1
|
Graham DJ, Gamble LJ. Back to the basics of time-of-flight secondary ion mass spectrometry of bio-related samples. I. Instrumentation and data collection. Biointerphases 2023; 18:021201. [PMID: 36990800 PMCID: PMC10063322 DOI: 10.1116/6.0002477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used widely throughout industrial and academic research due to the high information content of the chemically specific data it produces. Modern ToF-SIMS instruments can generate high mass resolution data that can be displayed as spectra and images (2D and 3D). This enables determining the distribution of molecules across and into a surface and provides access to information not obtainable from other methods. With this detailed chemical information comes a steep learning curve in how to properly acquire and interpret the data. This Tutorial is aimed at helping ToF-SIMS users to plan for and collect ToF-SIMS data. The second Tutorial in this series will cover how to process, display, and interpret ToF-SIMS data.
Collapse
|
2
|
Kuzmenka D, Sewohl C, König A, Flath T, Hahnel S, Schulze FP, Hacker MC, Schulz-Siegmund M. Sustained Calcium(II)-Release to Impart Bioactivity in Hybrid Glass Scaffolds for Bone Tissue Engineering. Pharmaceutics 2020; 12:E1192. [PMID: 33302527 PMCID: PMC7764395 DOI: 10.3390/pharmaceutics12121192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
In this study, we integrated different calcium sources into sol-gel hybrid glass scaffolds with the aim of producing implants with long-lasting calcium release while maintaining mechanical strength of the implant. Calcium(II)-release was used to introduce bioactivity to the material and eventually support implant integration into a bone tissue defect. Tetraethyl orthosilicate (TEOS) derived silica sols were cross-linked with an ethoxysilylated 4-armed macromer, pentaerythritol ethoxylate and processed into macroporous scaffolds with defined pore structure by indirect rapid prototyping. Triethyl phosphate (TEP) was shown to function as silica sol solvent. In a first approach, we investigated the integration of 1 to 10% CaCl2 in order to test the hypothesis that small CaCl2 amounts can be physically entrapped and slowly released from hybrid glass scaffolds. With 5 and 10% CaCl2 we observed an extensive burst release, whereas slightly improved release profiles were found for lower Calcium(II) contents. In contrast, introduction of melt-derived bioactive 45S5 glass microparticles (BG-MP) into the hybrid glass scaffolds as another Calcium(II) source led to an approximately linear release of Calcium(II) in Tris(hydroxymethyl)aminomethane (TRIS) buffer over 12 weeks. pH increase caused by BG-MP could be controlled by their amount integrated into the scaffolds. Compression strength remained unchanged compared to scaffolds without BG-MP. In cell culture medium as well as in simulated body fluid, we observed a rapid formation of a carbonated hydroxyapatite layer on BG-MP containing scaffolds. However, this mineral layer consumed the released Calcium(II) ions and prevented an additional increase in Calcium(II) concentration in the cell culture medium. Cell culture studies on the different scaffolds with osteoblast-like SaOS-2 cells as well as bone marrow derived mesenchymal stem cells (hMSC) did not show any advantages concerning osteogenic differentiation due to the integration of BG-MP into the scaffolds. Nonetheless, via the formation of a hydroxyapatite layer and the ability to control the pH increase, we speculate that implant integration in vivo and bone regeneration may benefit from this concept.
Collapse
Affiliation(s)
- Dzmitry Kuzmenka
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
| | - Claudia Sewohl
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
| | - Andreas König
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany; (A.K.); (S.H.)
| | - Tobias Flath
- Department of Mechanical and Energy Engineering, University of Applied Sciences Leipzig, 04277 Leipzig, Germany; (T.F.); (F.P.S.)
| | - Sebastian Hahnel
- Department of Prosthetic Dentistry and Dental Materials Science, Leipzig University, 04103 Leipzig, Germany; (A.K.); (S.H.)
| | - Fritz Peter Schulze
- Department of Mechanical and Energy Engineering, University of Applied Sciences Leipzig, 04277 Leipzig, Germany; (T.F.); (F.P.S.)
| | - Michael C. Hacker
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany; (D.K.); (C.S.); (M.C.H.)
