1
|
Yusa Y, Shimizu Y, Hayashi M, Aizawa T, Nakahara T, Ueno T, Sato A, Miura C, Yamamoto A, Imai Y. Effect of hematoma on early degradation behavior of magnesium after implantation. Biomed Mater 2024; 19:055043. [PMID: 39151472 DOI: 10.1088/1748-605x/ad7085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
The corrosion of magnesium (Mg)-based bioabsorbable implanting devices is influenced by implantation environment which dynamically changes by biological response including wound healing. Understanding the corrosion mechanisms along the healing process is essential for the development of Mg-based devices. In this study, a hematoma model was created in a rat femur to analyze Mg corrosion with hematoma in the early stage of implantation. Pure Mg specimen (99.9%,ϕ1.2 × 6 mm) was implanted in rat femur under either hematoma or non-hematoma conditions. After a designated period of implantation, the specimens were collected and weighed. The insoluble salts formed on the specimen surfaces were analyzed using scanning electron microscopy, energy-dispersive x-ray spectroscopy, and Raman spectroscopy on days 1, 3, and 7. The results indicate that hematomas promote Mg corrosion and change the insoluble salt precipitation. The weight loss of the hematoma group (27.31 ± 5.91 µg mm-2) was significantly larger than that of the non-hematoma group (14.77 ± 3.28 µg mm-2) on day 7. In the non-hematoma group, carbonate and phosphate were detected even on day 1, but the only latter was detected on day 7. In the hematoma group, hydroxide was detected on day 1, followed by the formation of carbonate and phosphate on days 3 and 7. The obtained results suggest the hypoxic and acidic microenvironment in hematomas accelerates the Mg corrosion immediately after implantation, and the subsequent hematoma resorption process leads to the formation of phosphate and carbonate with organic molecules. This study revealed the risk of hematomas as an acceleration factor of the corrosion of Mg-based devices leading to the early implant failure. It is important to consider this risk in the design of Mg-based devices and to optimize surgical procedures controlling hemorrhage at implantation and reducing unexpected bleeding after surgery.
Collapse
Affiliation(s)
- Yu Yusa
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshinaka Shimizu
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Masanobu Hayashi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takayuki Aizawa
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Nakahara
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Takahiro Ueno
- Central Research Laboratories, Nihon Parkerizing Co., Ltd, 4-5-1 Ohkami, Hiratsuka, Kanagawa 254-0012, Japan
| | - Akimitsu Sato
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Chieko Miura
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Akiko Yamamoto
- Research Center for Functional Materials, National Institute for Materials Sciences, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshimichi Imai
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
2
|
Martin V, Garcia M, Montemor MDF, Fernandes JCS, Gomes PS, Fernandes MH. Simulating In Vitro the Bone Healing Potential of a Degradable and Tailored Multifunctional Mg-Based Alloy Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060255. [PMID: 35735498 PMCID: PMC9219794 DOI: 10.3390/bioengineering9060255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023]
Abstract
This work intended to elucidate, in an in vitro approach, the cellular and molecular mechanisms occurring during the bone healing process, upon implantation of a tailored degradable multifunctional Mg-based alloy. This was prepared by a conjoining anodization of the bare alloy (AZ31) followed by the deposition of a polymeric coating functionalized with hydroxyapatite. Human endothelial cells and osteoblastic and osteoclastic differentiating cells were exposed to the extracts from the multifunctional platform (having a low degradation rate), as well as the underlying anodized and original AZ31 alloy (with higher degradation rates). Extracts from the multifunctional coated alloy did not affect cellular behavior, although a small inductive effect was observed in the proliferation and gene expression of endothelial and osteoblastic cells. Extracts from the higher degradable anodized and original alloys induced the expression of some endothelial genes and, also, ALP and TRAP activities, further increasing the expression of some early differentiation osteoblastic and osteoclastic genes. The integration of these results in a translational approach suggests that, following the implantation of a tailored degradable Mg-based material, the absence of initial deleterious effects would favor the early stages of bone repair and, subsequently, the on-going degradation of the coating and the subjacent alloy would increase bone metabolism dynamics favoring a faster bone formation and remodeling process and enhancing bone healing.
