1
|
Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In Situ Bioprinting: Process, Bioinks, and Applications. ACS APPLIED BIO MATERIALS 2024; 7:7987-8007. [PMID: 38598256 DOI: 10.1021/acsabm.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.
Collapse
Affiliation(s)
- Pooja Jain
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Murali M Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119805, Singapore
| |
Collapse
|
2
|
Carvalho LN, Peres LC, Alonso-Goulart V, Santos BJD, Braga MFA, Campos FDAR, Palis GDAP, Quirino LS, Guimarães LD, Lafetá SA, Simbara MMO, Castro-Filice LDS. Recent advances in the 3D skin bioprinting for regenerative medicine: Cells, biomaterials, and methods. J Biomater Appl 2024; 39:421-438. [PMID: 39196759 DOI: 10.1177/08853282241276799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
Collapse
Affiliation(s)
- Loyna Nobile Carvalho
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Lucas Correia Peres
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mário Fernando Alves Braga
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Gabriela de Aquino Pinto Palis
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Ludmilla Sousa Quirino
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Laura Duarte Guimarães
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Sofia Alencar Lafetá
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | | |
Collapse
|
3
|
Wang Y, Frascella F, Gaglio CG, Pirri CF, Wei Q, Roppolo I. Vat Photopolymerization 3D Printing of Hydrogels Embedding Metal-Organic Frameworks for Photodynamic Antimicrobial Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57778-57791. [PMID: 39399980 DOI: 10.1021/acsami.4c15168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Given the variability in wounds based on the underlying causes, personalized medicine and tailored care for patients with wounds are required to ensure optimal therapeutic outcomes. With the emergence of high-precision and high-efficiency photocuring 3D printing technology, there is the potential for its use in customizing precise shapes that can match complex wound sites, thereby providing better treatment for patients with wound infections. In this work, porphyrinic metal-organic framework (MOF) crystals, serving as the functional filler, were incorporated into gelatin methacrylate (GelMA) as a photocurable composite resin to investigate the capabilities of producing customizable wound dressings through vat photopolymerization 3D printing. The embedded MOF crystals allow for better control of the photopolymerization process due to photon competition with the photoinitiator, enabling the precise printing of complex structures. In addition, these crystals impart photothermal and photodynamic capabilities to the printed object. The antibacterial assay confirms the potent photothermal and photodynamic bactericidal properties of the printed GelMA/MOF hydrogels. The hydrogel with the highest MOF content exhibited over 99.99% antibacterial efficiency against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli after 30 min of light exposure (∼30 mW/cm2, λ ≥ 420 nm). Simultaneously, hemolysis and cytotoxicity evaluations validated their excellent biocompatibility. The findings presented here introduce a strategy for integrating photosensitive MOF and 3D printing to fabricate size-adjustable photothermal/photodynamic monoliths and patches, opening perspectives toward personalized treatment for wound management.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Francesca Frascella
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Cesare Gabriele Gaglio
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| | - Qufu Wei
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy
| |
Collapse
|
4
|
Pitton M, Urzì C, Farè S, Contessi Negrini N. Visible light photo-crosslinking of biomimetic gelatin-hyaluronic acid hydrogels for adipose tissue engineering. J Mech Behav Biomed Mater 2024; 158:106675. [PMID: 39068848 DOI: 10.1016/j.jmbbm.2024.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Tissue engineering (TE) of adipose tissue (AT) is a promising strategy that can provide 3D constructs to be used for in vitro modelling, overcoming the limitations of 2D cell cultures by closely replicating the complex breast tissue extracellular matrix (ECM), cell-cell, and cell-ECM interactions. However, the challenge in developing 3D constructs of AT resides in designing artificial matrices that can mimic the structural properties of native AT and support adipocytes biological functions. Herein, we developed photocrosslinkable hydrogels by employing gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) to mimic the collagenous and glycosaminoglycan components of AT microenvironment, respectively. The physico-mechanical properties of the hydrogels were tuned to target AT biomimetic properties by varying the hydrogel formulation (with or without hyaluronic acid), and the amount of photoinitiator (ruthenium/sodium persulfate) used to crosslink the hydrogels via visible light. The physical and mechanical properties of the developed hydrogels were tuned by varying the material formulation and the photoinitiator concentration. Preadipocytes were encapsulated inside the hydrogels and differentiated into mature adipocytes. Findings enlightened that HAMA addition in hybrid hydrogels boosted an increased lipid accumulation. The engineered biomimetic adipocyte-based constructs resulted promising as scaffolds or 3D in vitro models of AT.
