1
|
Hakimi F, Jafari H, Hashemikia S, Shabani S, Ramazani A. Chitosan-polyethylene oxide/clay-alginate nanofiber hydrogel scaffold for bone tissue engineering: Preparation, physical characterization, and biomimetic mineralization. Int J Biol Macromol 2023; 233:123453. [PMID: 36709816 DOI: 10.1016/j.ijbiomac.2023.123453] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
This study aimed to prepare a novel organic-mineral nanofiber/hydrogel of chitosan-polyethylene oxide (CS-PEO)/nanoclay-alginate (NC-ALG). The effects of NC particles on the mineralization and biocompatibility of the scaffold were investigated. A layer-by-layer scaffold composed of CS-PEO and NC-ALG was prepared. The morphological properties, swelling, biodegradation, and mechanical behaviors of the scaffolds were evaluated. Furthermore, scaffolds were characterized by the Fourier Transform Infrared (FTIR), the Field Emission Scanning Electron Microscope (FE-SEM), and X-Ray Diffraction (XRD) techniques. Bone-like apatite formation ability of the scaffolds was determined by the mineralization test in a simulated body fluid (M-SBF). In addition, the crystalline phase of bone-like apatite precipitates was investigated by XRD analysis. The cell compatibility of the scaffolds was also studied with osteoblastic cell line MC3T3-E1 by MTT assay. Notably, the incorporation of NC particles in CS-PEO/ALG scaffolds is suitable for bone tissue regeneration which enhances bone-like apatite formation. Further, the hemolysis and MTT assays demonstrated that CS-PEO/NC-ALG scaffold was compatible and safe for MC3T3 cells.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Jafari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samaneh Hashemikia
- Department of Textile Engineering, Urmia University of Technology, Urmia, Iran; Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Siamak Shabani
- Department of Surgery, School of Medicine, Ayatollah Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Ramazani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Luo F, Mao R, Huang Y, Wang L, Lai Y, Zhu X, Fan Y, Wang K, Zhang X. Femtosecond laser optimization of PEEK: efficient bioactivity achieved by synergistic surface chemistry and structures. J Mater Chem B 2022; 10:7014-7029. [PMID: 36043488 DOI: 10.1039/d2tb01142e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly-ether-ether-ketone (PEEK) is considered a potential orthopedic material due to the excellent mechanical properties and chemical resistance, but its biological inertness hampers its further clinical application. In this study, advanced femtosecond laser microfabrication technology was utilized to induce the change of the surface characteristics of PEEK to improve its bioactivity. Meanwhile, the mechanism of surface reaction and improved bioactivity was interpreted in detail from the perspective of material science. The surface physical-chemical characterization results showed that femtosecond laser etching could increase the surface energy, and the contents of active sites including amorphous carbon and carbon-hydroxyl on PEEK surfaces. In vitro validation experiments demonstrated that the samples etched with a femtosecond laser had a better ability to induce apatite deposition and cell proliferation than those treated with popular sulfonation modification, which would lead to better bioactivity and osteointegration. The current work fully presents the mechanism of the femtosecond laser low-temperature plasma effect on PEEK and the resulting surface characteristics, which could broaden the application of PEEK in the orthopedic field. Moreover, it has great potential in the surface design and modification of other biomaterials with enhanced bioactivity.
Collapse
Affiliation(s)
- Fengxiong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ruiqi Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yawen Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ling Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yixiang Lai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China. .,Research Center for Material Genome Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Moradi A, Pakizeh M, Ghassemi T. A review on bovine hydroxyapatite; extraction and characterization. Biomed Phys Eng Express 2021; 8. [PMID: 34879359 DOI: 10.1088/2057-1976/ac414e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
High rate of bone grafting surgeries emphasizes the need for optimal bone substitutes. Biomaterials mimicking the interconnected porous structure of the original bone with osteoconductive and osteoinductive capabilities have long been considered. Hydroxyapatite (HA), as the main inorganic part of natural bone, has exhibited excellent regenerative properties in bone tissue engineering. This manuscript reviews the HA extraction methods from bovine bone, as one of the principal biosources. Essential points in the extraction process have also been highlighted. Characterization of the produced HA through gold standard methods such as XRD, FTIR, electron microscopies (SEM and TEM), mechanical/thermodynamic tests, and bioactivity analysis has been explained in detail. Finally, future perspectives for development of HA constructs are mentioned.
