1
|
Grosfeld EC, van Dijk NWM, Ulrich DJO, Mikos AG, Jansen JA, van den Beucken JJJP. Compositional Variations in Calcium Phosphate Cement and Poly(Lactic-Co-Glycolic-Acid) Porogens Do Not Affect the Orthotopic Performance of Calcium Phosphate Cement/Poly(Lactic-Co-Glycolic-Acid) Cements. J Biomed Mater Res A 2025; 113:e37827. [PMID: 39473125 DOI: 10.1002/jbm.a.37827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 12/26/2024]
Abstract
Calcium phosphate cement (CPC) has evolved as an appealing bone substitute material, especially since CPCs were combined with poly(lactic-co-glycolic acid) (PLGA) porogens to render the resulting CPC/PLGA composite degradable. In view of the multiple variables of CPC and PLGA used previously, the effect of CPC composition and PLGA porogen morphology (i.e., microspheres versus microparticles) on the biological performance of CPC/PLGA has not yet been investigated. Consequently, we here aimed to evaluate comparatively various CPC/PLGA formulations varying in CPC composition and PLGA porogen morphology on their performance in a rabbit femoral condyle bone defect model. CPCs with a composition of 85 wt% α-TCP, 15 wt% dicalcium phosphate anhydrate (DCPA) and 5 wt% precipitated hydroxyapatite (pHA), or 100 wt% α-TCP were combined with spherical or irregularly shaped PLGA porogens (CPC/PLGA ratio of 60:40 wt% for all formulations). All CPC/PLGA formulations were applied via injection in bone defects, as created in the femoral condyle of rabbits, and retrieved for histological evaluation after 6 and 12 weeks of implantation. Descriptive histology and quantitative histomorphometry (i.e., material degradation and new bone formation) were used for analyses. Descriptively, all CPC/PLGA formulations showed material degradation at the periphery of the cement within 6 weeks of implantation. After 12 weeks, bone formation was observed extending into the defect core, replacing the degraded CPC/PLGA material. Quantitatively, similar material degradation (up to 87%) and new bone formation (up to 28%) values were observed, irrespective of compositional variations of CPC/PLGA formulations. These data prove that neither the CPC compositions nor the PLGA porogen morphologies as used in this work affect the biological performance of CPC/PLGA formulations in a rabbit femoral condyle bone defect model.
Collapse
Affiliation(s)
| | | | - Dietmar J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - John A Jansen
- Dentistry - Regenerative Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
2
|
Kamitakahara M, Kato K, Umetsu M, Yoshihara K, Yoshida Y. Design of bioresorbable calcium phosphate cement with high porosity via the addition of bioresorbable polymers. J Biomater Appl 2025; 39:557-565. [PMID: 39208142 DOI: 10.1177/08853282241277477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Novel calcium phosphate cements (CPCs) that can be resorbed into the human body need to be developed. One approach for improving bioresorbability is reducing the content of calcium phosphate in CPCs; however, this may induces difficulties in setting the cement and increases the risk of decay. Adding bioresorbable polymers to a liquid solution can shorten the setting time and inhibit decay during setting. A novel bioresorbable polymer, phosphorylated pullulan (PPL), was recently reported. The effect of adding PPL to α-tricalcium phosphate (α-TCP)-based CPCs was examined and compared to that of adding bioresorbable polymers such as collagen, chitosan, and alginate. Collagen did not significantly inhibit the conversion of α-TCP to hydroxyapatite (HA), and its combination with calcium phosphate decreased the setting time and suppressed decay; chitosan decreased the setting time when combined with calcium phosphate; and alginate inhibited the conversion of α-TCP to HA and contributed to suppressing the decay. In contrast, PPL slightly inhibited the conversion of α-TCP to HA; however, its combination with calcium phosphate decreased the setting time. Thus, selecting bioresorbable polymers can help effectively control the properties of CPCs.