Collapse
Affiliation(s)
- Matteo Pitton
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Italy
| | - Christian Urzì
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Italy; National Interuniversity Consortium of Materials Science and Technology, Florence, Italy.
| | | |
Collapse
|
5
|
Stephens CJ, Kobayashi R, Berry DC, Butcher JT. The Role of Matrix Stiffness And Viscosity on Lipid Phenotype And Fat Lineage Potential. Tissue Eng Part A 2024. [PMID: 39165245 DOI: 10.1089/ten.tea.2024.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Autologous fat transfer is a common procedure that patients undergo to rejuvenate large soft tissue defects. However, these surgeries are complicated by limited tissue sources, donor-site morbidity, and necrosis. While the biofabrication of fat tissue can serve as a clinical option for reconstructive surgery, the influence of matrix mechanics, specifically stiffness and viscosity, on adipogenesis requires further elucidation. Additionally, the effects of these mechanical parameters on metabolic and thermogenic fat potential have yet to be investigated. In this study, gelatin methacryloyl (GelMA) polymers with varying degrees of methacrylation (DoM) were fabricated to create matrices with different stiffnesses and viscosities. Human adipose-derived mesenchymal stem cells were then encapsulated in mechanically tunable GelMA and underwent adipogenesis to investigate the effects of matrix mechanics on lipid phenotype and fat potential. Mechanical testing confirmed that GelMA stiffness was regulated by DoM and weight composition, whereas viscosity was determined by the latter. Further work revealed that while lipid phenotype became more enriched as matrix stiffness and viscosity declined, the potential toward metabolic and thermogenic fat appeared to be more viscous dependent rather than stiffness dependent. In addition, fatty acid binding protein 4 and uncoupling protein 1 gene expression exhibited viscous-dependent behavior despite comparable levels of peroxisome proliferator-activated receptor gamma. However, despite the superior role of viscosity, lipid quantity and mitochondrial abundance demonstrated stiffness-dependent behavior. Overall, this work revealed that matrix viscosity played a more superior role than stiffness in driving adipogenesis and distinguishing between metabolic and thermogenic fat potential. Ultimately, this differentiation in fat production is important for engineering ideal adipose tissue for large soft tissue defects.
Collapse
Affiliation(s)
- Chelsea J Stephens
- Cornell University, Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York, USA
| | - Reina Kobayashi
- Cornell University, Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York, USA
| | - Daniel C Berry
- College of Human Ecology, Division of Nutrition Science, Cornell University, Ithaca, New York, USA
| | - Jonathan T Butcher
- Cornell University, Nancy E. and Peter C. Meinig School of Biomedical Engineering, Ithaca, New York, USA
| |
Collapse
|
6
|
Zhu Y, Yu X, Liu H, Li J, Gholipourmalekabadi M, Lin K, Yuan C, Wang P. Strategies of functionalized GelMA-based bioinks for bone regeneration: Recent advances and future perspectives. Bioact Mater 2024; 38:346-373. [PMID: 38764449 PMCID: PMC11101688 DOI: 10.1016/j.bioactmat.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels is a widely used bioink because of its good biological properties and tunable physicochemical properties, which has been widely used in a variety of tissue engineering and tissue regeneration. However, pure GelMA is limited by the weak mechanical strength and the lack of continuous osteogenic induction environment, which is difficult to meet the needs of bone repair. Moreover, GelMA hydrogels are unable to respond to complex stimuli and therefore are unable to adapt to physiological and pathological microenvironments. This review focused on the functionalization strategies of GelMA hydrogel based bioinks for bone regeneration. The synthesis process of GelMA hydrogel was described in details, and various functional methods to meet the requirements of bone regeneration, including mechanical strength, porosity, vascularization, osteogenic differentiation, and immunoregulation for patient specific repair, etc. In addition, the response strategies of smart GelMA-based bioinks to external physical stimulation and internal pathological microenvironment stimulation, as well as the functionalization strategies of GelMA hydrogel to achieve both disease treatment and bone regeneration in the presence of various common diseases (such as inflammation, infection, tumor) are also briefly reviewed. Finally, we emphasized the current challenges and possible exploration directions of GelMA-based bioinks for bone regeneration.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
- Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Xingge Yu
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hao Liu
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Junjun Li
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Department of Medical Biotechnology, Faculty of Allied Medicine, Tehran, Iran