Collapse
Affiliation(s)
- Ali Moradi
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences (MUM), Mashhad, Iran.,Orthopedic Research Center, Mashhad University of Medical Sciences (MUM), Mashhad, Iran
| | - Majid Pakizeh
- Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
| | - Toktam Ghassemi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
4
|
Recombinant IGF-1 Induces Sex-Specific Changes in Bone Composition and Remodeling in Adult Mice with Pappa2 Deficiency. Int J Mol Sci 2021; 22:ijms22084048. [PMID: 33919940 PMCID: PMC8070906 DOI: 10.3390/ijms22084048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/04/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Deficiency of pregnancy-associated plasma protein-A2 (PAPP-A2), an IGF-1 availability regulator, causes postnatal growth failure and dysregulation of bone size and density. The present study aimed to determine the effects of recombinant murine IGF-1 (rmIGF-1) on bone composition and remodeling in constitutive Pappa2 knock-out (ko/ko) mice. To address this challenge, X-ray diffraction (XRD), attenuated total reflection-fourier transform infra-red (ATR-FTIR) spectroscopy and gene expression analysis of members of the IGF-1 system and bone resorption/formation were performed. Pappa2ko/ko mice (both sexes) had reduced body and bone length. Male Pappa2ko/ko mice had specific alterations in bone composition (mineral-to-matrix ratio, carbonate substitution and mineral crystallinity), but not in bone remodeling. In contrast, decreases in collagen maturity and increases in Igfbp3, osteopontin (resorption) and osteocalcin (formation) characterized the bone of Pappa2ko/ko females. A single rmIGF-1 administration (0.3 mg/kg) induced short-term changes in bone composition in Pappa2ko/ko mice (both sexes). rmIGF-1 treatment in Pappa2ko/ko females also increased collagen maturity, and Igfbp3, Igfbp5, Col1a1 and osteopontin expression. In summary, acute IGF-1 treatment modifies bone composition and local IGF-1 response to bone remodeling in mice with Pappa2 deficiency. These effects depend on sex and provide important insights into potential IGF-1 therapy for growth failure and bone loss and repair.
Collapse
|
5
|
Fan X, Li L, Zhu H, Yan L, Zhu S, Yan Y. Preparation, characterization, and in vitro and in vivo biocompatibility evaluation of polymer (amino acid and glycolic acid)/hydroxyapatite composite for bone repair. Biomed Mater 2021; 16:025004. [PMID: 33599212 DOI: 10.1088/1748-605x/abdbdd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A composite of hydroxyapatite (HA) and polymers prepared from amino acids and glycolic acid (PAG) was synthesized using an in situ melting polycondensation method. The in vitro degradability and bioactivity of the composite were evaluated, as well as its in vitro and in vivo biocompatibility based on subcutaneous and osseous implantation of samples in New Zealand white rabbits for 8 weeks. The results showed that the PAG/HA composite had higher degradability than PAG and showed a typical apatite morphology after immersion in simulated body fluid for 5 d. Both the PAG/HA composite and PAG alone showed excellent in vitro biocompatibility. In the rabbit model, PAG/HA composite could induce formation of new bone tissue after 4 weeks implantation, mainly owing to the excellent in vivo bioactivity of the implant. These results suggest that PAG/HA composites have the potential to guide bone regeneration and could be used as biodegradable biomaterials for bone repair.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Mohd Daud N, Hussein Al-Ashwal R, Abdul Kadir MR, Saidin S. Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: Apatite formation and in vitro osteoblastic evaluation. Ann Anat 2018; 220:29-37. [PMID: 30048761 DOI: 10.1016/j.aanat.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 11/29/2022]
Abstract