Collapse
Affiliation(s)
- Victor Martin
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Mónica Garcia
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
| | - Maria de Fátima Montemor
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - João Carlos Salvador Fernandes
- CQE, IMS, Departamento de Engenharia Química, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; (M.d.F.M.); (J.C.S.F.)
| | - Pedro Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
| | - Maria Helena Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.G.); (P.S.G.)
- LAQV/REQUIMTE, University of Porto, 4100-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
3
|
Barbeck M, Kühnel L, Witte F, Pissarek J, Precht C, Xiong X, Krastev R, Wegner N, Walther F, Jung O. Degradation, Bone Regeneration and Tissue Response of an Innovative Volume Stable Magnesium-Supported GBR/GTR Barrier Membrane. Int J Mol Sci 2020; 21:ijms21093098. [PMID: 32353983 PMCID: PMC7247710 DOI: 10.3390/ijms21093098] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Bioresorbable collagenous barrier membranes are used to prevent premature soft tissue ingrowth and to allow bone regeneration. For volume stable indications, only non-absorbable synthetic materials are available. This study investigates a new bioresorbable hydrofluoric acid (HF)-treated magnesium (Mg) mesh in a native collagen membrane for volume stable situations. Materials and Methods: HF-treated and untreated Mg were compared in direct and indirect cytocompatibility assays. In vivo, 18 New Zealand White Rabbits received each four 8 mm calvarial defects and were divided into four groups: (a) HF-treated Mg mesh/collagen membrane, (b) untreated Mg mesh/collagen membrane (c) collagen membrane and (d) sham operation. After 6, 12 and 18 weeks, Mg degradation and bone regeneration was measured using radiological and histological methods. Results: In vitro, HF-treated Mg showed higher cytocompatibility. Histopathologically, HF-Mg prevented gas cavities and was degraded by mononuclear cells via phagocytosis up to 12 weeks. Untreated Mg showed partially significant more gas cavities and a fibrous tissue reaction. Bone regeneration was not significantly different between all groups. Discussion and Conclusions: HF-Mg meshes embedded in native collagen membranes represent a volume stable and biocompatible alternative to the non-absorbable synthetic materials. HF-Mg shows less corrosion and is degraded by phagocytosis. However, the application of membranes did not result in higher bone regeneration.
Collapse
Affiliation(s)
- Mike Barbeck
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- BerlinAnalytix GmbH, 12109 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)-176-81022467
| | - Lennart Kühnel
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Witte
- Biotrics Bioimplants GmbH, 12109 Berlin, Germany
| | | | - Clarissa Precht
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Xin Xiong
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Rumen Krastev
- NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
- Faculty of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| | - Nils Wegner
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany
| | - Ole Jung
- Department of Oral Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, Study Group: Biomaterials/Surfaces, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
4
|
NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep 2020; 10:3078. [PMID: 32080264 PMCID: PMC7033235 DOI: 10.1038/s41598-020-59743-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The highly selective magnesium transporter non-imprinted in Prader-Willi/Angelman syndrome region protein 2 (NIPA2) has recently been associated with the development and progression of type 2 diabetes osteoporosis, but the mechanisms involved are still poorly understood. Because mitophagy is involved in the pathology of type 2 diabetes osteoporosis, the present study aimed to explore the relationship among NIPA2, mitophagy and osteoblast osteogenic capacity. NIPA2 expression was reduced in C57BKS background db/db mice and in vitro models of type 2 diabetes osteoporosis, and the activation of mitophagy in primary culture osteoblast-derived from db/db mice and in high glucose-treated human fetal osteoblastic cells (hFOB1.19) was observed. Knockdown, overexpression of NIPA2 and pharmacological inhibition of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) showed that NIPA2 increased osteoblast function, which was likely regulated by PTEN induced kinase 1 (PINK1)/E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy via the PGC-1α/forkhead box O3a(FoxO3a)/mitochondrial membrane potential (MMP) pathway. Furthermore, the negative effect of mitophagy on osteoblast function was confirmed by pharmacological regulation of mitophagy and knockdown of Parkin. Taken together, these results suggest that NIPA2 positively regulates the osteogenic capacity of osteoblasts via the mitophagy pathway in type 2 diabetes.
