1
|
Arif M, Javed M, Akhter T. Crosslinked polymeric networks of TiO 2-polymer composites: a comprehensive review. RSC Adv 2024; 14:33843-33863. [PMID: 39469015 PMCID: PMC11514414 DOI: 10.1039/d4ra06922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
The crosslinked network of TiO2-organic polymer composites has gained considerable attention over the past few years. The low band gap of TiO2 particles and the stimuli-responsive behavior of organic polymers make these composites suitable for a wide range of applications in biomedicine, environmental fields, and catalysis. Diverse morphologies and structures of TiO2-polymer composites (TPCs) are documented in the available literature, where the specific architecture of these composites intensely influences their efficiency in various applications. Consequently, a particular shaped TPC is carefully designed to suit specific purposes. This comprehensive review describes the classifications, synthetic approaches, characterizations, and applications of TiO2 nanoparticles decorated in crosslinked organic polymers. It delves into the biomedical, catalytic, adsorption, and environmental applications of these TiO2-polymer composites. The review takes a tutorial approach, systematically exploring and clarifying the applications of TiO2-polymer composites, offering a comprehensive understanding of their different capabilities and uses.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
2
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Tan J, Wang H, Liu S, Li L, Liu H, Liu T, Chen J. Multifunctional nanocoatings with synergistic controlled release of zinc ions and cytokines for precise modulation of vascular intimal reconstruction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 57:102739. [PMID: 38341009 DOI: 10.1016/j.nano.2024.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Vascular stent implantation remains the major therapeutic method for cardiovascular diseases currently. We here introduced crucial biological functional biological function factors (SDF-1α, VEGF) and vital metal ions (Zn2+) into the stent surface to explore their synergistic effect in the microenvironment. The combination of the different factors is known to effectively regulate cellular inflammatory response and selectively regulate cell biological behavior. Meanwhile, in the implemented method, VEGF and Zn2+ were loaded into heparin and poly-l-lysine (Hep-PLL) nanoparticles, ensuring a controlled release of functional molecules with a multi-factor synergistic effect and excellent biological functions in vitro and in vivo. Notably, after 150 days of implantation of the modified stent in rabbits, a thin and smooth new intima was obtained. This study offers a new idea for constructing a modified surface microenvironment and promoting tissue repair.
Collapse
Affiliation(s)
- Jianying Tan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Huanran Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Hengquan Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Tao Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
6
|
Yue Y, Liu Y, Lin Y, Guo F, Cai K, Chen S, Zhang W, Tang S. A carboxymethyl chitosan/oxidized hyaluronic acid composite hydrogel dressing loading with stem cell exosome for chronic inflammation wounds healing. Int J Biol Macromol 2024; 257:128534. [PMID: 38048924 DOI: 10.1016/j.ijbiomac.2023.128534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Stem cell exosomes (Exo) play an important role in the transformation of macrophages, but the rapid clearance of Exo in vivo limits their therapeutic effects for chronic inflammation wounds healing. Here, stem cell Exo was isolated and introduced to a composite hydrogel including carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA) through chemical cross-linking, which formed an Exo-loaded (CMCS/OHA/Exo) hydrogel. The CMCS/OHA/Exo hydrogel exhibited a function of Exo sustained release and an Exo protection within 6 days. This CMCS/OHA/Exo hydrogel was much better than CMCS/OHA hydrogel or Exo solution in macrophage cell phagocytosis, proliferation and migration in vitro, especially, played an obviously positive role in the transformation of macrophages compared with the reference groups. For the treatment of the chronic inflammation wounds in vivo, the CMCS/OHA/Exo hydrogel had the best results at wound heal rate and inhibiting the secretion of inflammatory factors, and it was far superior to reference groups in wound re-epithelization and collagen production. CMCS/OHA/Exo hydrogels can promote Exo release based on hydrogel degradation to regulate macrophages transformation and accelerate chronic wound healing. The study offers a method for preparing Exo-loaded hydrogels that effectively promote the transformation of macrophages and accelerate chronic inflammatory wound healing.
