reduce the metabolic cost of walking with heavy loads. PLoS One 2023; 18:e0282800. [PMID: 37186605 PMCID: PMC10184947 DOI: 10.1371/journal.pone.0282800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/23/2023] [Indexed: 05/17/2023] Open
Abstract
This paper proposes the conceptual design method for a hybrid-actuated lower limb exoskeleton based on energy consumption simulation. Firstly, the human-machine coupling model is established in OpenSim based on the proposed three passive assistance schemes. On this basis, the method of simulating muscle driving is used to find out the scheme that can reduce the metabolic rate the most with 3 passive springs models. Then, an active-passive cooperative control strategy is designed based on the finite state machine to coordinate the operation of the power mechanism and the passive energy storage structure and improve the mobility of the wearer. In the end, a simulation experiment based on the human-machine coupled model with the addition of active actuation is proceeded to evaluate its assistance performance according to reducing metabolic rate. The results show that the average metabolic cost decreased by 7.2% with both spring and motor. The combination of passive energy storage structures with active actuators to help the wearer overcome the additional consumption of energy storage can further reduce the body's metabolic rate. The proposed conceptual design method can also be utilized to implement the rapid design of a hybrid-actuated lower limb exoskeleton.
Collapse
Affiliation(s)
- Qiaoling Meng
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Bolei Kong
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Qingxin Zeng
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Cuizhi Fei
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai, China
- Key Laboratory of Neural-Functional Information and Rehabilitation Engineering of the Ministry of Civil Affairs, Shanghai, China
| |
Collapse
|
5
|
Zhou T, Zhou Z, Zhang H, Chen W. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton. SENSORS (BASEL, SWITZERLAND) 2022; 22:8539. [PMID: 36366237 PMCID: PMC9653640 DOI: 10.3390/s22218539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Researchers have made advances in reducing the metabolic rate of both walking and running by modulating mono-articular energy with exoskeletons. However, how to modulate multiarticular energy with exoskeletons to improve the energy economy of both walking and running is still a challenging problem, due to the lack of understanding of energy transfer among human lower-limb joints. Based on the study of the energy recycling and energy transfer function of biarticular muscles, we proposed a hip-knee unpowered exoskeleton that emulates and reinforces the function of the hamstrings and rectus femoris in different gait phases. The biarticular exo-tendon of the exoskeleton assists hamstrings to recycle the kinetic energy of the leg swing while providing hip extension torque in the swing phase. In the following stance phase, the exo-tendon releases the stored energy to assist the co-contraction of gluteus maximus and rectus femoris for both hip extension and knee extension, thus realizing the phased modulation of hip and knee joint energy. The metabolic rate of both walking (1.5 m/s) and running (2.5 m/s) can be reduced by 6.2% and 4.0% with the multiarticular energy modulation of a hip-knee unpowered exoskeleton, compared to that of walking and running without an exoskeleton. The bio-inspired design method of this study may inspire people to develop devices that assist multiple gaits in the future.
Collapse
|
6
|
Cheng X, Zhang F, Dong W. Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation. Polymers (Basel) 2022; 14:polym14193930. [PMID: 36235878 PMCID: PMC9570729 DOI: 10.3390/polym14193930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Electronic skin with human-like sensory capabilities has been widely applied to artificial intelligence, biomedical engineering, and the prosthetic hand for expanding the sensing ability of robots. Robotic electronic skin (RES) based on conductive hydrogel is developed to collect strain and pressure data for improving the grasping capability of the robot finger. RES is fabricated and assembled by the soft functional materials through a sol–gel process for guaranteeing the overall softness. The strain sensor based on piezoresistive hydrogel (gauge factor ~9.98) is integrated onto the back surface of the robot finger to collect the bending angle of the robot finger. The capacitive pressure sensor based on a hydrogel electrode (sensitivity: 0.105 kPa−1 below 3.61 kPa, and 0.0327 kPa−1 in the range from 4.12 to 15 kPa.) is adhered onto the fingertip to collect the pressure data when touching the objects. A robot-finger-compatible RES with strain and pressure sensing function is designed for finger gesture detection and grasping manipulation. The negative force feedback control framework is built to improve grasping manipulation of the robot finger with RES, which would provide a self-adaptive control method to determine whether the objects are grasped successfully or not. Robot fingers integrated with soft sensors would promote the development of sensing and grasping abilities of the robot finger and interaction with human beings.