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Cheng C, Williamson EJ, Chiu GTC, Han B. Engineering biomaterials by inkjet printing of hydrogels with functional particulates. MED-X 2024; 2:9. [PMID: 38975024 PMCID: PMC11222244 DOI: 10.1007/s44258-024-00024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Hydrogels with particulates, including proteins, drugs, nanoparticles, and cells, enable the development of new and innovative biomaterials. Precise control of the spatial distribution of these particulates is crucial to produce advanced biomaterials. Thus, there is a high demand for manufacturing methods for particle-laden hydrogels. In this context, 3D printing of hydrogels is emerging as a promising method to create numerous innovative biomaterials. Among the 3D printing methods, inkjet printing, so-called drop-on-demand (DOD) printing, stands out for its ability to construct biomaterials with superior spatial resolutions. However, its printing processes are still designed by trial and error due to a limited understanding of the ink behavior during the printing processes. This review discusses the current understanding of transport processes and hydrogel behaviors during inkjet printing for particulate-laden hydrogels. Specifically, we review the transport processes of water and particulates within hydrogel during ink formulation, jetting, and curing. Additionally, we examine current inkjet printing applications in fabricating engineered tissues, drug delivery devices, and advanced bioelectronics components. Finally, the challenges and opportunities for next-generation inkjet printing are also discussed. Graphical Abstract
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - Eric J Williamson
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - George T.-C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Mechanical Science and Engineering, Materials Research Laboratory and Cancer Center at Illinois, University of Illinois Urbana-Champaign, 1206 W Green St, Urbana, IL 61801 USA
| |
Collapse
|
8
|
Mohammad Mehdipour N, Rajeev A, Kumar H, Kim K, Shor RJ, Natale G. Anisotropic hydrogel scaffold by flow-induced stereolithography 3D printing technique. BIOMATERIALS ADVANCES 2024; 161:213885. [PMID: 38743993 DOI: 10.1016/j.bioadv.2024.213885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Essential organs, such as the heart and liver, contain a unique porous network that allows oxygen and nutrients to be exchanged, with distinct random to ordered regions displaying varying degrees of strength. A novel technique, referred to here as flow-induced lithography, was developed. This technique generates tunable anisotropic three-dimensional (3D) structures. The ink for this bioprinting technique was made of titanium dioxide nanorods (Ti) and kaolinite nanoclay (KLT) dispersed in a GelMA/PEGDA polymeric suspension. By controlling the flow rate, aligned particle microstructures were achieved in the suspensions. The application of UV light to trigger the polymerization of the photoactive prepolymer freezes the oriented particles in the polymer network. Because the viability test was successful in shearing suspensions containing cells, the flow-induced lithography technique can be used with both acellular scaffolds and cell-laden structures. Fabricated hydrogels show outstanding mechanical properties resembling human tissues, as well as significant cell viability (> 95 %) over one week. As a result of this technique and the introduction of bio-ink, a novel approach has been pioneered for developing anisotropic tissue implants utilizing low-viscosity biomaterials.
Collapse
Affiliation(s)
- Narges Mohammad Mehdipour
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Ashna Rajeev
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Roman J Shor
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
9
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. J Mech Behav Biomed Mater 2024; 154:106509. [PMID: 38518513 DOI: 10.1016/j.jmbbm.2024.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Samyuktha S Kolluru
- Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Eya Ferchichi
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Hannah F Rudewick
- Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, 63103, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
10
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
11
|
Chen X, Yang M, Zhou Z, Sun J, Meng X, Huang Y, Zhu W, Zhu S, He N, Zhu X, Han X, Liu H. An Anti-Oxidative Bioink for Cartilage Tissue Engineering Applications. J Funct Biomater 2024; 15:37. [PMID: 38391890 PMCID: PMC10889144 DOI: 10.3390/jfb15020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Since chondrocytes are highly vulnerable to oxidative stress, an anti-oxidative bioink combined with 3D bioprinting may facilitate its applications in cartilage tissue engineering. We developed an anti-oxidative bioink with methacrylate-modified rutin (RTMA) as an additional bioactive component and glycidyl methacrylate silk fibroin as a biomaterial component. Bioink containing 0% RTMA was used as the control sample. Compared with hydrogel samples produced with the control bioink, solidified anti-oxidative bioinks displayed a similar porous microstructure, which is suitable for cell adhesion and migration, and the transportation of nutrients and wastes. Among photo-cured samples prepared with anti-oxidative bioinks and the control bioink, the sample containing 1 mg/mL of RTMA (RTMA-1) showed good degradation, promising mechanical properties, and the best cytocompatibility, and it was selected for further investigation. Based on the results of 3D bioprinting tests, the RTMA-1 bioink exhibited good printability and high shape fidelity. The results demonstrated that RTMA-1 reduced intracellular oxidative stress in encapsulated chondrocytes under H2O2 stimulation, which results from upregulation of COLII and AGG and downregulation of MMP13 and MMP1. By using in vitro and in vivo tests, our data suggest that the RTMA-1 bioink significantly enhanced the regeneration and maturation of cartilage tissue compared to the control bioink, indicating that this anti-oxidative bioink can be used for 3D bioprinting and cartilage tissue engineering applications in the future.