Collapse
Affiliation(s)
- Yan Yue
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Yukai Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Fengbiao Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Kun Cai
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shengqin Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou University, Shantou, Guangdong 515063, PR China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou University, Shantou, Guangdong 515063, PR China
| |
Collapse
|
7
|
Sareło P, Sobieszczańska B, Wysokińska E, Gąsior-Głogowska M, Kałas W, Podbielska H, Wawrzyńska M, Kopaczyńska M. In vitro examinations of the anti-inflammatory interleukin functionalized polydopamine based biomaterial as a potential coating for cardiovascular stents. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Dobrovolskaia MA. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front Immunol 2022; 13:984252. [PMID: 36304452 PMCID: PMC9592561 DOI: 10.3389/fimmu.2022.984252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology carriers have become common in pharmaceutical products because of their benefits to drug delivery, including reduced toxicities and improved efficacy of active pharmaceutical ingredients due to targeted delivery, prolonged circulation time, and controlled payload release. While available examples of reduced drug toxicity through formulation using a nanocarrier are encouraging, current data also demonstrate that nanoparticles may change a drug’s biodistribution and alter its toxicity profile. Moreover, individual components of nanoparticles and excipients commonly used in formulations are often not immunologically inert and contribute to the overall immune responses to nanotechnology-formulated products. Said immune responses may be beneficial or adverse depending on the indication, dose, dose regimen, and route of administration. Therefore, comprehensive toxicology studies are of paramount importance even when previously known drugs, components, and excipients are used in nanoformulations. Recent data also suggest that, despite decades of research directed at hiding nanocarriers from the immune recognition, the immune system’s inherent property of clearing particulate materials can be leveraged to improve the therapeutic efficacy of drugs formulated using nanoparticles. Herein, I review current knowledge about nanoparticles’ interaction with the immune system and how these interactions contribute to nanotechnology-formulated drug products’ safety and efficacy through the lens of over a decade of nanoparticle characterization at the Nanotechnology Characterization Laboratory.
Collapse
|
9
|
Chen B, Liang Y, Song Y, Liang Y, Jiao J, Bai H, Li Y. Photothermal-Controlled Release of IL-4 in IL-4/PDA-Immobilized Black Titanium Dioxide (TiO 2) Nanotubes Surface to Enhance Osseointegration: An In Vivo Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5962. [PMID: 36079344 PMCID: PMC9457063 DOI: 10.3390/ma15175962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Host immune response has gradually been accepted as a critical factor in achieving successful implant osseointegration. The aim of this study is to create a favorable immune microenvironment by the dominant release of IL-4 during the initial few days after implant insertion to mitigate early inflammatory reactions and facilitate osseointegration. Herein, the B-TNT/PDA/IL-4 substrate was established by immobilizing an interleukin-4 (IL-4)/polydopamine (PDA) coating on a black TiO2 nanotube (B-TNT) surface, achieving on-demand IL-4 release under near infrared (NIR) irradiation. Gene Ontology (GO) enrichment analyses based on high-throughput DNA microarray data revealed that IL-4 addition inhibited osteoclast differentiation and function. Animal experiment results suggested that the B-TNT/PDA/IL-4+Laser substrate induced the least inflammatory, tartrate-resistant acid phosphatase, inducible nitric oxide synthase and the most CD163 positive cells, compared to the Ti group at 7 days post-implantation. In addition, 28 days post-implantation, micro-computed tomography results showed the highest bone volume/total volume, trabecular thickness, trabecular number and the lowest trabecular separation, while Hematoxylin-eosin and Masson-trichrome staining revealed the largest amount of new bone formation for the B-TNT/PDA/IL-4+Laser group. This study revealed the osteoimmunoregulatory function of the novel B-TNT/PDA/IL-4 surface by photothermal release of IL-4 at an early period post-implantation, thus paving a new way for dental implant surface modification.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yu Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yunjia Song
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Liang
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Jian Jiao
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology and Key Laboratory of the Educational Ministry of China, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ying Li
- School of Dentistry, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
10
|
3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization. Carbohydr Polym 2022; 281:119077. [DOI: 10.1016/j.carbpol.2021.119077] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
11
|
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res 2022; 10:17. [PMID: 35197462 PMCID: PMC8866424 DOI: 10.1038/s41413-021-00180-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023] Open
Abstract
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem, researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific pH reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration. Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified.
