1
|
Dogan AB, Dabkowski KE, von Recum HA. Leveraging Affinity Interactions to Prolong Drug Delivery of Protein Therapeutics. Pharmaceutics 2022; 14:1088. [PMID: 35631672 PMCID: PMC9144912 DOI: 10.3390/pharmaceutics14051088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
While peptide and protein therapeutics have made tremendous advances in clinical treatments over the past few decades, they have been largely hindered by their ability to be effectively delivered to patients. While bolus parenteral injections have become standard clinical practice, they are insufficient to treat diseases that require sustained, local release of therapeutics. Cyclodextrin-based polymers (pCD) have been utilized as a platform to extend the local delivery of small-molecule hydrophobic drugs by leveraging hydrophobic-driven thermodynamic interactions between pCD and payload to extend its release, which has seen success both in vitro and in vivo. Herein, we proposed the novel synthesis of protein-polymer conjugates that are capped with a "high affinity" adamantane. Using bovine serum albumin as a model protein, and anti-interleukin 10 monoclonal antibodies as a functional example, we outline the synthesis of novel protein-polymer conjugates that, when coupled with cyclodextrin delivery platforms, can maintain a sustained release of up to 65 days without largely sacrificing protein structure/function which has significant clinical applications in local antibody-based treatments for immune diseases, cancers, and diabetes.
Collapse
Affiliation(s)
| | | | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (K.E.D.)
| |
Collapse
|
2
|
Dogan AB, Rohner NA, Smith JNP, Kilgore JA, Williams NS, Markowitz SD, von Recum HA, Desai AB. Polymer Microparticles Prolong Delivery of the 15-PGDH Inhibitor SW033291. Pharmaceutics 2021; 14:85. [PMID: 35056981 PMCID: PMC8779392 DOI: 10.3390/pharmaceutics14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
As the prevalence of age-related fibrotic diseases continues to increase, novel antifibrotic therapies are emerging to address clinical needs. However, many novel therapeutics for managing chronic fibrosis are small-molecule drugs that require frequent dosing to attain effective concentrations. Although bolus parenteral administrations have become standard clinical practice, an extended delivery platform would achieve steady-state concentrations over a longer time period with fewer administrations. This study lays the foundation for the development of a sustained release platform for the delivery of (+)SW033291, a potent, small-molecule inhibitor of the 15-hydroxyprostaglandin dehydrogenase (15-PGDH) enzyme, which has previously demonstrated efficacy in a murine model of pulmonary fibrosis. Herein, we leverage fine-tuned cyclodextrin microparticles-specifically, β-CD microparticles (β-CD MPs)-to extend the delivery of the 15-PGDH inhibitor, (+)SW033291, to over one week.
Collapse
Affiliation(s)
- Alan B. Dogan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Nathan A. Rohner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Julianne N. P. Smith
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
| | - Jessica A. Kilgore
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (J.A.K.); (N.S.W.)
| | - Noelle S. Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA; (J.A.K.); (N.S.W.)
| | - Sanford D. Markowitz
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
- University Hospitals Seidman Cancer Center, Cleveland, OH 44106, USA
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; (A.B.D.); (N.A.R.); (H.A.v.R.)
| | - Amar B. Desai
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; (J.N.P.S.); (S.D.M.)