Collapse
Affiliation(s)
- Xiao Cheng
- Rail Transportation Technology Innovation Center, East China Jiaotong University, Nanchang 330013, China
| | - Fan Zhang
- Department of Mechanical and Electrical Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
- Correspondence: (F.Z.); (W.D.)
| | - Wentao Dong
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
- Correspondence: (F.Z.); (W.D.)
| |
Collapse
|
7
|
Luo X, Cai G, Ma K, Cai A. Construction and Simulation of Biomechanical Model of Human Hip Joint Muscle-Tendon Assisted by Elastic External Tendon by Hill Muscle Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1987345. [PMID: 35958782 PMCID: PMC9363180 DOI: 10.1155/2022/1987345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022]
Abstract
Based on the Hill muscle model (HMM), a biomechanical model of human hip muscle tendon assisted by elastic external tendon (EET) was preliminarily established to investigate and analyze the biomechanical transition between the hip joint (HJ) and related muscle tendons. Using the HMM, the optimal muscle fiber length and muscle force scaling variables were introduced by means of constrained optimization problems and were optimized. The optimized HMM was constructed with human parameters of 170 cm and 70 kg. The biomechanical model simulation test of the hip muscle tendon was performed in the automatic dynamic analysis of mechanical systems (ADAMS) software to analyze and optimize the changes in the root mean square error (RMSE), biological moment, muscle moment distribution coefficient (MDC), muscle moment, muscle force, muscle power, and mechanical work of the activation curves of the hip major muscle, iliopsoas muscle, rectus femoris muscle, and hamstring muscle under analyzing the optimized HMM and under different EET auxiliary stiffnesses from the joint moment level, joint level, and muscle level, respectively. It was found that the trends of the output joint moment of the optimized HMM and the biological moment of the human HJ were basically the same, r 2 = 0.883 and RMSE = 0.18 Nm/kg, and the average metabolizable energy consumption of the HJ was (243.77 ± 1.59) J. In the range of 35%∼65% of gait cycle (GC), the auxiliary moment showed a significant downward trend with the increase of EET stiffness, when the EET stiffness of the human body was less than 200 Nm/rad, the biological moment of the human HJ gradually decreased with the increase of EET stiffness, and the MDC of the iliopsoas and hamstring muscles gradually decreased; when the EET stiffness was greater than 200 Nm/rad, the increase of the total moment of the extensor muscles significantly increased, the MDC of the gluteus maximus and rectus muscles gradually increased, and the gluteus maximus and hamstring muscle moments and muscle forces gradually increased; the results show that the optimized muscle model based on Hill can reflect the law of human movement and complete the simulation test of HJ movements, which provides a new idea for the analysis of energy migration in the musculoskeletal system of the lower limb.
Collapse
Affiliation(s)
- Xi Luo
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Guofeng Cai
- Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kun Ma
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Aiqi Cai
- Department of Medical Genetics, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, Yunnan, China
| |
Collapse
|
8
|
Yang C, Yu L, Xu L, Yan Z, Hu D, Zhang S, Yang W. Current developments of robotic hip exoskeleton toward sensing, decision, and actuation: A review. WEARABLE TECHNOLOGIES 2022; 3:e15. [PMID: 38486916 PMCID: PMC10936331 DOI: 10.1017/wtc.2022.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 03/17/2024]
Abstract
The aging population is now a global challenge, and impaired walking ability is a common feature in the elderly. In addition, some occupations such as military and relief workers require extra physical help to perform tasks efficiently. Robotic hip exoskeletons can support ambulatory functions in the elderly and augment human performance in healthy people during normal walking and loaded walking by providing assistive torque. In this review, the current development of robotic hip exoskeletons is presented. In addition, the framework of actuation joints and the high-level control strategy (including the sensors and data collection, the way to recognize gait phase, the algorithms to generate the assist torque) are described. The exoskeleton prototypes proposed by researchers in recent years are organized to benefit the related fields realizing the limitations of the available robotic hip exoskeletons, therefore, this work tends to be an influential factor with a better understanding of the development and state-of-the-art technology.