Collapse
|
12
|
Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, Li L. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. J Control Release 2021; 337:236-247. [PMID: 34273419 DOI: 10.1016/j.jconrel.2021.07.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Internal and external factors cause various types of wounds on the skin. Infections, nonhealing chronic wounds, and aesthetic and functional recovery all cause challenges for clinicians. The development of nanotechnology in biomedicine has brought many new materials, methods and therapeutic targets for the treatment of wounds, which are believed to have great prospects. In this work, the nanomaterials applied in different stages to promote wound healing and systematically expounded their mechanisms were reviewed. Then, the difficulties and defects of the present research and suggested methods for improvement were pointed out. Moreover, based on the current application status of nanomaterials in wound treatment, some new ideas for subsequent studies were proposed and the feasibility of intelligent healing by real-time monitoring, precision regulation, and signal transmission between electronic signals and human nerve signals in the future were discussed. This review will provide valuable directions and spark new thoughts for researchers.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Huanxin Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
13
|
Hu P, Chiarini A, Wu J, Freddi G, Nie K, Armato U, Prà ID. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. BURNS & TRAUMA 2021; 9:tkab003. [PMID: 34212056 PMCID: PMC8240536 DOI: 10.1093/burnst/tkab003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy
| | - Jun Wu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Giuliano Freddi
- Silk Biomaterials S.r.l., Via Cavour 2, I-22074, Lomazzo, Lombardy, Italy
| | - Kaiyu Nie
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
14
|
Yu WP, Gong Y, Wang Z, Lu C, Ding JL, Liu XL, Zhu GD, Lin F, Xu JJ, Zhou JL. The biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 for anti-coagulation and anti-thrombus through accelerating endothelialization. RSC Adv 2021; 11:16510-16521. [PMID: 35479169 PMCID: PMC9031326 DOI: 10.1039/d0ra09295a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/18/2021] [Indexed: 12/29/2022] Open
Abstract
The valve replacement is the main treatment of heart valve disease. However, thrombus formation following valve replacement has always been a major clinical drawback. Accelerating the endothelialization of cardiac valve prosthesis is the main approach to reduce thrombus. In the current study, a titanium nanotube was biofunctionalized with a chitosan/genipin heparin hydrogel and the controlled release of interleukin-4 (IL-4), and its regulation of macrophages was investigated to see if it could influence endothelial cells to eventually accelerate endothelialization. TNT60 (titanium dioxide nanotubes, 60 V) with nanoarray was obtained by anodic oxidation of 60 V, and IL-4 was loaded into the nanotube by vacuum drying. The hydrogel (chitosan : genipin = 4 : 1) was applied to the surface of the nanotubes following drying, and the heparin drops were placed on the hydrogel surface with chitosan as the polycation and heparin as the polyanion. A TNT/IL-4/G (G = gel, chitosan/genipin heparin) delivery system was prepared. Our results demonstrated that the biofunctionalization of titanium nanotube with chitosan/genipin heparin hydrogel and the controlled release of IL-4 had a significant regulatory effect on macrophage M2 polarization, reducing the inflammatory factor release and higher secretion of VEGF (vascular endothelial growth factor), which can accelerate the endothelialization of the implant.
Collapse
Affiliation(s)
- Wen Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Ziyao Wang
- Department of Clinical Pathology, The First Affiliated Hospital of Gannan Medical College Ganzhou China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jing Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University Nanchang China
| | - Xin Liang Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Guo Dong Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Feng Lin
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jian Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| | - Jian Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University No. 1 Minde Road Nanchang 330006 Jiangxi China +86 137 6711 7511
| |
Collapse
|
15
|
Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci 2021; 9:1583-1597. [PMID: 33443245 DOI: 10.1039/d0bm01403f] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genipin is a naturally occurring nontoxic cross-linker, which has been widely used for drug delivery due to its excellent biocompatibility, admirable biodegradability and stable cross-linked attributes. These advantages led to its extensive application in the fabrication of hydrogels for drug delivery. This review describes the physicochemical characteristics and pharmacological activities of genipin and attempts to elucidate the detailed mechanisms of the cross-linking reaction between genipin and biomaterials. The current article entails a general review of the different biomaterials cross-linked by genipin: chitosan and its derivatives, collagen, gelatin, etc. The genipin-cross-linked hydrogels for various pharmaceutical applications, including ocular drug delivery, buccal drug delivery, oral drug delivery, anti-inflammatory drug delivery, and antibiotic and antifungal drug delivery, are reported. Finally, the future research directions and challenges of genipin-cross-linked hydrogels for pharmaceutical applications are also discussed in this review.