Immobilization of chlorhexidine (CHX) on stainless steel 316L (SS316L), assisted by a polydopamine film as an intermediate layer is projected as an approach in combating infection while aiding bone regeneration for coating development on orthopedic and dental implants. This study aimed to investigate the ability of CHX coating to promote apatite layer, osteoblast cells viability, adhesion, osteogenic differentiation and mineralization. Stainless steel 316L disks were pre-treated, grafted with a polydopamine film and immobilized with different concentrations of CHX (10-30mM). The apatite layer formation was determined through an in vitro simulated body fluid (SBF) test by ATR-FTIR and SEM-EDX analyses. The osteoblastic evaluations including cells viability, cells adhesion, osteogenic differentiation and mineralization were assessed with human fetal osteoblast cells through MTT assay, morphology evaluation under FESEM, ALP enzyme activity and Alizarin Red S assay. The apatite layer was successfully formed on the CHX coated disks, demonstrating potential excellent bioactivity property. The CHX coatings were biocompatible with the osteoblast cells at low CHX concentration (<20mM) with good adhesion on the metal surfaces. The increment of ALP activity and calcium deposition testified that the CHX coated disks able to support osteoblastic maturation and mineralization. These capabilities give a promising value to the CHX coating to be implied in bone regeneration area.
Collapse
Affiliation(s)
- Nurizzati Mohd Daud
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Rania Hussein Al-Ashwal
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohammed Rafiq Abdul Kadir
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Medical Implant Technology Group, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering & Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
7
|
Nourani-Vatani M, Ganjali M, Solati-Hashtjin M, Zarrintaj P, Reza Saeb M. Zirconium-based hybrid coatings: A versatile strategy for biomedical engineering applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.04.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Tapsir Z, Jamaludin FH, Pingguan-Murphy B, Saidin S. Immobilisation of hydroxyapatite-collagen on polydopamine grafted stainless steel 316L: Coating adhesion and in vitro cells evaluation. J Biomater Appl 2017; 32:987-995. [PMID: 29187035 DOI: 10.1177/0885328217744081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
Collapse
Affiliation(s)
- Zafirah Tapsir
- 1 Biomedical Sciences Laboratory, Faculty of Biosciences & Medical Engineering (FBME), 54702 Universiti Teknologi Malaysia , Skudai, Johor, Malaysia
| | - Farah H Jamaludin
- 1 Biomedical Sciences Laboratory, Faculty of Biosciences & Medical Engineering (FBME), 54702 Universiti Teknologi Malaysia , Skudai, Johor, Malaysia
| | - Belinda Pingguan-Murphy
- 2 Biomedical Engineering Department, Faculty of Engineering, 236783 University of Malaya , Kuala Lumpur, Malaysia
| | - Syafiqah Saidin
- 3 IJN-UTM Cardio Centre, 54702 Universiti Teknologi Malaysia , Skudai, Johor, Malaysia
| |
Collapse
|
9
|
Tunçay EÖ, Demirtaş TT, Gümüşderelioğlu M. Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds. J Trace Elem Med Biol 2017; 40:72-81. [PMID: 28159225 DOI: 10.1016/j.jtemb.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
Abstract
The aim of the present study is to produce boron (B) doped hydroxyapatite (B-HAp), which has an osteoinductive property, and investigate in-vitro osteogenesis potential of B-HAp coated chitosan (B-HAp/Ch) scaffolds. At first, B-HAp was produced by the interaction of ions within the concentrated synthetic body fluid containing boron (B-SBF) with microwave energy. Boron incorporation into HAp structure was performed by the substitution of borate ions with phosphate and hydroxyl ions. Experiments were carried out with different microwave powers and exposure times, and optimum conditions for the production of B-HAp were determined. B-HAp precipitated from B-SBF by 600W microwave power has 1.15±0.11% (w/w) B, 1.40 (w/w) Ca/P ratio, 4.30±0.07% (w/w) carbonate content, 30±4nm rod-like morphology and bone-like amorphous structure. Then, chitosan scaffolds that were prepared by freeze-drying were coated with B-HAp by performing microwave-assisted precipitation in the presence of scaffolds to improve their bioactivities and mechanical properties. The formation of apatite layer and the penetration of apatites into the pores were observed by scanning electron microscopy (SEM). Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD) analysis also confirmed the presence of B-HAp layer. As control, hydroxyapatite coated chitosan scaffolds (HAp/Ch) produced at the same conditions were used. The results of cell culture studies indicated that B releasing from scaffolds enhances proliferation and osteoblastic differentiation of MC3T3-E1 cells. This work emphasized the importance of the use of B within the scaffolds for enhancing in-vitro bone tissue engineering applications.