| |
Collapse
|
3
|
Affinity-Based Polymers Provide Long-Term Immunotherapeutic Drug Delivery Across Particle Size Ranges Optimal for Macrophage Targeting. J Pharm Sci 2020; 110:1693-1700. [PMID: 33127427 DOI: 10.1016/j.xphs.2020.10.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/19/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022]
Abstract
Drug delivery to specific arms of the immune system can be technically challenging to provide prolonged drug release while limiting off-target toxicity given the limitations of current drug delivery systems. In this work, we test the design of a cyclodextrin (CD) polymer platform to extend immunomodulatory drug delivery via affinity interactions for sustained release at multiple size scales. The parameter space of synthesis variables influencing particle nucleation and growth (pre-incubation time and stirring speed) and post-synthesis grinding effects on resulting particle diameter were characterized. We demonstrate that polymerized CD forms exhibit size-independent release profiles of the small molecule drug lenalidomide (LND) and can provide improved drug delivery profiles versus macro-scale CD polymer disks in part due to increased loading efficiency. CD polymer microparticles and smaller, ground particles demonstrated no significant cytotoxicity as compared to the base CD monomer when co-incubated with fibroblasts. Uptake of ground CD particles was significantly higher following incubation with RAW 264.7 macrophages in culture over standard CD microparticles. Thus, the affinity/structure properties afforded by polymerized CD allow particle size to be modified to affect cellular uptake profiles independently of drug release rate for applications in cell-targeted drug delivery.
Collapse
|
4
|
Engineering selective molecular tethers to enhance suboptimal drug properties. Acta Biomater 2020; 115:383-392. [PMID: 32846237 DOI: 10.1016/j.actbio.2020.07.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Small-molecule drugs are utilized in a wide variety of clinical applications, however, many of these drugs suffer from one or more suboptimal properties that can hinder its delivery or cellular action in vivo, or even shelf an otherwise biologically tolerable drug. While high-throughput screening provides a method to discover drugs with altered chemical properties, directly engineering small-molecule bioconjugates provides an opportunity to specifically modulate drug properties rather than sifting through large drug libraries with seemingly 'random' drug properties. Herein, we propose that selectively "tethering" a drug molecule to an additional group with favorable properties will improve the drug conjugate's overall properties, such as solubility. Specifically, we outlined the site-specific chemical conjugation of rapamycin (RAP) to an additional "high-affinity" group to increase the overall affinity the drug has for cyclodextrin-based polymers (pCD). By doing so, we found that RAP's affinity for pCD and RAP's window of delivery from pCD microparticles was tripled without sacrificing RAP's cellular action. This synthesis method was applied to the concept of "affinity" for pCD, but other prosthetic groups can be used similarly. This study displays potential for increasing drug delivery windows of small-molecule drugs in pCD systems for chronic drug therapies and introduces the idea of altering drug properties to tune polymer-drug interactions.
Collapse
|
5
|
Jiang HH, Ji LX, Li HY, Song QX, Bano Y, Chen L, Liu G, Wang M. Combined Treatment With CCR1-Overexpressing Mesenchymal Stem Cells and CCL7 Enhances Engraftment and Promotes the Recovery of Simulated Birth Injury-Induced Stress Urinary Incontinence in Rats. Front Surg 2020; 7:40. [PMID: 32850943 PMCID: PMC7412717 DOI: 10.3389/fsurg.2020.00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Objective: To observe whether urethral injection of chemokine (c-c motif) ligand 7 (CCL7) and overexpressing CC receptor 1 (CCR1) in mesenchymal stem cells (MSCs) can promote their homing and engraftment to the injured tissue, and improve the recovery of simulated birth injury-induced stress urinary incontinence (SUI) in rats. Methods: Female rats underwent a dual injury consisting of vaginal distension (VD) and pudendal nerve crush (PNC) to induce SUI. Bone marrow-derived MSCs were transduced with lentivirus carrying CCR1 (MSC-CCR1) and green fluorescent protein (GFP). Forty virgin Sprague–Dawley rats were evenly distributed into four groups: sham SUI + MSC-CCR1+CCL7, SUI + MSCs, SUI + MSC-CCR1, and SUI + MSC-CCR1+CCL7 group. The engrafted MSCs in urethra were quantified. Another three groups of rats, including sham SUI + sham MSC-CCR1+CCL7 treatment, SUI + sham MSC-CCR1+CCL7 treatment, and SUI + MSC-CCR1+CCL7 treatment group, were used to evaluate the functional recovery by testing external urethral sphincter electromyography (EUS EMG), pudendal nerve motor branch potentials (PNMBP), and leak point pressure (LPP) 1 week after injury and injection. Urethra and vagina were harvested for histological examination. Results: The SUI + MSC-CCR1+CCL7 group received intravenous injection of CCR1-overexpressing MSCs and local injection of CCL7 after simulated birth injury had the most engraftment of MSCs to the injured tissues and best functional recovery from SUI compared to other groups. Histological examination showed a partial repair in the SUI + MSC-CCR1+CCL7 group. Conclusions: Our study demonstrated combined treatment with CCR1-overexpressing MSCs and CCL7 can increase engraftment of MSCs and promote the functional recovery of simulated birth trauma-induced SUI in rats, which could be a new therapeutic strategy for SUI.