Collapse
Affiliation(s)
- Yibin Yu
- School of Pharmacy, Liaoning University, Shenyang 110036, China. and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Shuo Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
16
|
Li M, Li C, Zhou Y, Tian H, Deng Q, Liu H, Zhu L, Yin X. Optimization of cinnamaldehyde microcapsule wall materials by experimental and quantitative methods. J Appl Polym Sci 2021. [DOI: 10.1002/app.49667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Changgui Li
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - You Zhou
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Hua Tian
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Qiaoyuan Deng
- School of Materials Science and Engineering Hainan University Haikou PR China
| | - Haifang Liu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College Central South University Haikou PR China
| | - Li Zhu
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Center Hainan University Haikou PR China
| |
Collapse
|
17
|
Pantaroto HN, Cordeiro JM, Pereira LT, de Almeida AB, Nociti Junior FH, Rangel EC, Azevedo Neto NF, da Silva JHD, Barão VAR. Sputtered crystalline TiO 2 film drives improved surface properties of titanium-based biomedical implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111638. [PMID: 33321676 DOI: 10.1016/j.msec.2020.111638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Different crystalline phases in sputtered TiO2 films were tailored to determine their surface and electrochemical properties, protein adsorption and apatite layer formation on titanium-based implant material. Deposition conditions of two TiO2 crystalline phases (anatase and rutile) were established and then grown on commercially pure titanium (cpTi) by magnetron sputtering to obtain the following groups: A-TiO2 (anatase), M-TiO2 (anatase and rutile mixture), R-TiO2 (rutile). Non-treated commercially pure titanium (cpTi) was used as a control. Surfaces characterization included: chemical composition, topography, crystalline phase and surface free energy (SFE). Electrochemical tests were conducted using simulated body fluid (SBF). Albumin adsorption was measured by bicinchoninic acid method. Hydroxyapatite (HA) precipitation was evaluated after 28 days of immersion in SBF. MC3T3-E1 cell adhesion, morphology and spreading onto the experimental surfaces were evaluated by scanning electron microscopy. Sputtering treatment modified cpTi topography by increasing its surface roughness. CpTi and M-TiO2 groups presented the greatest SFE. In general, TiO2 films displayed improved electrochemical behavior compared to cpTi, with M-TiO2 featuring the highest polarization resistance. Rutile phase exhibited a greater influence on decreasing the current density and corrosion rate, while the presence of a bi-phasic polycrystalline condition displayed a more stable passive behavior. M-TiO2 featured increased albumin adsorption. HA morphology was dependent on the crystalline phase, being more evident in the bi-phasic group. Furthermore, M-TiO2 displayed normal cell adhesion and morphology. The combination of anatase and rutile structures to generate TiO2 films is a promising strategy to improve biomedical implants properties including greater corrosion protection, higher protein adsorption, bioactivity and non-cytotoxicity effect.
Collapse
Affiliation(s)
- Heloisa Navarro Pantaroto
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jairo Matozinho Cordeiro
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil
| | - Lucas Toniolo Pereira
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Amanda Bandeira de Almeida
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Francisco Humberto Nociti Junior
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Elidiane Cipriano Rangel
- São Paulo State University (UNESP), Institute of Science and Technology, Av. Três de Março, 511, Sorocaba, São Paulo, 18087-180, Brazil
| | - Nilton Francelosi Azevedo Neto
- São Paulo State University (UNESP), Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Jose Humberto Dias da Silva
- São Paulo State University (UNESP), Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Valentim Adelino Ricardo Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN), Brazil.
| |
Collapse
|
18
|
Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110508. [DOI: 10.1016/j.msec.2019.110508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/30/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
|
19
|
Ziemba AM, D’Amato AR, MacEwen TM, Puhl DL, Koppes AN, Koppes RA, Lennartz MR, Gilbert RJ. Stabilized Interleukin-4-Loaded Poly(lactic- co-glycolic) Acid Films Shift Proinflammatory Macrophages toward a Regenerative Phenotype in Vitro. ACS APPLIED BIO MATERIALS 2019; 2:1498-1508. [PMID: 31061988 PMCID: PMC6499395 DOI: 10.1021/acsabm.8b00769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrophages are immune cells involved in wound healing and tissue regeneration; however, the sustained presence of proinflammatory macrophages in wound sites impairs healing. In this study, we shifted peritoneal macrophage polarization away from a proinflammatory (M1) phenotype through exposure to stabilized interleukin-4 (IL-4) in poly(lactic-co-glycolic acid) films in combination with topographical guidance from electrospun poly-L-lactic acid fibers. To our knowledge, this was the first study to stabilize IL-4 with bovine serum albumin (BSA) within a biomaterial. When IL-4 was coloaded with BSA for stabilization, we saw increased IL-4 bioactivity compared to no added stabilization, trehalose stabilization, or murine serum albumin stabilization. We observed increased elongation of peritoneal macrophages, increased RNA expression of anti-inflammatory marker arginase-1, increased ratio of interleukin-10/interleukin- 12 p40 RNA, and decreased protein expression of proinflammatory markers (interleukin-12 p40 and RANTES) compared to controls. Taken together, these results suggest the macrophages were less proinflammatory and were a more pro-resolving phenotype. When stabilized with BSA, IL-4-loaded films effectively shift macrophage polarization state and are thus promising scaffolds to reduce inflammation within in vivo injury models.