Collapse
Affiliation(s)
- Canjun Yang
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
| | - Linfan Yu
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Linghui Xu
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Zehao Yan
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Dongming Hu
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
| | - Sheng Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Wei Yang
- Ningbo Research Institute, Zhejiang University, Ningbo, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
| |
Collapse
|
9
|
Kim J, Quinlivan BT, Deprey LA, Arumukhom Revi D, Eckert-Erdheim A, Murphy P, Orzel D, Walsh CJ. Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit. Sci Rep 2022; 12:11004. [PMID: 35768486 PMCID: PMC9243082 DOI: 10.1038/s41598-022-14784-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
As we age, humans see natural decreases in muscle force and power which leads to a slower, less efficient gait. Improving mobility for both healthy individuals and those with muscle impairments/weakness has been a goal for exoskeleton designers for decades. In this work, we discover that significant reductions in the energy cost required for walking can be achieved with almost 50% less mechanical power compared to the state of the art. This was achieved by leveraging human-in-the-loop optimization to understand the importance of individualized assistance for hip flexion, a relatively unexplored joint motion. Specifically, we show that a tethered hip flexion exosuit can reduce the metabolic rate of walking by up to 15.2 ± 2.6%, compared to locomotion with assistance turned off (equivalent to 14.8% reduction compared to not wearing the exosuit). This large metabolic reduction was achieved with surprisingly low assistance magnitudes (average of 89 N, ~ 24% of normal hip flexion torque). Furthermore, the ratio of metabolic reduction to the positive exosuit power delivered was 1.8 times higher than ratios previously found for hip extension and ankle plantarflexion. These findings motivated the design of a lightweight (2.31 kg) and portable hip flexion assisting exosuit, that demonstrated a 7.2 ± 2.9% metabolic reduction compared to walking without the exosuit. The high ratio of metabolic reduction to exosuit power measured in this study supports previous simulation findings and provides compelling evidence that hip flexion may be an efficient joint motion to target when considering how to create practical and lightweight wearable robots to support improved mobility.
Collapse
Affiliation(s)
- Jinsoo Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
| | - Brendan T Quinlivan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
| | - Lou-Ana Deprey
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
- School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Dheepak Arumukhom Revi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
- Department of Mechanical Engineering, Boston University, Boston, 02215, USA
- College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, 02215, USA
| | - Asa Eckert-Erdheim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
| | - Patrick Murphy
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
| | - Dorothy Orzel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, 02134, USA.
| |
Collapse
|
10
|
Cseke B, Uchida TK, Doumit M. Simulating Ideal Assistive Strategies to Reduce the Metabolic Cost of Walking in the Elderly. IEEE Trans Biomed Eng 2022; 69:2797-2805. [PMID: 35201978 DOI: 10.1109/tbme.2022.3153951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Development of walking assist exoskeletons is a growing area of study, offering a solution to restore, maintain, and enhance mobility. However, applying this technology to the elderly is challenging and there is currently no consensus as to the optimal strategy for assisting elderly gait. The gait patterns of elderly individuals often differ from those of the younger population, primarily in the ankle and hip joints. This study used musculoskeletal simulations to predict how ankle and hip actuators might affect the energy expended by elderly participants during gait. METHODS OpenSim was used to generate simulations of 10 elderly participants walking at self-selected slow, comfortable, and fast speeds. Ideal flexion/extension assistive actuators were added bilaterally to the ankle or hip joints of the models to predict the maximum metabolic power that could be saved by exoskeletons that apply torques at these joints. RESULTS Compared to the unassisted scenario, the use of ideal hip actuators resulted in 215%, 265%, and 306% reductions in average metabolic power consumption at slow, comfortable, and fast walking speeds, respectively; use of ideal ankle actuators resulted in 123%, 142%, and 161% metabolic savings, respectively. CONCLUSION The simulations suggest that providing hip assistance to elderly individuals during walking can result in significantly greater metabolic savings than ankle assistance, assuming kinematics and total joint moments do not change substantially with assistance. SIGNIFICANCE The achieved research results and analysis provide exoskeleton developers guidance on optimally designing walking assist exoskeletons, thus promoting consensus toward the optimal strategy for assisting elderly individuals.