Collapse
Affiliation(s)
- Ekin Ö Tunçay
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - T Tolga Demirtaş
- Hacettepe University, Department of Bioengineering, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Department of Bioengineering, Ankara, Turkey; Hacettepe University, Department of Chemical Engineering, Ankara, Turkey.
| |
Collapse
|
10
|
Mendes MW, Ágreda CG, Bressiani AH, Bressiani JC. A new titanium based alloy Ti–27Nb–13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:671-7. [DOI: 10.1016/j.msec.2016.03.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/14/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
11
|
Abdelrahim RA, Badr NA, Baroudi K. The effect of plasma surface treatment on the bioactivity of titanium implant materials (in vitro). J Int Soc Prev Community Dent 2016; 6:15-21. [PMID: 27011927 PMCID: PMC4784058 DOI: 10.4103/2231-0762.171592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The surface of an implantable biomaterial plays a very important role in determining the biocompatibility, osteoinduction, and osteointegration of implants because it is in intimate contact with the host bone and soft tissues. OBJECTIVE This study was aimed to assess the effect of plasma surface treatment on the bioactivity of titanium alloy (Ti-6Al-4V). MATERIALS AND METHODS Fifteen titanium alloy samples were used in this study. The samples were divided into three groups (with five samples in each group). Five samples were kept untreated and served as control (group A). Another five plasma samples were sprayed for nitrogen ion implantation on their surfaces (group B) and the last five samples were pre-etched with acid before plasma treatment (group C). All the investigated samples were immersed for 7 days in Hank's balanced salt solution (HBSS) which was used as a simulating body fluid (SBF) at pH 7.4 and 37°C. HBSS was renewed every 3 days. The different surfaces were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXA), and Fourier Transformation Infrared Spectroscopy (FTIR). RESULTS Nitriding of Ti-alloy samples via plasma nitrogen ion implantation increased the bioactivity of titanium. Moreover, the surface topography affected the chemical structure of the formed apatite. Increasing the surface roughness enhanced the bioactivity of the implant material. CONCLUSIONS Nitridation can be exploited as an effective way to promote the formation of bone-like material on the implant surface.