Collapse
Affiliation(s)
- Hai-Hong Jiang
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling-Xiao Ji
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Yan Li
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi-Xiang Song
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Yasmeen Bano
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chen
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guiming Liu
- Department of Surgery/Urology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Rohner NA, Nguyen D, von Recum HA. Affinity Effects on the Release of Non-Conventional Antifibrotics from Polymer Depots. Pharmaceutics 2020; 12:E275. [PMID: 32192207 PMCID: PMC7151100 DOI: 10.3390/pharmaceutics12030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/02/2022] Open
Abstract
For many chronic fibrotic conditions, there is a need for local, sustained antifibrotic drug delivery. A recent trend in the pharmaceutical industry is the repurposing of approved drugs. This paper investigates drugs that are classically used for anthelmintic activity (pyrvinium pamoate (PYR)), inhibition of adrenal steroidgenesis (metyrapone (MTP)), bactericidal effect (rifampicin (RIF), and treating iron/aluminum toxicity (deferoxamine mesylate (DFOA)), but are also under investigation for their potential positive effect in wound healing. In this role, they have not previously been tested in a localized delivery system suitable for obtaining the release for the weeks-to-months timecourse needed for wound resolution. Herein, two cyclodextrin-based polymer systems, disks and microparticles, are demonstrated to provide the long-term release of all four tested non-conventional wound-healing drugs for up to 30 days. Higher drug affinity binding, as determined from PyRx binding simulations and surface plasmon resonance in vitro, corresponded with extended release amounts, while drug molecular weight and solubility correlated with the improved drug loading efficiency of cyclodextrin polymers. These results, combined, demonstrate that leveraging affinity interactions, in combination with drug choice, can extend the sustained release of drugs with an alternative, complimentary action to resolve wound-healing and reduce fibrotic processes.
Collapse
Affiliation(s)
- Nathan A. Rohner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA;
| | - Dung Nguyen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, OH 44106, USA;
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA;
| |
Collapse
|
7
|
Rohner NA, Dogan AB, Robida OA, von Recum HA. Serum biomolecules unable to compete with drug refilling into cyclodextrin polymers regardless of the form. J Mater Chem B 2019; 7:5320-5327. [PMID: 31384862 PMCID: PMC6739132 DOI: 10.1039/c9tb00622b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymers that are refillable and sustain local release will have a great impact in both preventing and treating local cancer recurrence as well as addressing non-resectable diseases. Polymerized cyclodextrin (pCD) disks, which reload drugs into molecular "pockets" in vivo through affinity interactions, have been previously shown to localize doxorubicin (Dox) to treat glioblastoma multiforme. However, one concern is whether drug refilling is influenced by competition from local biomolecules. In addition the impact of the polymer form on drug refilling is unknown. Herein, different pCD formulations were synthesized from γ-cyclodextrin (γ-CD) and were compared in vitro using competitive drug filling/refilling assays. Data reveal that affinity-based drug refilling occurs as a function of both the polymer form and the sustained release polymeric liquid (SRPL) dilution factor, pointing to the surface/volume ratio, as well as the CD pocket density, and the effects of the distance between pocket. In vitro refilling experiments with cholesterol demonstrated no interference with Dox filling of the CD polymer, while the presence of albumin only slightly reduced Dox filling of pCD-γ-MP (microparticle) and pCD-γ-SRPL forms, but not pCD-γ-disks. Moreover, whole serum competition did not inhibit filling or refilling of pCD-γ-MP with Dox at multiple concentrations and filling times, which indicates that this polymer (re)filling is primarily driven by affinity-based interactions that can overcome the physiological conditions which may limit other drug delivery approaches. This was supplemented by isolating variables through docking simulations and affinity measurements. These results attest to the efficiency of in vivo or in situ polymer filling/refilling in the presence of competitive biological molecules achieved partially through high affinity drug to polymer interactions.