Collapse
Affiliation(s)
- Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaolin Meng
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuting Huang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Ning He
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaolong Zhu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Xiaoxiao Han
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
12
|
Zambuto SG, Kolluru SS, Ferchichi E, Rudewick HF, Fodera DM, Myers KM, Zustiak SP, Oyen ML. Evaluation of gelatin bloom strength on gelatin methacryloyl hydrogel properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566924. [PMID: 38014304 PMCID: PMC10680736 DOI: 10.1101/2023.11.13.566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.
Collapse
|
13
|
Karami F, Torabiardekani N, Moradi M, Zare A, Mojahedtaghi M, Khorram M, Jafari M, Jabrodini A, Kamkar M, Zomorodian K, Zareshahrabadi Z. Chitosan-based emulgel and xerogel film containing Thymus pubescens essential oil as a potential wound dressing. Carbohydr Polym 2023; 318:121156. [PMID: 37479450 DOI: 10.1016/j.carbpol.2023.121156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023]
Abstract
Controlling the wound exudates accompanied by microbial wound infections has still remained as one the most challenging clinical issues. Herein, a chitosan/gelatin/polyvinyl alcohol xerogel film containing Thymus pubescens essential oil is fabricated for antimicrobial wound dressing application. The chemical and physical characteristics of the devised formulation is characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscope, and tensile tests. Moreover, swelling capability, water vapour transmission rate, water contact angle, solubility, moisture content, and release properties are also studied. The antimicrobial and antibiofilm tests are performed using the broth microdilution and XTT assay, respectively. The produced formulation shows excellent antimicrobial efficacy against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida species. It is also demonstrated that the obtained film can reduce (∼80 %) Candida albicans biofilm formation, and its biocompatibility is confirmed with MTT (∼100 %) and hemolysis tests. The antimicrobial activity can be correlated to the microbial membrane attraction for Candida albicans cells, illustrated by flow cytometry. This proposed film with appropriate mechanical strength, high swelling capacity in different pH values (∼200-700 %), controlled release property, and antimicrobial and antioxidant activities as well as biocompatibility can be used as a promising candidate for antimicrobial wound dressing applications.
Collapse
Affiliation(s)
- Forough Karami
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammadreza Moradi
- Medical Student of School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Zare
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Maryam Mojahedtaghi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Mahboobeh Jafari
- Center for nanotechnology in drug delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Jabrodini
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Kamkar
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
de Barros NR, Gomez A, Ermis M, Falcone N, Haghniaz R, Young P, Gao Y, Aquino AF, Li S, Niu S, Chen R, Huang S, Zhu Y, Eliahoo P, Sun A, Khorsandi D, Kim J, Kelber J, Khademhosseini A, Kim HJ, Li B. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. Biofabrication 2023; 15:10.1088/1758-5090/ace0db. [PMID: 37348491 PMCID: PMC10683563 DOI: 10.1088/1758-5090/ace0db] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.
Collapse
Affiliation(s)
- Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Department of Biology, Baylor University, 101 Bagby Ave, TX 76706, United Ustates of America
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Patric Young
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Yaqi Gao
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Albert-Fred Aquino
- Department of Biology, California State University, Northridge, CA 91330, United States of America
| | - Siyuan Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- METU Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Siyi Niu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- Department of Biomedical Engineering, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, United States of America
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Payam Eliahoo
- Department of Biology, University of California, Irvine, CA 92697, United States of America
| | - Arthur Sun
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Jonathan Kelber
- Department of Biology, California State University, Northridge, CA 91330, United States of America
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States of America
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, CA 90024, United States of America
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, United States of America
| |
Collapse
|
15
|
Torabiardekani N, Karami F, Khorram M, Zare A, Kamkar M, Zomorodian K, Zareshahrabadi Z. Encapsulation of Zataria multiflora essential oil in polyvinyl alcohol/chitosan/gelatin thermo-responsive hydrogel: Synthesis, physico-chemical properties, and biological investigations. Int J Biol Macromol 2023:125073. [PMID: 37245771 DOI: 10.1016/j.ijbiomac.2023.125073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Zataria multiflora essential oil is a natural volatile plant product whose therapeutic applications require a delivery platform. Biomaterial-based hydrogels have been extensively used in biomedical applications, and they are promising platforms to encapsulate essential oils. Among different hydrogels, intelligent hydrogels have recently attracted many interests because of their response to environmental stimuli such as temperature. Herein, Zataria multiflora essential oil is encapsulated in a polyvinyl alcohol/chitosan/gelatin hydrogel as a positive thermo-responsive and antifungal platform. According to the optical microscopic image, the encapsulated spherical essential oil droplets reveal a mean size of 1.10 ± 0.64 μm, which are in consistent with the SEM imaging results. Encapsulation efficacy and loading capacity are 98.66 % and 12.98 %, respectively. These results confirm the successful efficient encapsulation of the Zataria multiflora essential oil within the hydrogel. The chemical compositions of the Zataria multiflora essential oil and the fabricated hydrogel are analyzed by gas chromatography-mass spectroscopy (GC-MS) and Fourier transform infrared (FTIR) techniques. It is found that thymol (44.30 %) and γ-terpinene (22.62 %) are the main constituents of the Zataria multiflora essential oil. The produced hydrogel inhibits the metabolic activity of Candida albicans biofilms (~60-80 %), which can be related to the antifungal activity of the essential oil constituents and chitosan. Based on the rheological results, the produced thermo-responsive hydrogel shows a gel-sol viscoelastic transition at a temperature of 24.5 °C. This transition leads to a facile release of the loaded essential oil. The release test depicts that about 30 % of Zataria multiflora essential oil is released during the first 16 min. In addition, 2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay demonstrates that the designed thermo-sensitive formulation is biocompatible with high cell viability (over 96 %). The fabricated hydrogel can be deemed as a potential intelligent drug delivery platform for controlling cutaneous candidiasis due to antifungal effectiveness and less toxicity, which can be a promising alternative to traditional drug delivery systems.