Collapse
Affiliation(s)
- Ramy A Abdelrahim
- Department of Dental Biomaterials, School of Dentistry, Al-Azhar University, Cairo, Egypt; Department of Restorative Dental Sciences, Alfarabi Colleges, Riyadh, Saudi Arabia
| | - Nadia A Badr
- Department of Dental Biomaterials, Cairo University, Cairo, Egypt
| | - Kusai Baroudi
- Department of Preventive Dental Sciences, Alfarabi Colleges, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Nourmohammadi J, Shahriarpanah S, Asadzadehzanjani N, Khaleghpanah S, Heidari S. Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications. STARCH-STARKE 2016. [DOI: 10.1002/star.201500216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jhamak Nourmohammadi
- Faculty of New Sciences and Technologies; Department of Life Science Engineering; University of Tehran; Tehran Iran
| | - Sepideh Shahriarpanah
- Faculty of New Sciences and Technologies; Department of Life Science Engineering; University of Tehran; Tehran Iran
| | - Negin Asadzadehzanjani
- Faculty of New Sciences and Technologies; Department of Life Science Engineering; University of Tehran; Tehran Iran
| | | | | |
Collapse
|
13
|
Lee MJ, Park JB, Kim HH, Ki CS, Park SY, Kim HJ, Park YH. Surface coating of hydroxyapatite on silk nanofiber through biomineralization using ten times concentrated simulated body fluid and the evaluation for bone regeneration. Macromol Res 2014. [DOI: 10.1007/s13233-014-2114-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Chatelain G, Bourgeois D, Ravaux J, Averseng O, Vidaud C, Meyer D. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions. Biomed Mater 2013; 9:015003. [DOI: 10.1088/1748-6041/9/1/015003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Mutsuzaki H, Yokoyama Y, Ito A, Oyane A. Formation of apatite coatings on an artificial ligament using a plasma- and precursor-assisted biomimetic process. Int J Mol Sci 2013; 14:19155-68. [PMID: 24048251 PMCID: PMC3794826 DOI: 10.3390/ijms140919155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 12/02/2022] Open
Abstract
A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment) to create a precoating containing amorphous calcium phosphate (ACP) which is an apatite precursor. To grow an apatite layer on the ACP precoating, the ACP-precoated specimen was immersed for 24 h in a simulated body fluid with ion concentrations approximately equal to those in human blood plasma. The plasma surface modification was necessary to create an adequate apatite coating and to improve the coating adhesion depending on the plasma power density. The apatite coating prepared using the optimized conditions formed a thin-film that covered the entire surface of the artificial ligament. The resulting apatite-coated artificial ligament should exhibit improved osseointegration within the bone tunnel and possesses great potential for use in ligament reconstructions.
Collapse
Affiliation(s)
- Hirotaka Mutsuzaki
- Department of Orthopaedic Surgery, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan; E-Mail:
| | - Yoshiro Yokoyama
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba-shi, Ibaraki 305-8562, Japan; E-Mail:
| | - Atsuo Ito
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1, Higashi, Tsukuba-shi, Ibaraki 305-8566, Japan; E-Mail:
| | - Ayako Oyane
- Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba-shi, Ibaraki 305-8562, Japan; E-Mail:
| |
Collapse
|
16
|
Magalhães J, Crawford A, Hatton PV, Blanco FJ, Román JS. Mineralization of porous hydrogels based on semi-interpenetrated networks of poly[2-ethyl(2-pyrrolidone) methacrylate] and hyaluronic acid in simulated body fluid. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513494618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly[2-ethyl(2-pyrrolidone) methacrylate] and hyaluronic acid hydrogels were synthesized via free-radical polymerization of 2-ethyl(2-pyrrolidone) methacrylate, hyaluronic acid and different crosslinkers. The ability of these hydrogels to induce apatite formation by incubating in simulated body fluid was investigated. The effect of hyaluronic acid content, crosslinkers and immersion time on mineralization behaviour and interface properties as well as the metabolic activity of different cultured cells were also determined. The bioactivity of the poly[2-ethyl(2-pyrrolidone) methacrylate] and hyaluronic acid hydrogels along with cell viability data indicated their potential application in bone tissue engineering.