Collapse
|
11
|
Cheng L, Xiong C, Chen W, Liang J, Huang B, Xu X. A portable exotendon assisting hip and knee joints reduces muscular burden during walking. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211266. [PMID: 34737881 PMCID: PMC8564609 DOI: 10.1098/rsos.211266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Assistive devices are used to reduce human effort during locomotion with increasing success. More assistance strategies are worth exploring, so we aimed to design a lightweight biarticular device with well-chosen parameters to reduce muscle effort. Based on the experience of previous success, we designed an exotendon to assist in swing leg deceleration. Then we conducted experiments to test the performance of the exotendon with different spring stiffness during walking. With the assistance of the exotendon, peak activation of semitendinosus decreased, with the largest reduction of 12.3% achieved with the highest spring stiffness (p = 0.004). The peak activations of other measured muscles were not significantly different (p = 0.15-0.92). The biological hip extension and knee flexion moments likewise significantly decreased with the spring stiffness (p < 0.01). The joint angle was altered during the assisted phases with decreased hip flexion and knee extension. Meanwhile, the step frequency and the step length were also altered, while the step width remained unaffected. Gait variability changed only in the frontal plane, exhibiting lower step width variability. We conclude that passive devices assisting hip extension and knee flexion can significantly reduce the burden on the hamstring muscles, while the kinematics is easily altered.
Collapse
Affiliation(s)
- Longfei Cheng
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Caihua Xiong
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenbin Chen
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jiejunyi Liang
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Bo Huang
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaowei Xu
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
12
|
Zhou T, Xiong C, Zhang J, Hu D, Chen W, Huang X. Reducing the metabolic energy of walking and running using an unpowered hip exoskeleton. J Neuroeng Rehabil 2021; 18:95. [PMID: 34092259 PMCID: PMC8182901 DOI: 10.1186/s12984-021-00893-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Walking and running are the most common means of locomotion in human daily life. People have made advances in developing separate exoskeletons to reduce the metabolic rate of walking or running. However, the combined requirements of overcoming the fundamental biomechanical differences between the two gaits and minimizing the metabolic penalty of the exoskeleton mass make it challenging to develop an exoskeleton that can reduce the metabolic energy during both gaits. Here we show that the metabolic energy of both walking and running can be reduced by regulating the metabolic energy of hip flexion during the common energy consumption period of the two gaits using an unpowered hip exoskeleton. METHODS We analyzed the metabolic rates, muscle activities and spatiotemporal parameters of 9 healthy subjects (mean ± s.t.d; 24.9 ± 3.7 years, 66.9 ± 8.7 kg, 1.76 ± 0.05 m) walking on a treadmill at a speed of 1.5 m s-1 and running at a speed of 2.5 m s-1 with different spring stiffnesses. After obtaining the optimal spring stiffness, we recruited the participants to walk and run with the assistance from a spring with optimal stiffness at different speeds to demonstrate the generality of the proposed approach. RESULTS We found that the common optimal exoskeleton spring stiffness for walking and running was 83 Nm Rad-1, corresponding to 7.2% ± 1.2% (mean ± s.e.m, paired t-test p < 0.01) and 6.8% ± 1.0% (p < 0.01) metabolic reductions compared to walking and running without exoskeleton. The metabolic energy within the tested speed range can be reduced with the assistance except for low-speed walking (1.0 m s-1). Participants showed different changes in muscle activities with the assistance of the proposed exoskeleton. CONCLUSIONS This paper first demonstrates that the metabolic cost of walking and running can be reduced using an unpowered hip exoskeleton to regulate the metabolic energy of hip flexion. The design method based on analyzing the common energy consumption characteristics between gaits may inspire future exoskeletons that assist multiple gaits. The results of different changes in muscle activities provide new insight into human response to the same assistive principle for different gaits (walking and running).