Collapse
Affiliation(s)
- Nathan A Rohner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Alan B Dogan
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Olivia A Robida
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Rohner NA, Schomisch SJ, Marks JM, von Recum HA. Cyclodextrin Polymer Preserves Sirolimus Activity and Local Persistence for Antifibrotic Delivery over the Time Course of Wound Healing. Mol Pharm 2019; 16:1766-1774. [PMID: 30807185 DOI: 10.1021/acs.molpharmaceut.9b00144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrosis and dysphagic stricture of the esophagus is a major unaddressed problem often accompanying endoscopic removal of esophageal cancers and precancerous lesions. While weekly injections of antiproliferative agents show potential for improved healing, repeated injections are unlikely clinically and may alternatively be replaced by creating an esophageal drug delivery system. Affinity-based polymers have previously shown success for continuous delivery of small molecules for weeks to months. Herein, we explored the potential of an affinity-based microparticle to provide long-term release of an antiproliferative drug, sirolimus. In molecular docking simulations and surface plasmon resonance experiments, sirolimus was found to have suitable affinity for beta-cyclodextrin, while dextran, as a low affinity control, was validated. Polymerized beta-cyclodextrin microparticles exhibited 30 consecutive days of delivery of sirolimus during in vitro release studies. In total, the polymerized beta-cyclodextrin microparticles released 36.9 mg of sirolimus per milligram of polymer after one month of incubation in vitro. Taking daily drug release aliquots and applying them to PT-K75 porcine mucosal fibroblasts, we observed that cyclodextrin microparticle delivery preserved bioactivity of sirolimus inhibiting proliferation by 27-67% and migration of fibroblasts by 28-100% of buffer treated controls in vitro. Testing for esophageal injection site losses, no significant loss was incurred under simulated saliva flow for 10 min, and 16.7% of fluorescently labeled polymerized cyclodextrin microparticle signal was retained at 28 days after submucosal injection in esophageal tissue ex vivo versus only 4% of the initial amount remaining for free dye molecules injected alone. By combining affinity-based drug delivery for continuous long-term release with a microparticle platform that is injectable yet remains localized in tissue interstitium, this combination platform demonstrates promise for preventing esophageal fibrosis and stricture.