Collapse
Affiliation(s)
- Joana Magalhães
- Rheumatology Division, CIBER–BBN/ISCIII, Tissue Engineering and Cellular Therapy Group (CBTTC-CHUAC), INIBIC – Hospital Universitario de A Coruña, A Coruña, Spain
| | - Aileen Crawford
- Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Paul V Hatton
- Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Francisco J Blanco
- Rheumatology Division, CIBER–BBN/ISCIII, Tissue Engineering and Cellular Therapy Group (CBTTC-CHUAC), INIBIC – Hospital Universitario de A Coruña, A Coruña, Spain
| | - Julio San Román
- Biomaterials Department, Institute of Polymer Science and Technology, CSIC and CIBER–BBN, Madrid, Spain
| |
Collapse
|
17
|
Costa DO, Prowse PDH, Chrones T, Sims SM, Hamilton DW, Rizkalla AS, Dixon SJ. The differential regulation of osteoblast and osteoclast activity by surface topography of hydroxyapatite coatings. Biomaterials 2013; 34:7215-26. [PMID: 23830579 DOI: 10.1016/j.biomaterials.2013.06.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
Abstract
The behavior of bone cells is influenced by the surface chemistry and topography of implants and scaffolds. Our purpose was to investigate how the topography of biomimetic hydroxyapatite (HA) coatings influences the attachment and differentiation of osteoblasts, and the resorptive activity of osteoclasts. Using strategies reported previously, we directly controlled the surface topography of HA coatings on polycaprolactone discs. Osteoblasts and osteoclasts were incubated on HA coatings having distinct isotropic topographies with submicrometer and micro-scale features. Osteoblast attachment and differentiation were greater on more complex, micro-rough HA surfaces (Ra ~2 μm) than on smoother topographies (Ra ~1 μm). In contrast, activity of the osteoclast marker tartrate-resistant acid phosphatase was greater on smoother than on micro-rough surfaces. Furthermore, scanning electron microscopy revealed the presence of resorption lacunae exclusively on smoother HA coatings. Inhibition of resorption on micro-rough surfaces was associated with disruption of filamentous actin sealing zones. In conclusion, HA coatings can be prepared with distinct topographies, which differentially regulate responses of osteoblasts, as well as osteoclastic activity and hence susceptibility to resorption. Thus, it may be possible to design HA coatings that induce optimal rates of bone formation and degradation specifically tailored for different applications in orthopedics and dentistry.
Collapse
Affiliation(s)
- Daniel O Costa
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Okada M, Furuzono T. Hydroxylapatite nanoparticles: fabrication methods and medical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064103. [PMID: 27877527 PMCID: PMC5099760 DOI: 10.1088/1468-6996/13/6/064103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/19/2012] [Indexed: 05/30/2023]
Abstract
Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Tsutomu Furuzono
- Department of Biomedical Engineering, School of Biology-Oriented Science and Technology, Kinki University, 930 Nishi-Mitani, Kinokawa, Wakayama, 649-6493, Japan
| |
Collapse
|
19
|
Huang D, Zuo Y, Li J, Zou Q, Zhang L, Gong M, Wang L, Li L, Li Y. Bioactive composite gradient coatings of nano-hydroxyapatite/polyamide66 fabricated on polyamide66 substrates. J R Soc Interface 2012; 9:1450-7. [PMID: 22258549 PMCID: PMC3367815 DOI: 10.1098/rsif.2011.0782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/16/2011] [Indexed: 11/12/2022] Open
Abstract
Tightly bonding of bioactive coating is the first crucial need for orthopaedic implants. This study describes a novel and convenient technique to prepare bioactive coating with high adhesion on orthopaedic substitutes made of polymeric matrix. Here, a chemical corrosion method has been adopted to fabricate a coating on the surface of injection-moulded polyamide66 (PA66) substrates by corrosive nano-hydroxyapatite/polyamide66 (n-HA/PA66) composite slurry. Scanning electron microscopy observation shows that a porous chemical corrosion region presents between the coating and dense PA66 substrate. Energy-dispersive X-ray spectroscopy analysis indicates that the chemical corrosion region is mainly composed of PA66 matrix, and the coating layer is an n-HA-rich layer. Both the pore size and n-HA composition increase gradually from the polymeric substrate towards the coating surface. Mechanical testing shows the bonding strength can reach 13.7 ± 0.2 MPa, which is much higher than that fabricated on polymeric matrix by other coating methods. The gradual transition in coating structure and composition benefits for the interface bonding and for the surface bone-bonding bioactivity. Subsequent cell experiments corroborate n-HA-rich coating and a porous structure is benefitting for cell attachment and proliferation. The convenient coating method could be popularized and applied on similar polymer implants to produce a tightly and porous bioactive coating for bone tissue regeneration.