Collapse
Affiliation(s)
| | - Forough Karami
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Chemistry Department, Yasouj University, Yasouj, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Alireza Zare
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Milad Kamkar
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Zareshahrabadi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research Progress in Enzymatically Cross-Linked Hydrogels as Injectable Systems for Bioprinting and Tissue Engineering. Gels 2023; 9:gels9030230. [PMID: 36975679 PMCID: PMC10048521 DOI: 10.3390/gels9030230] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogels have been developed for different biomedical applications such as in vitro culture platforms, drug delivery, bioprinting and tissue engineering. Enzymatic cross-linking has many advantages for its ability to form gels in situ while being injected into tissue, which facilitates minimally invasive surgery and adaptation to the shape of the defect. It is a highly biocompatible form of cross-linking, which permits the harmless encapsulation of cytokines and cells in contrast to chemically or photochemically induced cross-linking processes. The enzymatic cross-linking of synthetic and biogenic polymers also opens up their application as bioinks for engineering tissue and tumor models. This review first provides a general overview of the different cross-linking mechanisms, followed by a detailed survey of the enzymatic cross-linking mechanism applied to both natural and synthetic hydrogels. A detailed analysis of their specifications for bioprinting and tissue engineering applications is also included.
Collapse
Affiliation(s)
- Raquel Naranjo-Alcazar
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Correspondence:
| | - Sophie Bendix
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Research, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
17
|
Amini M, Kamkar M, Ahmadijokani F, Ghaderi S, Rojas OJ, Hosseini H, Arjmand M. Mapping 3D Printability of Ionically Cross-Linked Cellulose Nanocrystal Inks: Architecting from Nano- to Macroscale Structures. Biomacromolecules 2023; 24:775-788. [PMID: 36546647 DOI: 10.1021/acs.biomac.2c01241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Engineering the rheological properties of colloidal inks is one of the main challenges in achieving high-fidelity 3D printing. Herein, we provide a comprehensive study on the rheological behavior of inks based on cellulose nanocrystals (CNCs) in the presence of given salts to enable high-quality 3D printing. The rheological properties of the CNC suspensions are tailored by considering the nature of the electrolyte (i.e., 10 types of salts featuring different ion sizes, charge numbers, and inter- and intra-molecular interactions) at various concentrations (25-100 mM). A high printing fidelity is achieved in a narrow CNC and salt concentration range, significantly depending on the salt type. The structure-property relationship is explored in a "3D-printing" space (2D map), introducing a guideline for researchers active in this field. To further unravel the effect of salt type on morphological properties, CNC aerogels are developed by freeze-drying the printed structures. The results illustrate that enhancing viscoelastic properties render a denser structure featuring smaller pores.
