1
|
Fiehn LA, Kunisch E, Saur M, Arango-Ospina M, Merle C, Hagmann S, Stiller A, Hupa L, Kaňková H, Galusková D, Renkawitz T, Boccaccini AR, Westhauser F. A comparative in vitro and in vivo analysis of the impact of copper substitution on the cytocompatibility, osteogenic, and angiogenic properties of a borosilicate bioactive glass. J Biomed Mater Res A 2024; 112:1740-1759. [PMID: 38623001 DOI: 10.1002/jbm.a.37721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/10/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
The 0106-B1-bioactive glass (BG) composition (in wt %: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, and 12.5 B2O3) has demonstrated favorable processing properties and promising bone regeneration potential. The present study aimed to evaluate the biological effects of the incorporation of highly pro-angiogenic copper (Cu) in 0106-B1-BG in vitro using human bone marrow-derived mesenchymal stromal cells (BMSCs) as well as its in vivo potential for bone regeneration. CuO was added to 0106-B1-BG in exchange for CaO, resulting in Cu-doped BG compositions containing 1.0, 2.5 and 5.0 wt % CuO (composition in wt %: 37.5 SiO2, 21.6/ 20.1/17.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3, and 1.0/ 2.5/ 5.0 CuO). In vitro, the BGs' impact on the viability, proliferation, and growth patterns of BMSCs was evaluated. Analyses of protein secretion, matrix formation, and gene expression were used for the assessment of the BGs' influence on BMSCs regarding osteogenic differentiation and angiogenic stimulation. The presence of Cu improved cytocompatibility, osteogenic differentiation, and angiogenic response when compared with unmodified 0106-B1-BG in vitro. In vivo, a critical-size femoral defect in rats was filled with scaffolds made from BGs. Bone regeneration was evaluated by micro-computed tomography. Histological analysis was performed to assess bone maturation and angiogenesis. In vivo effects regarding defect closure, presence of osteoclastic cells or vascular structures in the defect were not significantly changed by the addition of Cu compared with undoped 0106-B1-BG scaffolds. Hence, while the in vitro properties of the 0106-B1-BG were significantly improved by the incorporation of Cu, further evaluation of the BG composition is necessary to transfer these effects to an in vivo setting.
Collapse
Affiliation(s)
- Linn Anna Fiehn
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Elke Kunisch
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Merve Saur
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Christian Merle
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Adrian Stiller
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Hana Kaňková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Dagmar Galusková
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Trenčín, Slovakia
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Fabian Westhauser
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
3
|
Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Suspension of Amorphous Calcium Phosphate Nanoparticles Impact Commitment of Human Adipose-Derived Stem Cells In Vitro. BIOLOGY 2021; 10:biology10070675. [PMID: 34356530 PMCID: PMC8301486 DOI: 10.3390/biology10070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
Amorphous calcium phosphate (aCaP) nanoparticles may trigger the osteogenic commitment of adipose-derived stem cells (ASCs) in vitro. The ASCs of three human donors are investigated using basal culture medium DMEM to either 5 or 50 µg/mL aCaP nanoparticles suspension (control: no nanoparticles). After 7 or 14 days, stem cell marker genes, as well as endothelial, osteogenic, chondrogenic, and adipogenic genes, are analyzed by qPCR. Free calcium and phosphate ion concentrations are assessed in the cell culture supernatant. After one week and 5 µg/mL aCaP, downregulation of osteogenic markers ALP and Runx2 is found, and averaged across the three donors. Our results show that after two weeks, ALP is further downregulated, but Runx2 is upregulated. Endothelial cell marker genes, such as CD31 and CD34, are upregulated with 50 µg/mL aCaP and a 2-week exposure. Inter-donor variability is high: Two out of three donors show a significant upregulation of ALP and Runx2 at day 14 with 50 µg/mL aCaP compared to 5 µg/mL aCaP. Notably, all changes in stem cell commitment are obtained in the absence of an osteogenic medium. While the chemical composition of the culture medium and the saturation status towards calcium phosphate phases remain approximately the same for all conditions, gene expression of ASCs changes considerably. Hence, aCaP nanoparticles show the potential to trigger osteogenic and endothelial commitment in ASCs.