Collapse
Affiliation(s)
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | | | | | | | | | | | | | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
20
|
Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci 2012; 13:6053-6072. [PMID: 22754349 PMCID: PMC3382770 DOI: 10.3390/ijms13056053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023] Open
Abstract
Growth factors play important roles in tissue regeneration. However, because of their instability and diffusible nature, improvements in their performance would be desirable for therapeutic applications. Conferring binding affinities would be one way to improve their applicability. Here we review techniques for conjugating growth factors to polypeptides with particular affinities. Conjugation has been designed at the level of gene fusion and of polypeptide ligation. We summarize and discuss the designs and applications of binding growth factors prepared by such conjugation approaches.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kitajima
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Kim J, McBride S, Tellis B, Alvarez-Urena P, Song YH, Dean DD, Sylvia VL, Elgendy H, Ong J, Hollinger JO. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 2012; 4:025003. [DOI: 10.1088/1758-5082/4/2/025003] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Karfeld-Sulzer LS, Weber FE. Biomaterial development for oral and maxillofacial bone regeneration. J Korean Assoc Oral Maxillofac Surg 2012. [DOI: 10.5125/jkaoms.2012.38.5.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Lindsay S. Karfeld-Sulzer
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Franz E. Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Xia Z, Yu X, Wei M. Biomimetic collagen/apatite coating formation on Ti6Al4V substrates. J Biomed Mater Res B Appl Biomater 2011; 100:871-81. [DOI: 10.1002/jbm.b.31970] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/30/2011] [Accepted: 07/08/2011] [Indexed: 11/11/2022]
|
24
|
Xia W, Grandfield K, Hoess A, Ballo A, Cai Y, Engqvist H. Mesoporous titanium dioxide coating for metallic implants. J Biomed Mater Res B Appl Biomater 2011; 100:82-93. [PMID: 21954047 DOI: 10.1002/jbm.b.31925] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 06/05/2011] [Accepted: 06/12/2011] [Indexed: 01/31/2023]
Abstract
A bioactive mesoporous titanium dioxide (MT) coating for surface drug delivery has been investigated to develop a multifunctional implant coating, offering quick bone bonding and biological stability. An evaporation induced self-assembly (EISA) method was used to prepare a mesoporous titanium dioxide coating of the anatase phase with BET surface area of 172 m(2)/g and average pore diameter of 4.3 nm. Adhesion tests using the scratch method and an in situ screw-in/screw-out technique confirm that the MT coating bonds tightly with the metallic substrate, even after removal from bone. Because of its high surface area, the bioactivity of the MT coating is much better than that of a dense TiO(2) coating of the same composition. Quick formation of hydroxyapatite (HA) in vitro can be related to enhance bonding with bone. The uptake of antibiotics by the MT coating reached 13.4 mg/cm(3) within a 24 h loading process. A sustained release behavior has been obtained with a weak initial burst. By using Cephalothin as a model drug, drug loaded MT coating exhibits a sufficient antibacterial effect on the material surface, and within millimeters from material surface, against E.coli. Additionally, the coated and drug loaded surfaces showed no cytotoxic effect on cell cultures of the osteoblastic cell line MG-63. In conclusion, this study describes a novel, biocompatiblemesoporous implant coating, which has the ability to induce HA formation and could be used as a surface drug-delivery system.