Collapse
Affiliation(s)
- Majed Amini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada
| | - Milad Kamkar
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada.,Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British ColumbiaV6T 1Z3, Canada.,Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, OntarioN2L 3G1, Canada
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada.,Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Saeed Ghaderi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Hadi Hosseini
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British ColumbiaV1V 1V7, Canada
| |
Collapse
|
18
|
Mei N, Wu Y, Chen B, Zhuang T, Yu X, Sui B, Ding T, Liu X. 3D-printed mesoporous bioactive glass/GelMA biomimetic scaffolds for osteogenic/cementogenic differentiation of periodontal ligament cells. Front Bioeng Biotechnol 2022; 10:950970. [PMID: 36329698 PMCID: PMC9623086 DOI: 10.3389/fbioe.2022.950970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2023] Open
Abstract
Integrated regeneration of periodontal tissues remains a challenge in current clinical applications. Due to the tunable physical characteristics and the precise control of the scaffold microarchitecture, three-dimensionally (3D) printed gelatin methacryloyl (GelMA)-based scaffold has emerged as a promising strategy for periodontal tissue regeneration. However, the optimization of the printing biomaterial links the formulation and the relationship between the composition and structures of the printed scaffolds and their comprehensive properties (e.g. mechanical strength, degradation, and biological behaviors) remains unclear. Here, in this work, a novel mesoporous bioactive glass (BG)/GelMA biomimetic scaffold with a large pore size (∼300 μm) was developed by extrusion-based 3D printing. Our results showed that the incorporation of mesoporous bioactive glass nanoparticles (BG NPs) significantly improved shape fidelity, surface roughness, and bioactivity of 3D-printed macroporous GelMA scaffolds, resulting in the enhanced effects on cell attachment and promoting osteogenic/cementogenic differentiation in human periodontal ligament cells. The excellent maintenance of the macropore structure, the visibly improved cells spreading, the release of bioactive ions (Si4+, Ca2+), the upregulation of gene expressions of osteogenesis and cementogensis, and the increase in alkaline phosphatase (ALP) activity and calcium nodules suggested that BG NPs could endow GelMA-based scaffolds with excellent structural stability and the ability to promote osteogenic/cementogenic differentiation. Our findings demonstrated the great potential of the newly formulated biomaterial inks and biomimetic BG/GelMA scaffolds for being used in periodontal tissue regeneration and provide important insights into the understanding of cell-scaffold interaction in promoting the regeneration of functional periodontal tissues.
Collapse
Affiliation(s)
- Nianrou Mei
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiwen Wu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Binglin Chen
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Tian Zhuang
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xinge Yu
- School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
- Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Baiyan Sui
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Tingting Ding
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
19
|
MacAdam A, Chaudry E, McTiernan CD, Cortes D, Suuronen EJ, Alarcon EI. Development of in situ bioprinting: A mini review. Front Bioeng Biotechnol 2022; 10:940896. [PMID: 35935512 PMCID: PMC9355423 DOI: 10.3389/fbioe.2022.940896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting has rapidly progressed over the past decade. One branch of bioprinting known as in situ bioprinting has benefitted considerably from innovations in biofabrication. Unlike ex situ bioprinting, in situ bioprinting allows for biomaterials to be printed directly into or onto the target tissue/organ, eliminating the need to transfer pre-made three-dimensional constructs. In this mini-review, recent progress on in situ bioprinting, including bioink composition, in situ crosslinking strategies, and bioprinter functionality are examined. Future directions of in situ bioprinting are also discussed including the use of minimally invasive bioprinters to print tissues within the body.
Collapse
Affiliation(s)
- Aidan MacAdam
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Emaan Chaudry
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Christopher D. McTiernan
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Cortes
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Erik J. Suuronen
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emilio I. Alarcon
- BEaTS Research, Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Li H, Yu K, Zhang P, Ye Y, Shu Q. A printability study of multichannel nerve guidance conduits using projection-based three-dimensional printing. J Biomater Appl 2022; 37:538-550. [PMID: 35549934 DOI: 10.1177/08853282221101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multichannel nerve guidance conduits (NGCs) replicating the native architecture of peripheral nerves have emerged as promising alternatives to autologous nerve grafts. However, manufacturing multichannel NGCs is challenging in terms of desired structural stability and resolution. In this study, we systematically investigated the effects of photopolymer properties, inner diameter dimensions, printing parameters, and different conditions on multichannel NGCs printability using projection-based three-dimensional printing. Low viscosity and rapid photocuring properties were essential requirements. A standard model was generated to evaluate multichannel NGC printed quality. The results showed that printing deviations decreased with increased mechanical strength and inner diameter. Subsequently, gelatin methacrylate (GelMA) NGCs was selected as a representative. It was found that printing conditions, including printing temperature, peeling, and shrinkage affected final NGC accuracy and quality. PC-12 cells cultured with the GelMA NGCs displayed non-toxic and promoted cell migration. Our research provides an effective, time-saving, and high-resolution technology for manufacturing multichannel NGCs with high fidelity, which may be used as reference templates for biomedical applications.