| |
Collapse
|
3
|
Bonnin EA, Rizzoli SO. Novel Secondary Ion Mass Spectrometry Methods for the Examination of Metabolic Effects at the Cellular and Subcellular Levels. Front Behav Neurosci 2020; 14:124. [PMID: 32792922 PMCID: PMC7384447 DOI: 10.3389/fnbeh.2020.00124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/24/2020] [Indexed: 11/13/2022] Open
Abstract
The behavior of an animal has substantial effects on its metabolism. Such effects, including changes in the lipid composition of different organs, or changes in the turnover of the proteins, have typically been observed using liquid mass spectrometry methods, averaging the effect of animal behavior across tissue samples containing multiple cells. These methods have provided the scientific community with valuable information, but have limited resolution, making it difficult if not impossible to examine metabolic effects at the cellular and subcellular levels. Recent advances in the field of secondary ion mass spectrometry (SIMS) have made it possible to examine the metabolic effects of animal behavior with high resolution at the nanoscale, enabling the analysis of the metabolic effects of behavior on individual cells. In this review we summarize and present these emerging methods, beginning with an overview of the SIMS technique. We then discuss the specific application of nanoscale SIMS (NanoSIMS) to examine cell behavior. This often requires the use of isotope labeling to highlight specific sections of the cell for analysis, an approach that is presented at length in this review article. We also present SIMS applications concerning animal and cell behavior, from development and aging to changes in the cellular activity programs. We conclude that the emerging group of SIMS technologies represents an exciting set of tools for the study of animal behavior and of its effects on internal metabolism at the smallest possible scales.
Collapse
Affiliation(s)
- Elisa A. Bonnin
- Department of Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory Physiology, Excellence Cluster Multiscale Bioimaging, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Taylor MJ, Graham DJ, Gamble LJ. Time-of-flight secondary ion mass spectrometry three-dimensional imaging of surface modifications in poly(caprolactone) scaffold pores. J Biomed Mater Res A 2019; 107:2195-2204. [PMID: 31116499 PMCID: PMC6690353 DOI: 10.1002/jbm.a.36729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
Scaffolds composed of synthetic polymers such as poly(caprolactone) (PCL) are widely used for the support and repair of tissues in biomedicine. Pores are common features in scaffolds as they facilitate cell penetration. Various surface modifications can be performed to promote key biological responses to these scaffolds. However, verifying the chemistry of these materials post surface modification is problematic due to the combination of three-dimensional (3D) topography and surface sensitivity. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is commonly used to correlate surface chemistry with cell response. In this study, 3D imaging mass spectrometry analysis of surface modified synthetic polymer scaffolds is demonstrated using PCL porous scaffold, a pore filling polymer sample preparation, and 3D imaging ToF-SIMS. We apply a simple sample preparation procedure, filling the scaffold pores with a poly(vinyl alcohol)/glycerol mixture to remove topographic influence on image quality. This filling method allows the scaffold (PCL) and filler secondary ions to be reconstructed into a 3D chemical image of the pore. Furthermore, we show that surface modifications in the pores of synthetic polymer scaffolds can be mapped in 3D. Imaging of "dry" and "wet" surface modifications is demonstrated as well as a comparison of surface modifications with relatively strong ToF-SIMS peaks (fluorocarbon films [FC]) and to more biologically relevant surface modification of a protein (bovine serum albumin [BSA]). We demonstrate that surface modifications can be imaged in 3D showing that characteristic secondary ions associated with FC and BSA are associated with C3 F8 plasma treatment and BSA, respectively within the pore.
Collapse
Affiliation(s)
- Michael J Taylor
- NESAC/BIO, Department of Bioengineering, University of Washington, Seattle, Washington
| | - Daniel J Graham
- NESAC/BIO, Department of Bioengineering, University of Washington, Seattle, Washington
| | - Lara J Gamble
- NESAC/BIO, Department of Bioengineering, University of Washington, Seattle, Washington
| |
Collapse
|
5
|
Wang C, Wang J, Zeng L, Qiao Z, Liu X, Liu H, Zhang J, Ding J. Fabrication of Electrospun Polymer Nanofibers with Diverse Morphologies. Molecules 2019; 24:E834. [PMID: 30813599 PMCID: PMC6429487 DOI: 10.3390/molecules24050834] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Fiber structures with nanoscale diameters offer many fascinating features, such as excellent mechanical properties and high specific surface areas, making them attractive for many applications. Among a variety of technologies for preparing nanofibers, electrospinning is rapidly evolving into a simple process, which is capable of forming diverse morphologies due to its flexibility, functionality, and simplicity. In such review, more emphasis is put on the construction of polymer nanofiber structures and their potential applications. Other issues of electrospinning device, mechanism, and prospects, are also discussed. Specifically, by carefully regulating the operating condition, modifying needle device, optimizing properties of the polymer solutions, some unique structures of core⁻shell, side-by-side, multilayer, hollow interior, and high porosity can be obtained. Taken together, these well-organized polymer nanofibers can be of great interest in biomedicine, nutrition, bioengineering, pharmaceutics, and healthcare applications.