Collapse
|
5
|
Silva T, Silva JC, Colaco B, Gama A, Duarte-Araújo M, Fernandes MH, Bettencourt A, Gomes P. In vivo tissue response and antibacterial efficacy of minocycline delivery system based on polymethylmethacrylate bone cement. J Biomater Appl 2019; 33:380-391. [PMID: 30223730 DOI: 10.1177/0885328218795290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims the in vivo biological characterization of an innovative minocycline delivery system, based on polymethylmethacrylate bone cement. Bone cements containing 1% or 2.5% (w/w) minocycline were formulated and evaluated through solid-state characterization. Biological evaluation was conducted in vivo, within a rat model, following the subcutaneous and bone tissue implantation, and tissue implantation associated with Staphylococcus aureus is challenging. The assessment of the tissue/biomaterial interaction was conducted by histologic, histomorphometric and microtomographic techniques. Minocycline addition to the composition of the polymethylmethacrylate bone cement did not modify significantly the cement properties. Drug release profile was marked by an initial burst release followed by a low-dosage sustained release. Following the subcutaneous tissue implantation, a reduced immune-inflammatory reaction was verified, with diminished cell recruitment and a thinner fibro-connective capsule formation. Minocycline-releasing cements were found to enhance the bone-to-implant contact and bone tissue formation, following the tibial implantation. Lastly, an effective antibacterial activity was mediated by the implanted cement following the tissue challenging with S. aureus. Kinetic minocycline release profile, attained with the developed polymethylmethacrylate system, modulated adequately the in vivo biological response, lessening the immune-inflammatory activation and enhancing bone tissue formation. Also, an effective in vivo antibacterial activity was established. These findings highlight the adequacy and putative application of the developed system for orthopedic applications.
Collapse
Affiliation(s)
- Tiago Silva
- 1 Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Jose C Silva
- 1 Faculty of Dental Medicine, University of Porto, Porto, Portugal
| | - Bruno Colaco
- 2 University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Adelina Gama
- 2 University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | | | - Maria H Fernandes
- 1 Faculty of Dental Medicine, University of Porto, Porto, Portugal.,4 REQUIMTE/LAQV - University of Porto, Porto, Portugal
| | - Ana Bettencourt
- 5 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Gomes
- 1 Faculty of Dental Medicine, University of Porto, Porto, Portugal.,4 REQUIMTE/LAQV - University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Gonçalves L, Almeida AJ, Jordão L, Ribeiro IA, Ramstedt M, Gomes P, Bettencourt A. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm 2017; 532:241-248. [PMID: 28851574 DOI: 10.1016/j.ijpharm.2017.08.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is a major pathogen in bone associated infections due to its ability to adhere and form biofilms on bone and/or implants. Moreover, recrudescent and chronic infections have been associated with S. aureus capacity to invade and persist within osteoblast cells. With the growing need of novel therapeutic tools, this research aimed to evaluate some important key biological properties of a novel carrier system composed of acrylic bone cement (polymethylmethacrylate - PMMA), loaded with a release modulator (lactose) and an antibiotic (levofloxacin). Levofloxacin-loaded bone cement (BC) exhibited antimicrobial effects against planktonic and biofilm forms of S. aureus (evaluated by a flow chamber system). Moreover, novel BC formulation showed high anti-bacterial intraosteoblast activity. This fact led to the conclusion that levofloxacin released from BC matrices could penetrate the cell membrane of osteoblasts and be active against S. aureus strains in the intracellular environment. Furthermore, levofloxacin-BC formulations showed no significant in vitro cytotoxicity and no allergic potential (measured by the in vivo chorioallantoic membrane assay). Our results indicate that levofloxacin-loaded BC has potential as a local antibiotic delivery system for treating S. aureus associated bone infections.
Collapse
Affiliation(s)
- Magda Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Porto, Portugal
| | | | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa Jordão
- National Institute of Health Dr Ricardo Jorge, Department of Environmental Health, Lisbon, Portugal
| | - Isabel A Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Pedro Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Porto, Portugal; REQUIMTE/LAQV - Universidade do Porto, Porto, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|