Collapse
Affiliation(s)
- Nathan A Rohner
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Steve J Schomisch
- Department of Surgery , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey M Marks
- Department of Surgery , University Hospitals Cleveland Medical Center , 11100 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Horst A von Recum
- Department of Biomedical Engineering , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
9
|
El Hassan R, Galante A, Kavran M, Ganocy S, Khalifa AO, Hijaz A. The vaginal distention model in mice is not a reliable model of simulated birth trauma-induced stress urinary incontinence. Neurourol Urodyn 2018; 38:599-606. [PMID: 30549310 DOI: 10.1002/nau.23886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022]
Abstract
AIMS Vaginal distention (VD) is a validated model of birth-related trauma in rats. Recently a mouse VD model was reported. Our study was originally conducted to evaluate the impact of age on VD in mice. This manuscript describes the study and reports on the lack of reproducibility of VD models in mice. METHODS We utilized female C57BL/6 mice. A total of 190, 12-weeks old mice, were randomized into VD and sham groups. We inflated a modified Foley's balloon with 0.3 mL for 1 h inside the mice vagina. Afterwards, we measured the leak point pressure (LPP) at defined timepoints (0, 4, 10, 20, or 40 days). We randomized another 190, 40-week old, C57BL/6 mice into either VD or sham groups. We used an extra 20 mice as age - matched controls. RESULTS In both 12 and 40 weeks-old mice, LPP was significantly decreased versus the negative controls at day 0. Additionally, in both 12 and 40 weeks-old mice, the decrease in LPP was significantly higher in the VD group compared to the sham group at day 0. However, the LPP results were comparable between VD and sham at any other time point thereafter. Furthermore, there was no significant change in LPP values between instrumented (VD and sham) mice and control mice at any time after day 0. CONCLUSIONS The VD models previously described is not a reproducible model for the study of VD with large number of mice. Our results, unfortunately, do not support its use to study VD injury in mice.
Collapse
Affiliation(s)
- Ramzi El Hassan
- Department of Urology, University of Rochester Medical Center, Rochester, New York
| | - Alex Galante
- Department of Urology, University of Florida, Gainesville, Florida
| | - Michael Kavran
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Stephen Ganocy
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University,, Cleveland, Ohio
| | - Ahmad O Khalifa
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Menoufia University, Shebin Al Kom, Egypt
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
Rivera-Delgado E, Djuhadi A, Danda C, Kenyon J, Maia J, Caplan AI, von Recum HA. Injectable liquid polymers extend the delivery of corticosteroids for the treatment of osteoarthritis. J Control Release 2018; 284:112-121. [PMID: 29906555 DOI: 10.1016/j.jconrel.2018.05.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
Drug delivery strategies generally use inert materials, such as high molecular weight polymers, to encapsulate and control the release rate of therapeutic drugs. Diffusion governs release and depends on the ease of permeation of the polymer alongside the device thickness. Yet in applications such as osteoarthritis, the physiological constraints and limited intra-articular joint space prevent the use of large, solid drug delivery implants. Other investigators have explored the use of micro- and nanoparticle drug delivery systems. However, the small size of the systems limits the total drug that may be encapsulated and its short diffusion distance causes rapid release. Ordinarily, the extremely low diffusivity of a polymer fluid would make this an unsuitable delivery system. Our technology takes advantage of specific molecular interactions between drug and polymer, which can control the rate of release beyond diffusion. With this "affinity-based drug delivery", we have shown that delivery rates from solid polymer can be prolonged from hours and days, to weeks and months. In this paper, we demonstrate that this affinity-based mechanism also applies to low diffusivity fluid-phase polymers. They show release rates that are substantially slower than chemically similar polymers incapable of forming those inclusion complexes. The similarity of this study's liquid polymers to the viscoelastic fluids used in current clinical practice makes it an ample delivery system for osteoarthritic application. We confirmed the capacity of anti-inflammatory delivery of corticosteroids: hydrocortisone, triamcinolone, and dexamethasone; from both solid implants and polymer fluids. Further, we demonstrated that viscoelastic properties are widely tunable, and within the range of native synovial fluid. Lastly, we determined these polymer fluids have no impact on the differentiation of mesenchymal stem cells to cartilage and are not cytotoxic to a common cell line.
Collapse
Affiliation(s)
| | - Ashley Djuhadi
- Department of Marcomolecular Science and Engineering, Case Western Reserve University, USA
| | - Chaitanya Danda
- Department of Marcomolecular Science and Engineering, Case Western Reserve University, USA
| | - Jonathan Kenyon
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland 44106, OH, USA
| | - João Maia
- Department of Marcomolecular Science and Engineering, Case Western Reserve University, USA
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland 44106, OH, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, USA.
| |
Collapse
|