Collapse
Affiliation(s)
- Wei Xia
- Applied Materials Science, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
25
|
Marković S, Veselinović L, Lukić MJ, Karanović L, Bračko I, Ignjatović N, Uskoković D. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. Biomed Mater 2011; 6:045005. [PMID: 21659698 DOI: 10.1088/1748-6041/6/4/045005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [00l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 °C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found.
Collapse
Affiliation(s)
- Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11001 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
26
|
Recombinant hBMP4 incorporated with non-canonical amino acid for binding to hydroxyapatite. Biotechnol Lett 2011; 33:1885-90. [DOI: 10.1007/s10529-011-0637-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/19/2011] [Indexed: 12/30/2022]
|
27
|
Williamson PA, Blower PJ, Green MA. Synthesis of porous hollow silica nanostructures using hydroxyapatite nanoparticle templates. Chem Commun (Camb) 2011; 47:1568-70. [PMID: 21116531 PMCID: PMC6219700 DOI: 10.1039/c0cc04257a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous hollow spherical and rod-like silica nanoparticles were obtained via a surfactant templating method adopting hydroxyapatite (HAp) nanoparticles as an etchable core material.
Collapse
Affiliation(s)
- Peter A. Williamson
- Division of Imaging Sciences, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Philip J. Blower
- Division of Imaging Sciences, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Mark A. Green
- Department of Physics, King’s College London, The Strand, London WC2R 2LS UK
| |
Collapse
|
28
|
Campayo L, Grandjean A, Coulon A, Delorme R, Vantelon D, Laurencin D. Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm14157k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Huang X, Cao H, Shi Z, Xu H, Fang J, Yin J, Pan Q. A study on mineralization behavior of amino-terminated hyperbranched polybenzimidazole membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:1829-1835. [PMID: 20372986 DOI: 10.1007/s10856-010-4059-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
Amino-bearing polymers, coated with apatite or similar minerals, have attracted significant attention for their potential in medical applications. In this study, an amino-terminated hyperbranched polybenzimidazole (HBPBI) membrane was used as a substrate for apatite growth. The membrane was soaked in solutions of CaCl2, Na2HPO4 and SBF to yield an apatite coating. The structure and morphology of the layers were characterized by FTIR-ATR, XRD and FESEM. The results indicate that the high densities of amino, imide and imidazole groups on the amino-terminated HBPBI membrane provide active sites for the growth of apatite.
Collapse
Affiliation(s)
- Xiayun Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Modular peptides promote human mesenchymal stem cell differentiation on biomaterial surfaces. Acta Biomater 2010; 6:21-8. [PMID: 19665062 DOI: 10.1016/j.actbio.2009.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 12/22/2022]
Abstract
Molecular design strategies in biomedical applications often involve creating modular "fusion" proteins, in which distinct domains within a single molecule can perform multiple functions. We have synthesized a new class of modular peptides that include a biologically active sequence derived from the growth factor BMP-2 and a series of hydroxyapatite-binding sequences inspired by the N-terminal alpha-helix of osteocalcin. These modular peptides can bind in a sequence-dependent manner to the surface of "bone-like" hydroxyapatite coatings, which are nucleated and grown on a biodegradable polymer surface via a biomimetic process. The BMP-2-derived sequence of the modular peptides is biologically active, as measured by its ability to promote osteogenic differentiation of human mesenchymal stem cells. Our study indicates that the modular peptides described here are multifunctional, and the characteristics of this approach suggest that it can potentially be applied to a range of biomaterials for regenerative medicine applications.
Collapse
|
31
|
Mao K, Yang Y, Li J, Hao L, Tang P, Wang Z, Wen N, Du M, Wang J, Wang Y. Investigation of the histology and interfacial bonding between carbonated hydroxyapatite cement and bone. Biomed Mater 2009; 4:045003. [DOI: 10.1088/1748-6041/4/4/045003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|