Collapse
|
5
|
Biopolymer surface modification of PLGA fibers enhances interfacial shear strength and supports immobilization of rhGDF-5 in fiber-reinforced brushite cement. J Mech Behav Biomed Mater 2020; 115:104285. [PMID: 33360485 DOI: 10.1016/j.jmbbm.2020.104285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Incorporation of biodegradable poly(lactic-co-glycolic acid; PLGA) fibers into calcium phosphate cements (CPCs) has proven beneficial for their mechanical properties and the targeted delivery of bone morphogenetic proteins (BMPs). However, the deficiency of functional groups on the PLGA surface results in poor fiber-matrix interfacial strength (ISS), limiting the mechanical improvement, and insufficient surface charge to immobilize therapeutic amounts of BMPs. The present study therefore focused on the: i) functionalization of PLGA fibers using polyelectrolyte multilayers (PEMs) of biopolymers; ii) analysis of their impact on the mechanical properties of the CPC in multifilament fiber pull-out tests; and iii) testing of their applicability as carriers for BMPs using chemical-free adsorption of biotinylated recombinant human growth factor (rhGDF-5) and colorimetric assays. The PEMs were created from chitosan (Chi), hyaluronic acid (HA), and gelatin (Gel) via layer-by-layer (LbL) deposition. Four PEM nanocoatings consisting of alternating Chi/Gel and Chi/HA bilayers with a terminating layer of Chi, Gel or HA were tested. Nanocoating of the PLGA fibers with PEMs significantly enhanced the ISS with the CPC matrix to max. 3.55 ± 1.05 MPa (2.2-fold). The increase in ISS, ascribed to enhanced electrostatic interactions between PLGA and calcium phosphate, was reflected in significant improvement of the composites' flexural strength compared to CPC containing untreated fibers. However, only minor effects on the composites' work of fracture were observed. The adsorption of rhGDF-5 on the PLGA surface was supported by PEMs terminating with either positive or negative charges, without significant differences among the nanocoatings. This proof-of-principle rhGDF-5 immobilization study, together with the augmented ISS of the composites, demonstrates that surface modification of PLGA fibers with biopolymers is a promising approach for targeted delivery of BMPs and improved mechanical properties of the fiber-reinforced CPC.
Collapse
|
6
|
Lv S, Xu J, Chen L, Wu H, Feng W, Zheng Y, Li P, Zhang H, Zhang L, Chi G, Li Y. MicroRNA-27b targets CBFB to inhibit differentiation of human bone marrow mesenchymal stem cells into hypertrophic chondrocytes. Stem Cell Res Ther 2020; 11:392. [PMID: 32917285 PMCID: PMC7488425 DOI: 10.1186/s13287-020-01909-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background Human bone marrow-derived mesenchymal stem cells (hBMSCs) have chondrocyte differentiation potential and are considered to be a cell source for cell-transplantation-mediated repair of cartilage defects, including those associated with osteoarthritis (OA). However, chondrocyte hypertrophic differentiation is a major obstacle for the application of hBMSCs in articular cartilage defect treatment. We have previously shown that microRNA-27b (miR-27b) inhibits hypertrophy of chondrocytes from rat knee cartilage. In this study, we investigated the role of miR-27b in chondrocyte hypertrophic differentiation of hBMSCs. Methods Chondrogenic marker and microRNA expression in hBMSC chondrogenic pellets were evaluated using RT-qPCR and immunohistochemistry. The hBMSCs were transfected with miR-27b before inducing differentiation. Gene and protein expression levels were analyzed using RT-qPCR and western blot. Coimmunoprecipitation was used to confirm interaction between CBFB and RUNX2. Luciferase reporter assays were used to demonstrate that CBFB is a miR-27b target. Chondrogenic differentiation was evaluated in hBMSCs treated with shRNA targeting CBFB. Chondrogenic hBMSC pellets overexpressing miR-27b were implanted into cartilage lesions in model rats; therapeutic effects were assessed based on histology and immunohistochemistry. Results The hBMSCs showed typical MSC differentiation potentials. During chondrogenic differentiation, collagen 2 and 10 (COL2 and COL10), SOX9, and RUNX2 expression was upregulated. Expression of miR-140, miR-143, and miR-181a increased over time, whereas miR-27b and miR-221 were downregulated. Cartilage derived from hBMSC and overexpressing miR-27b exhibited higher expression of COL2 and SOX9, but lower expression of COL10, RUNX2, and CBFB than did the control cartilage. CBFB and RUNX2 formed a complex, and CBFB was identified as a novel miR-27b target. CBFB knockdown by shRNA during hBMSC chondrogenic differentiation led to significantly increased COL2 and SOX9 expression and decreased COL10 expression. Finally, miR-27b-overexpressing hBMSC chondrogenic pellets had better hyaline cartilage morphology and reduced expression of hypertrophic markers and tend to increase repair efficacy in vivo. Conclusion MiR-27b plays an important role in preventing hypertrophic chondrogenesis of hBMSCs by targeting CBFB and is essential for maintaining a hyaline cartilage state. This study provides new insights into the mechanism of hBMSC chondrocyte differentiation and will aid in the development of strategies for treating cartilage injury based on hBMSC transplantation.