Collapse
Affiliation(s)
- Haibing Li
- Department of Paediatric Orthopaedics, The Children's Hospital, 605254Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, 529107Zhejiang University, Hangzhou, China
| | - Peng Zhang
- Engineering for Life Group (EFL), 529107Zhejiang University School of Mechanical Engineering, China
| | - Yensong Ye
- Department of Paediatric Orthopaedics, The Children's Hospital, 605254Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiang Shu
- Department of Paediatric Orthopaedics, The Children's Hospital, 605254Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
21
|
Kamkar M, Ghaffarkhah A, Ajdary R, Lu Y, Ahmadijokani F, Mhatre SE, Erfanian E, Sundararaj U, Arjmand M, Rojas OJ. Structured Ultra-Flyweight Aerogels by Interfacial Complexation: Self-Assembly Enabling Multiscale Designs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200220. [PMID: 35279945 DOI: 10.1002/smll.202200220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter. The as-obtained LS systems can be readily converted into ultra-flyweight aerogels displaying worm-like morphologies with multiscale porosities (micro- and macro-scaled). The presence of reduced GO nanosheets in such large surface area systems renders materials with outstanding mechanical compressibility and tailorable electrical activity. This platform for engineering soft materials and solid constructs opens up new horizons toward advanced functionality and tunability, as demonstrated here for ultralight printed conductive circuits and electromagnetic interference shields.
Collapse
Affiliation(s)
- Milad Kamkar
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ahmadreza Ghaffarkhah
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Rubina Ajdary
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, Espoo, FI-00076, Finland
| | - Yi Lu
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Farhad Ahmadijokani
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Sameer E Mhatre
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Elnaz Erfanian
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Orlando J Rojas
- Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, Aalto, Espoo, FI-00076, Finland
| |
Collapse
|
22
|
Lu L, Zhou W, Chen Z, Hu Y, Yang Y, Zhang G, Yang Z. A Supramolecular Hydrogel Enabled by the Synergy of Hydrophobic Interaction and Quadruple Hydrogen Bonding. Gels 2022; 8:244. [PMID: 35448145 PMCID: PMC9032949 DOI: 10.3390/gels8040244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing preference for minimally invasive surgery requires novel soft materials that are injectable, with rapid self-healing abilities, and biocompatible. Here, by utilizing the synergetic effect of hydrophobic interaction and quadruple hydrogen bonding, an injectable supramolecular hydrogel with excellent self-healing ability was synthesized. A unique ABA triblock copolymer was designed containing a central poly(ethylene oxide) block and terminal poly(methylmethacrylate) (PMMA) block, with ureido pyrimidinone (UPy) moieties randomly incorporated (termed MA-UPy-PEO-UPy-MA). The PMMA block could offer a hydrophobic microenvironment for UPy moieties in water and thus boost the corresponding quadruple hydrogen bonding interaction of Upy-Upy dimers. Owing to the synergetic effect of hydrophobicity and quadruple hydrogen bonding interaction, the obtained MA-UPy-PEO-UPy-MA hydrogel exhibited excellent self-healing properties, and injectable capability, as well as superior mechanical strength, and therefore, it holds great promise in tissue engineering applications, including in cell support and drug release.
Collapse
Affiliation(s)
- Liangmei Lu
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Medical College of Shantou University, 69 North Dongxia Road, Shantou 515041, China
| | - Zhuzuan Chen
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yang Hu
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu Yang
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Guangzhao Zhang
- Department of Materials Science & Engineering, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhuohong Yang
- College of Materials and Energy, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
23
|
Schmieg B, Gretzinger S, Schuhmann S, Guthausen G, Hubbuch J. Magnetic Resonance Imaging as a tool for quality control in extrusion-based bioprinting. Biotechnol J 2022; 17:e2100336. [PMID: 35235239 DOI: 10.1002/biot.202100336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Bioprinting is gaining importance for the manufacturing of tailor-made hydrogel scaffolds in tissue engineering, pharmaceutical research and cell therapy. However, structure fidelity and geometric deviations of printed objects heavily influence mass transport and process reproducibility. Fast, three-dimensional and nondestructive quality control methods will be decisive for the approval in larger studies or industry. Magnetic Resonance Imaging (MRI) meets these requirements for characterizing heterogeneous soft materials with different properties. Complementary to the idea of decentralized 3D printing, magnetic resonance tomography is common in medicine, and image data processing tools can be transferred system-independently. In this study, we evaluated a MRI measurement and image analysis protocol to jointly assess the reproducibility of three different hydrogels and a reference material. Critical parameters for object quality, namely porosity, hole areas and deviations along the height of the scaffolds are discussed. Geometric deviations could be correlated to specific process parameters, anomalies of the ink or changes of ambient conditions. This strategy allows the systematic investigation of complex 3D objects as well as an implementation as a process control tool. Combined with the monitoring of metadata this approach might pave the way for future industrial applications of 3D printing in the field of biopharmaceutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Barbara Schmieg