Collapse
Affiliation(s)
| | - Kakeru Kato
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Masaki Umetsu
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Kumiko Yoshihara
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Yasuhiro Yoshida
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Yuan Y, Hu J, Shen L, He L, Zhu Y, Meng D, Jiang Q. Injectable calcium phosphate cement integrated with BMSCs-encapsulated microcapsules for bone tissue regeneration. Biomed Mater 2024; 19:065034. [PMID: 39312953 DOI: 10.1088/1748-605x/ad7e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Injectable calcium phosphate cement (CPC) offers significant benefits for the minimally invasive repair of irregular bone defects. However, the main limitations of CPC, including its deficiency in osteogenic properties and insufficient large porosity, require further investigation and resolution. In this study, alginate-chitosan-alginate (ACA) microcapsules were used to encapsulate and deliver rat bone mesenchymal stem cells (rBMSCs) into CPC paste, while a porous CPC scaffold was established to support cell growth. Our results demonstrated that the ACA cell microcapsules effectively protect the cells and facilitate their transport into the CPC paste, thereby enhancing cell viability post-implantation. Additionally, the ACA + CPC extracts were found to stimulate osteogenic differentiation of rBMSCs. Furthermore, results from a rat cranial parietal bone defect model showed that ACA microcapsules containing exogenous rBMSCs initially improved thein situosteogenic potential of CPC within bone defects, providing multiple sites for bone growth. Over time, the osteogenic potential of the exogenous cells diminishes, yet the pores created by the microcapsules persist in supporting ongoing bone formation by recruiting endogenous cells to the osteogenic sites. In conclusion, the utilization of ACA loaded stem cell microcapsules satisfactorily facilitate osteogenesis and degradation of CPC, making it a promising scaffold for bone defect transplantation.
Collapse
Affiliation(s)
- Yafei Yuan
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lipei Shen
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lin He
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Yixuan Zhu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Dan Meng
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| |
Collapse
|
4
|
Tao ZS, Shen CL. Favorable osteogenic activity of vericiguat doped in β-tricalcium phosphate: In vitro and in vivo studies. J Biomater Appl 2024; 38:1073-1086. [PMID: 38569649 DOI: 10.1177/08853282241245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Recently, more and more studies have shown that guanylate cyclase, an enzyme that synthesizes cyclic guanosine monophosphate (cGMP), plays an important role in bone metabolism. Vericiguat (VIT), a novel oral soluble guanylate cyclase stimulator, directly generates cyclic guanosine monophosphate and reduce the death incidence from cardio-vascular causes or hospitalization. Recent studies have shown beneficial effects of VIT in animal models of osteoporosis, but very little is currently known about the effects of VIT on bone defects in the osteoporotic states. Therefore, in this study, β-tricalcium phosphate (β-TCP) was used as a carrier to explore the effect of local VIT administration on the repair of femoral metaphyseal bone defects in ovariectomized (OVX) rats. When MC3T3-E1 was cultured in the presence of H2H2, VIT, similar to Melatonin (MT), therapy could increase the matrix mineralization and ALP, SOD2, SIRT1, and OPG expression, reduce ROS and Mito SOX production, RANKL expression, Promote the recovery of mitochondrial membrane potential. In the OVX rat model, VIT increases the osteogenic effect of β-TCP and better results were obtained at a dose of 5 mg. Local use of VIT can inhibit increased OC, BMP2 and RUNX2 expressions in bone tissue, while decreased SOST and TRAP expressions by RT-PCR and immunohistochemistry. Thereby, VIT stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Wan Y, Ma H, Ma Z, Tan L, Miao L. Enhanced Degradability of the Apatite-Based Calcium Phosphate Cement Incorporated with Amorphous MgZnCa Alloy. ACS Biomater Sci Eng 2023; 9:6084-6093. [PMID: 37909852 DOI: 10.1021/acsbiomaterials.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Degradability is vital for bone filling and plays an important role in bone regeneration. Evidence indicates that apatite-based calcium phosphate cement (ACPC) is a prospective biomaterial for bone repair with enhanced osteogenesis. However, poor degradability restricts their clinical application. In this study, MgZnCa-doped ACPC (MgZnCa/ACPC) composites were fabricated by adding 3 (wt) % amorphous MgZnCa powder in the solid phase of ACPC to enhance the biodegradation and bioactivity of the apatite ACPC. The chemical and the physical properties of the MgZnCa/ACPC composite were investigated and compared with the ACPC composite. The results showed that the incorporation of MgZnCa improved both the degradability and the compressive strength of the ACPC composite. X-ray diffraction and Fourier transform infrared spectrometry analysis suggested significant changes in the microstructures of the composites due to the incorporation and the anodic dissolution of MgZnCa alloy. These findings indicate that the MgZnCa/ACPC composite is capable of facilitating bone repair and regeneration by endowing favorable degradation property.