Collapse
Affiliation(s)
- Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lin Chen
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.,Department of Gastrointestinal Surgery, Sino-Japanese Friendship Hospital of Jilin University, Changchun, 130021, China
| | - Haitao Wu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.,Department of Oncology, the First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Feng
- Department of Bone and Joint, the First Hospital of Jilin University, Changchun, 130021, China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Pengdong Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Nifant’ev I, Bukharova T, Dyakonov A, Goldshtein D, Galitsyna E, Kosarev M, Shlyakhtin A, Gavrilov D, Ivchenko P. Osteogenic Differentiation of Human Adipose Tissue-Derived MSCs by Non-Toxic Calcium Poly(ethylene phosphate)s. Int J Mol Sci 2019; 20:E6242. [PMID: 31835689 PMCID: PMC6940807 DOI: 10.3390/ijms20246242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022] Open
Abstract
There is a current clinical need for the development of bone void fillers and bioactive bone graft substitutes. The use of mesenchymal stem cells (MSCs) that are seeded into 3D scaffolds and induce bone generation in the event of MSCs osteogenic differentiation is highly promising. Since calcium ions and phosphates promote the osteogenic differentiation of MSCs, the use of the calcium complexes of phosphate-containing polymers is highly prospective in the development of osteogenic scaffolds. Calcium poly(ethylene phosphate)s (PEP-Ca) appear to be potentially suitable candidates primarily because of PEP's biodegradability. In a series of experiments with human adipose-tissue-derived multipotent mesenchymal stem cells (ADSCs), we demonstrated that PEP-Ca are non-toxic and give rise to osteogenesis gene marker, bone morphogenetic protein 2 (BMP-2) and mineralization of the intercellular matrix. Owing to the synthetic availability of poly(ethylene phosphoric acid) block copolymers, these results hold out the possibility for the development of promising new polymer composites for orthopaedic and maxillofacial surgery.
Collapse
Affiliation(s)
- Ilya Nifant’ev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Alexander Dyakonov
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Elena Galitsyna
- Research Centre for Medical Genetics, 1 Moskvorechye Str., 115522 Moscow, Russia; (T.B.); (A.D.); (D.G.); (E.G.)
| | - Maxim Kosarev
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
| | - Andrey Shlyakhtin
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
| | - Dmitry Gavrilov
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
| | - Pavel Ivchenko
- Chemistry Department, M.V. Lomonosov Moscow State University, 1–3 Leninskie Gory, 119991 Moscow, Russia; (M.K.); (A.S.); (D.G.); (P.I.)
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Pr., 119991 Moscow, Russia
| |
Collapse
|
8
|
Gunnella F, Kunisch E, Horbert V, Maenz S, Bossert J, Jandt KD, Plöger F, Kinne RW. In Vitro Release of Bioactive Bone Morphogenetic Proteins (GDF5, BB-1, and BMP-2) from a PLGA Fiber-Reinforced, Brushite-Forming Calcium Phosphate Cement. Pharmaceutics 2019; 11:pharmaceutics11090455. [PMID: 31484306 PMCID: PMC6781330 DOI: 10.3390/pharmaceutics11090455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration of sheep lumbar osteopenia is promoted by targeted delivery of bone morphogenetic proteins (BMPs) via a biodegradable, brushite-forming calcium-phosphate-cement (CPC) with stabilizing poly(l-lactide-co-glycolide) acid (PLGA) fibers. The present study sought to quantify the release and bioactivity of BMPs from a specific own CPC formulation successfully used in previous in vivo studies. CPC solid bodies with PLGA fibers (0%, 5%, 10%) containing increasing dosages of GDF5, BB-1, and BMP-2 (2 to 1000 µg/mL) were ground and extracted in phosphate-buffered saline (PBS) or pure sheep serum/cell culture medium containing 10% fetal calf serum (FCS; up to 30/31 days). Released BMPs were quantified by ELISA, bioactivity was determined via alkaline phosphatase (ALP) activity after 3-day exposure of different osteogenic cell lines (C2C12; C2C12BRlb with overexpressed BMP-receptor-1b; MCHT-1/26; ATDC-5) and via the influence of the extracts on the expression of osteogenic/chondrogenic genes and proteins in human adipose tissue-derived mesenchymal stem cells (hASCs). There was hardly any BMP release in PBS, whereas in medium + FCS or sheep serum the cumulative release over 30/31 days was 11-34% for GDF5 and 6-17% for BB-1; the release of BMP-2 over 14 days was 25.7%. Addition of 10% PLGA fibers significantly augmented the 14-day release of GDF5 and BMP-2 (to 22.6% and 43.7%, respectively), but not of BB-1 (13.2%). All BMPs proved to be bioactive, as demonstrated by increased ALP activity in several cell lines, with partial enhancement by 10% PLGA fibers, and by a specific, early regulation of osteogenic/chondrogenic genes and proteins in hASCs. Between 10% and 45% of bioactive BMPs were released in vitro from CPC + PLGA fibers over a time period of 14 days, providing a basis for estimating and tailoring therapeutically effective doses for experimental and human in vivo studies.
Collapse
Affiliation(s)
- Francesca Gunnella
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Elke Kunisch
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Victoria Horbert
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany
| | - Stefan Maenz
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | - Raimund W Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkrankenhaus "Rudolf Elle", Klosterlausnitzer Str. 81, 07607 Eisenberg, Germany.
| |
Collapse
|