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Gretzinger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sebastian Schuhmann
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gisela Guthausen
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Engler Bunte Institute Water Chemistry and Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
24
|
Kamkar M, Janmaleki M, Erfanian E, Sanati‐Nezhad A, Sundararaj U. Covalently cross‐linked hydrogels: Mechanisms of nonlinear viscoelasticity. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Milad Kamkar
- Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW, Calgary Alberta Canada
| | - Mohsen Janmaleki
- BioMEMS and Bioinspired Microfluidic Laboratory Biomedical Engineering Graduate Program, University of Calgary Calgary, Alberta T2N1N4 Canada
| | - Elnaz Erfanian
- Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW, Calgary Alberta Canada
| | - Amir Sanati‐Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering University of Calgary Calgary, Alberta T2N1N4 Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW, Calgary Alberta Canada
| |
Collapse
|
25
|
Yong KW, Janmaleki M, Pachenari M, Mitha AP, Sanati-Nezhad A, Sen A. Engineering a 3D human intracranial aneurysm model using liquid-assisted injection molding and tuned hydrogels. Acta Biomater 2021; 136:266-278. [PMID: 34547516 DOI: 10.1016/j.actbio.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
Physiologically relevant intracranial aneurysm (IA) models are crucially required to facilitate testing treatment options for IA. Herein, we report the development of a new in vitro tissue-engineered platform, which recapitulates the microenvironment, structure, and cellular complexity of native human IA. A new modified liquid-assisted injection molding technique was developed to fabricate a three-dimensional hollow IA model with clinically relevant IA dimensions within a mechanically tuned Gelatin Methacryloyl (GelMA) hydrogel. An endothelium lining was created inside the IA model by culturing human umbilical vein endothelial cells over pre-cultured human brain vascular smooth muscle cells. These cellularized IA models were subjected to medium perfusion at flow rates between 6.3 and 15.75 mL/min for inducing biomimetic vessel wall shear stress (10-25 dyn/cm2) to the cells for ten days. Both cell types maintained their secretome profiles and showed more than 96% viability, demonstrating the biocompatibility of the hydrogel during perfusion cell culture at such flow rates. Based on the characterized viscoelastic properties of the GelMA hydrogel and with the aid of a fluid-structure interaction model, the capability of the IA model in predicting the response of the IA to different fluid flow profiles was mathematically shown. With physiologically relevant behavior, our developed in vitro human IA model could allow researchers to better understand the pathophysiology and treatment of IA. STATEMENT OF SIGNIFICANCE: A three-dimensional intracranial aneurysm (IA) tissue model recapitulating the microenvironment, structure, and cellular complexity of native human IA was developed. • An endothelium lining was created inside the IA model over pre-cultured human brain vascular smooth muscle cells over at least 10-day successful culture. • The cells maintained their secretome profiles, demonstrating the biocompatibility of hydrogel during a long-term perfusion cell culture. • The IA model showed its capability in predicting the response of IA to different fluid flow profiles. • The cells in the vessel region behaved differently from cells in the aneurysm region due to alteration in hemodynamic shear stress. • The IA model could allow researchers to better understand the pathophysiology and treatment options of IA.
Collapse
|
26
|
Kimicata M, Mahadik B, Fisher JP. Long-Term Sustained Drug Delivery via 3D Printed Masks for the Development of a Heparin-Loaded Interlayer in Vascular Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50812-50822. [PMID: 34670077 DOI: 10.1021/acsami.1c16938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current approaches in small-diameter vascular grafts for coronary artery bypass surgeries fail to address physiological variations along the graft that contribute to thrombus formation and ultimately graft failure. We present an innovative interlayer drug delivery system that can be utilized for the sustained delivery of heparin through a graft with a high degree of temporal and spatial control. A heparin-loaded gelatin methacrylate (gelMA) interlayer sits within a biohybrid composed of decellularized bovine pericardium (dECM) and poly(propylene fumarate) (PPF), and its UV crosslinking is controlled via three-dimensional (3D) printed shadow masks. The masks can be readily designed to modulate the incident light intensity on the graft, enabling us to control the resultant gelMA crosslinking and properties. A high heparin loading efficiency was obtained in gelMA and was independent of crosslinking. We achieved sustained heparin release over the course of 2 weeks within the biohybrid material using the 3D printed mask patterns. High doses of heparin were observed to have detrimental effects on endothelial cell function. However, when exposed to heparin in a slower, more sustained manner consistent with the masks, endothelial cells behave similarly to untreated cells. Further, slower release profiles cause significantly more release of tissue factor pathway inhibitor, an anticoagulant, than a faster release profile. The heparin-loaded gelMA interlayer we have developed is a useful tool for the temporal and spatial control of heparin release that supports endothelial function and promotes an antithrombotic environment.
Collapse
Affiliation(s)
- Megan Kimicata
- Department of Materials Science and Engineering, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
- NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Bhushan Mahadik
- NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
| | - John P Fisher
- NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|