Collapse
Affiliation(s)
- Ye Wan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Liaoning 110168, China
| | - Haoxiang Ma
- School of Materials Science and Engineering, Shenyang Jianzhu University, Liaoning 110168, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zheng Ma
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lili Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Miao
- Department of Periodontics and Oral Biology, School of Stomatology, China Medical University, Liaoning 110002, China
| |
Collapse
|
6
|
Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - Path to osteoinductivity. Bioact Mater 2022; 17:109-124. [PMID: 35386461 PMCID: PMC8964990 DOI: 10.1016/j.bioactmat.2022.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
With the increase of global population, people's life expectancy is growing as well. Humans tend to live more active lifestyles and, therefore, trauma generated large defects become more common. Instances of tumour resection or pathological conditions and complex orthopaedic issues occur more frequently increasing necessity for bone substitutes. Composition of calcium phosphate cements (CPCs) is comparable to the chemical structure of bone minerals. Their ability to self-set and resorb in vivo secures a variety of potential applications in bone regeneration. Despite the years-long research and several products already reaching the market, finding the right properties for calcium phosphate cement to be osteoinductive and both injectable and suitable for clinical use is still a sudoku. This article is focused on injectable, porous CPCs, reviewing the latest developments on the path toward finding osteoinductive material, which is suitable for injection.
Collapse
Affiliation(s)
- Agneta Vezenkova
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of Genera Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
7
|
Yuan Y, Shen L, Liu T, He L, Meng D, Jiang Q. Physicochemical properties of bone marrow mesenchymal stem cells encapsulated in microcapsules combined with calcium phosphate cement and their ectopic bone formation. Front Bioeng Biotechnol 2022; 10:1005954. [PMID: 36277380 PMCID: PMC9582332 DOI: 10.3389/fbioe.2022.1005954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate bone cement (CPC) serves as an excellent scaffold material for bone tissue engineering owing to its good biocompatibility, injectability, self-setting property and three-dimensional porous structure. However, its clinical use is limited due to the cytotoxic effect of its setting reaction on cells and difficulties in degradation into bone. In this study, bone marrow mesenchymal stem cells (BMSCs) were encapsulated in alginate chitosan alginate (ACA) microcapsules and compounded with calcium phosphate bone cement. Changes in the compressive strength, porosity, injectability and collapsibility of CPC at different volume ratios of microcapsules were evaluated. At a 40% volume ratio of microcapsules, the composite scaffold displayed high porosity and injectability with good collapsibility and compressive strength. Cell live/dead double staining, Cell Counting Kit-8 (CCK-8) assays and scanning electron microscopy were used to detect the viability, proliferation and adhesion of cells after cell microcapsules were combined with CPC. The results revealed that cells protected by microcapsules proliferated and adhered better than those that were directly combined with CPC paste, and cell microcapsules could effectively form macropores in scaffold material. The composite was subsequently implanted subcutaneously on the backs of nude mice, and ectopic osteogenesis of the scaffold was detected via haematoxylin-eosin (H&E), Masson’s trichrome and Goldner’s trichrome staining. CPC clearly displayed better new bone formation function and degradability after addition of pure microcapsules and cell microcapsules. Furthermore, the cell microcapsule treatment group showed greater osteogenesis than the pure microcapsule group. Collectively, these results indicate that BMSCs encapsulated in ACA microcapsules combined with CPC composite scaffolds have good application prospects as bone tissue engineering materials.
Collapse
Affiliation(s)
- Yafei Yuan
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Lipei Shen
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Tiankun Liu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Lin He
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Dan Meng
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Gupta A, Singh S. Multimodal Potentials of Gold Nanoparticles for Bone Tissue Engineering and Regenerative Medicine: Avenues and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201462. [PMID: 35758545 DOI: 10.1002/smll.202201462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Osseous tissue repair has advanced due to the introduction of tissue engineering. The key elements required while engineering new tissues involve scaffolds, cells, and bioactive cues. The macrostructural to the nanostructural framework of such complex tissue has engrossed the intervention of nanotechnology for efficient neo-bone formation. Gold nanoparticles (GNPs) have recently gained interest in bone tissue regeneration due to their multimodal functionality. They are proven to modulate the properties of scaffolds and the osteogenic cells significantly. GNPs also influence different metabolic functions within the body, which directly or indirectly govern the mechanism of bone regeneration. Therefore, this review highlights nanoparticle-mediated osteogenic development, focusing on different aspects of GNPs ranging from scaffold modulation to cellular stimulation. The toxic aspects of gold nanoparticles studied so far are critically explicated, while further insight into the advancements and prospects of these nanoparticles in bone regeneration is also highlighted.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| |