Collapse
Affiliation(s)
- Chenyu Wang
- Department of Orthopedics, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Korea.
| | - Jun Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Liangdan Zeng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Ziwen Qiao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiaochen Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - He Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
6
|
Time of flight secondary ion mass spectrometry-A method to evaluate plasma-modified three-dimensional scaffold chemistry. Biointerphases 2018; 13:03B415. [PMID: 29602281 DOI: 10.1116/1.5023005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biopolymers are used extensively in the manufacture of porous scaffolds for a variety of biological applications. The surfaces of these scaffolds are often modified to encourage specific interactions such as surface modification of scaffolds to prevent fouling or to promote a cell supportive environment for tissue engineering implants. However, few techniques can effectively characterize the uniformity of surface modifications in a porous scaffold. By filling the scaffold pores through polymer embedding, followed by analysis with imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS), the distribution and composition of surface chemical species though complex porous scaffolds can be characterized. This method is demonstrated on poly(caprolactone) scaffolds modified with a low-fouling plasma-deposited coating from octafluoropropane via plasma enhanced chemical vapor deposition. A gradient distribution of CF+/CF3+ is observed for scaffolds plasma treated for 5 min, whereas a 20 min treatment results in more uniform distribution of the surface modification throughout the entire scaffold. The authors expect this approach to be widely applicable for ToF-SIMS analysis of scaffolds modified by multiple plasma processing techniques as well as alternative surface modification approaches.
Collapse
|
7
|
Jurowski K, Buszewski B, Piekoszewski W. Bioanalytics in Quantitive (Bio)imaging/Mapping of Metallic Elements in Biological Samples. Crit Rev Anal Chem 2016; 45:334-47. [PMID: 25996031 DOI: 10.1080/10408347.2014.941455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this article is to describe selected analytical techniques and their applications in the quantitative mapping/(bio)imaging of metals in biological samples. This work presents the advantages and disadvantages as well as the appropriate methods of scope for research. Distribution of metals in biological samples is currently one of the most important issues in physiology, toxicology, pharmacology, and other disciplines where functional information about the distribution of metals is essential. This issue is a subject of research in (bio)imaging/mapping studies, which use a variety of analytical techniques for the identification and determination of metallic elements. Increased interest in analytical techniques enabling the (bio)imaging of metals in a variety of biological material has been observed more recently. Measuring the distribution of trace metals in tissues after a drug dose or ingestion of poison-containing metals allows for the studying of pathomechanisms and the pathophysiology of various diseases and disorders related to the management of metals in human and animal systems.
Collapse
Affiliation(s)
- Kamil Jurowski
- a Department of Analytical Chemistry, Faculty of Chemistry , Jagiellonian University in Kraków , Kraków , Poland
| | | | | |
Collapse
|
8
|
Brauer DS. Bioactive glasses—structure and properties. Angew Chem Int Ed Engl 2015; 54:4160-81. [PMID: 25765017 DOI: 10.1002/anie.201405310] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/20/2014] [Indexed: 11/06/2022]
Abstract
Bioactive glasses were the first synthetic materials to show bonding to bone, and they are successfully used for bone regeneration. They can degrade in the body at a rate matching that of bone formation, and through a combination of apatite crystallization on their surface and ion release they stimulate bone cell proliferation, which results in the formation of new bone. Despite their excellent properties and although they have been in clinical use for nearly thirty years, their current range of clinical applications is still small. Latest research focuses on developing new compositions to address clinical needs, including glasses for treating osteoporosis, with antibacterial properties, or for the sintering of scaffolds with improved mechanical stability. This Review discusses how the glass structure controls the properties, and shows how a structure-based design may pave the way towards new bioactive glass implants for bone regeneration.
Collapse
Affiliation(s)
- Delia S Brauer
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstrasse 6, 07743 Jena (Germany) http://www.brauergroup.uni-jena.de.
| |
Collapse
|
9
|
|
10
|
The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples – Definitions, nomenclature and strategies: State of the art. Talanta 2015; 131:273-85. [DOI: 10.1016/j.talanta.2014.07.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 01/04/2023]
|