Collapse
Affiliation(s)
- Alexis M. Ziemba
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Anthony R. D’Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Taylor M. MacEwen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ryan A. Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Michelle R. Lennartz
- Center for Cell Biology and Cancer Research, Albany Medical College, 43 New Scotland Avenue, Albany, New York 12208, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, New York 12180, United States
| |
Collapse
|
20
|
Fan Y, Zhang Y, Zhao Q, Xie Y, Luo R, Yang P, Weng Y. Immobilization of nano Cu-MOFs with polydopamine coating for adaptable gasotransmitter generation and copper ion delivery on cardiovascular stents. Biomaterials 2019; 204:36-45. [PMID: 30875517 DOI: 10.1016/j.biomaterials.2019.03.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
In-stent restenosis is worsened by thrombosis, acute inflammation, and uncontrollable smooth muscle cells (SMCs) proliferation at the early stage of implantation. Tailoring the stent surface can inhibit thrombosis, intimal hyperplasia, and accelerate re-endothelialization. In situ nitric oxide (NO) generation is considered as a promising method to improve anti-coagulation and anti-hyperplasia abilities. Copper based metal organic frameworks showed great potential as catalysts for NO generation, and copper ion (Cu2+) was demonstrated to promote endothelial cells (ECs) growth. Herein, by using polydopamine as the linker and coating matrix, nanoscale copper-based metal organic frameworks (nano Cu-MOFs) were immobilized onto the titanium surface for simultaneous nitric oxide (NO) catalytic generation and Cu2+ delivery. The nano Cu-MOFs-immobilized coating exhibited desirable NO release and adaptable Cu2+ delivery. Such coating inhibited platelet aggregation and activation via NO-cGMP signaling pathway, and significantly reduced thrombosis in an ex vivo extracorporeal circulation model. NO release and Cu2+ delivery showed synergetic effect to promote EC proliferation. Moreover, SMCs and macrophage proliferation was suppressed by the nano Cu-MOFs-immobilized coating, thereby reducing neointimal hyperplasia in vivo. Overall, this biocompatible coating is convenient for the surface modification of cardiovascular stents and effectively prevents the late stent thrombosis and in-stent restenosis associated with stent implantation.
Collapse
Affiliation(s)
- Yonghong Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qian Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yinhong Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Ping Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yajun Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
21
|
Yu Y, Feng R, Li J, Wang Y, Song Y, Tan G, Liu D, Liu W, Yang X, Pan H, Li S. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian J Pharm Sci 2018; 14:423-434. [PMID: 32104471 PMCID: PMC7032125 DOI: 10.1016/j.ajps.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier (NLC) drug delivery platform. An ophthalmic anti-inflammatory drug, baicalin (BN) was chosen as the model drug. BN-NLC was prepared using melt-emulsification combined with ultra-sonication technique. Additionally, a dual pH- and thermo-sensitive hydrogel composed of carboxymethyl chitosan (CMCS) and poloxamer 407 (F127) was fabricated by a cross-linking reaction with a nontoxic crosslinker genipin (GP). GP-CMCS/F127 hydrogel was characterized by FTIR, NMR, XRD and SEM. The swelling studies showed GP-CMCS/F127 hydrogel was both pH- and thermo-sensitive. The results of in vitro release suggested BN-NLC gel can prolong the release of baicalin comparing with BN eye drops and BN-NLC. Ex vivo cornea permeation study was evaluated using Franz diffusion cells. The apparent permeability coefficient (Papp ) of BN-NLC gel was much higher (4.46-fold) than that of BN eye drops. Through the determination of corneal hydration levels, BN-NLC gel was confirmed that had no significant irritation to cornea. Ex vivo precorneal retention experiments were carried out by a flow-through approach. The results indicated that the NLC-based hydrogel can prolong precorneal residence time. In conclusion, the hybrid NLC-based hydrogel has a promising potential for application in ocular drug delivery.
Collapse
Affiliation(s)
- Yibin Yu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruoxi Feng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinyu Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiming Song
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guoxin Tan
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dandan Liu
- Liaoning Institute of Science and Technology, Benxi 117004, China
| | - Wei Liu
- Zhengzhou University, Zhengzhou 450001, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- Liaoning University, Shenyang 110016, China
| | - Sanming Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|