Collapse
|
9
|
Cichoń E, Mielan B, Pamuła E, Ślósarczyk A, Zima A. Development of highly porous calcium phosphate bone cements applying nonionic surface active agents. RSC Adv 2021; 11:23908-23921. [PMID: 35479031 PMCID: PMC9036830 DOI: 10.1039/d1ra04266a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/26/2021] [Indexed: 12/25/2022] Open
Abstract
A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants). In this study, foamed calcium phosphate cements (fCPCs) intended for in situ use were fabricated by a surfactant-assisted foaming process. Three different surface active agents, Tween 20, Tween 80 and Tetronic 90R4, were used. The amount of surfactant, based on its critical micelle concentration and cytotoxicity as well as foaming method, was determined. It has been established that in order to avoid cytotoxic effects the concentration of all applied surfactants in the cement liquid phases should not exceed 1.25 g L−1. It was found that Tetronic 90R4 had the lowest cytotoxicity whereas Tween 20 had the highest. The influence of the type of surfactant used in the fabrication process of bioactive macroporous cement on the physicochemical and biological properties of fCPCs was studied. The obtained materials reached higher than 50 vol% open porosity and possessed compressive strength which corresponds to the values for cancellous bone. The highest porosity and compressive strength was found for the material with the addition of Tween 80. In vitro investigations proved the chemical stability and high bioactive potential of the examined materials. A novel way of obtaining highly porous cements is foaming them with the use of nonionic surface active agents (surfactants).![]()
Collapse
Affiliation(s)
- Ewelina Cichoń
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Bartosz Mielan
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Anna Ślósarczyk
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-059 Krakow Poland
| |
Collapse
|
10
|
Lodoso-Torrecilla I, van den Beucken J, Jansen J. Calcium phosphate cements: Optimization toward biodegradability. Acta Biomater 2021; 119:1-12. [PMID: 33065287 DOI: 10.1016/j.actbio.2020.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Synthetic calcium phosphate (CaP) ceramics represent the most widely used biomaterials for bone regenerative treatments due to their biological performance that is characterized by bioactivity and osteoconductive properties. From a clinical perspective, injectable CaP cements (CPCs) are highly appealing, as CPCs can be applied using minimally invasive surgery and can be molded to optimally fill irregular bone defects. Such CPCs are prepared from a powder and a liquid component, which upon mixing form a paste that can be injected into a bone defect and hardens in situ within an appropriate clinical time window. However, a major drawback of CPCs is their poor degradability. Ideally, CPCs should degrade at a suitable pace to allow for concomitant new bone to form. To overcome this shortcoming, control over CPC degradation has been explored using multiple approaches that introduce macroporosity within CPCs. This strategy enables faster degradation of CPC by increasing the surface area available to interact with the biological surroundings, leading to accelerated new bone formation. For a comprehensive overview of the path to degradable CPCs, this review presents the experimental procedures followed for their development with specific emphasis on (bio)material properties and biological performance in pre-clinical bone defect models.
Collapse
|
11
|
Kirillova A, Nillissen O, Liu S, Kelly C, Gall K. Reinforcement and Fatigue of a Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Adv Healthc Mater 2021; 10:e2001058. [PMID: 33111508 DOI: 10.1002/adhm.202001058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Bioresorbable bone adhesives may provide remarkable clinical solutions in areas ranging from fixation and osseointegration of permanent implants to the direct healing and fusion of bones without permanent fixation hardware. Mechanical properties of bone adhesives are critical for their successful application in vivo. Reinforcement of a tetracalcium phosphate-phosphoserine bone adhesive is investigated using three degradable reinforcement strategies: poly(lactic-co-glycolic) (PLGA) fibers, PLGA sutures, and chitosan lactate. All three approaches lead to higher compressive strengths of the material and better fatigue performance. Reinforcement with PLGA fibers and chitosan lactate results in a 100% probability of survival of samples at 20 MPa maximum compressive stress level, which is almost ten times higher compared to compressive loads observed in the intervertebral discs of the spine in vivo. High adhesive shear strength of 5.1 MPa is achieved for fiber-reinforced bone adhesive by tuning the surface architecture of titanium samples. Finally, biological and biomechanical performance of the fiber-reinforced adhesive is evaluated in a rabbit distal femur osteotomy model, showing the potential of the bone adhesive for clinical use.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Olivia Nillissen
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Samuel Liu
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Cambre Kelly
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science Pratt School of Engineering Duke University Durham NC 27708 USA
- Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27708 USA
| |
Collapse
|
12
|
Advances in the modification of injectable calcium-phosphate-based bone cements for clinical application. Chin Med J (Engl) 2020; 133:2610-2612. [PMID: 32960840 PMCID: PMC7722559 DOI: 10.1097/cm9.0000000000001092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|