Collapse
Affiliation(s)
- Tiancheng Zhou
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Caihua Xiong
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Juanjuan Zhang
- Institute of Robotics and Automation Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300071, China
| | - Di Hu
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wenbin Chen
- Institute of Rehabilitation and Medical Robotics, State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|
13
|
Zhou T, Xiong C, Zhang J, Chen W, Huang X. Regulating Metabolic Energy Among Joints During Human Walking Using a Multiarticular Unpowered Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2021; 29:662-672. [PMID: 33690121 DOI: 10.1109/tnsre.2021.3065389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Researchers have found that the walking economy can be enhanced by recycling ankle metabolic energy using an unpowered ankle exoskeleton. However, how to regulate multiarticular energy to enhance the overall energy efficiency of humans during walking remains a challenging problem, as multiarticular passive assistance is more likely to interfere with the human body's natural biomechanics. Here we show that the metabolic energy of the hip and knee musculature can be regulated to a more energy-effective direction using a multiarticular unpowered exoskeleton that recycles negative mechanical energy of the knee joint in the late swing phase and transfers the stored energy to assist the hip extensors in performing positive mechanical work in the stance phase. The biarticular spring-clutch mechanism of the exoskeleton performs a complementary energy recycling and energy transfer function for hip and knee musculature. Through the phased regulation of the hip and knee metabolic energy, the target muscle activities decreased during the whole assistive period of the exoskeleton, which was the direct reason for 8.6 ± 1.5% (mean ± s.e.m) reduction in metabolic rate compared with that of walking without the exoskeleton. The proposed unpowered exoskeleton enhanced the user's multiarticular energy efficiency, which equals improving musculoskeletal structure by adding a complementary loop for efficient energy recycling and energy transfer.
Collapse
|
14
|
Zhang B, Liu T, Zhang B, Pecht MG. Recent Development of Unpowered Exoskeletons for Lower Extremity: A Survey. IEEE ACCESS 2021; 9:138042-138056. [DOI: 10.1109/access.2021.3115956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
15
|
Sawicki GS, Beck ON, Kang I, Young AJ. The exoskeleton expansion: improving walking and running economy. J Neuroeng Rehabil 2020; 17:25. [PMID: 32075669 PMCID: PMC7029455 DOI: 10.1186/s12984-020-00663-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Since the early 2000s, researchers have been trying to develop lower-limb exoskeletons that augment human mobility by reducing the metabolic cost of walking and running versus without a device. In 2013, researchers finally broke this 'metabolic cost barrier'. We analyzed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device. Here, we reviewed these studies and highlighted key innovations and techniques that enabled these devices to surpass the metabolic cost barrier and steadily improve user walking and running economy from 2013 to nearly 2020. These studies include, physiologically-informed targeting of lower-limb joints; use of off-board actuators to rapidly prototype exoskeleton controllers; mechatronic designs of both active and passive systems; and a renewed focus on human-exoskeleton interface design. Lastly, we highlight emerging trends that we anticipate will further augment wearable-device performance and pose the next grand challenges facing exoskeleton technology for augmenting human mobility.
Collapse
Affiliation(s)
- Gregory S Sawicki
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Owen N Beck
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Inseung Kang
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron J Young
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|