1
|
Fazeli MA, Amiri M, Rostaminasab G, Akbaripour V, Mikaeili A, Othman M, Rezakhani L. Application of decellularized tissues in ear regeneration. J Tissue Viability 2025; 34:100870. [PMID: 39970482 DOI: 10.1016/j.jtv.2025.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
More than 5 % of people worldwide suffer from hearing disorders. Ototoxic drugs, aging, exposure to loud sounds, rupture, subperichondrial hematoma, perichondritis, burns and frostbite and infections are the main causes of hearing loss, some of which can destroy the cartilage and lead to deformation. On the other hand, disorders of the external ear are diverse and can range from dangerous neoplasms to defects that are not acceptable from a cosmetic standpoint. These issues include injuries, blockages, dermatoses, and infections, and any or all of them may be bothersome to the busy doctor. Using an implant or hearing aid is one of the treatment strategies for deafness. However, these medical devices are not useful for every eligible patient. With the right therapy, many of these issues are not life-threatening and can be treated with confidence in a positive outcome. As medical research and treatment have advanced dramatically in the past ten years, tissue engineering (TE) has emerged as a promising method to regenerate damaged tissue, raising the prospect of a permanent cure for deafness. Decellularization is now seen as a promising development for regenerative medicine, and an increasing number of applications are being found for acellular matrices. Studies on decellularization show that natural scaffolds made from decellularized tissues can serve as a suitable platform while preserving the main components, and the preparation of such scaffolds will be an important part of future bioscience research. It can have wide applications in regenerative medicine and TE. This review intends to give an overview of the status of research and alternative scaffolds in inner and outer ear regenerative medicine from both a preclinical and clinical perspective for ear disorders in order to show how ongoing TE research has the potential to advance and enhance novel disease treatments.
Collapse
Affiliation(s)
- Manouchehr Avatef Fazeli
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Amiri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahid Akbaripour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Othman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Akgul B, Gulcan C, Tornaci S, Erginer M, Toksoy Oner E, Abamor ES, Acar S, Allahverdiyev AM. Manufacturing Radially Aligned PCL Nanofibers Reinforced With Sulfated Levan and Evaluation of its Biological Activity for Healing Tympanic Membrane Perforations. Macromol Biosci 2025; 25:e2400291. [PMID: 39461894 PMCID: PMC11727819 DOI: 10.1002/mabi.202400291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/08/2024] [Indexed: 10/29/2024]
Abstract
The main objective of this study is to construct radially aligned PCL nanofibers reinforced with levan polymer and investigate their in vitro biological activities thoroughly. First Halomonas levan (HL) polysaccharide is hydrolyzed (hHL) and subjected to sulfation to attain Sulfated hydrolyzed Halomonas levan (ShHL)-based material indicating heparin mimetic properties. Then, optimization studies are carried out to produce coaxially generated radially aligned Poly(caprolactone) (PCL) -ShHL nanofibers via electrospinning. The obtained nanofibers are characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM-EDX) analysis, and mechanical, contact angle measurement, biodegradability, and swelling tests as well. Afterward, cytotoxicity of artificial tympanic membranes is analyzed by MTT (3-(4,5-Dimethylthiazol-2-yl) -2,5 Diphenyltetrazolium Bromide) test, and their impacts on cell proliferation, cellular adhesion, wound healing processes are explored. Furthermore, an additional FESEM imaging is performed to manifest the interactions between fibroblasts and nanofibers. According to analytical measurements it is detected that PCL-ShHL nanofibers i) are smaller in fiber diameter, ii) are more biodegradable, iii) are more hydrophilic, and iv) demonstrated superior mechanical properties compared to PCL nanofibers. Moreover, it is also deciphered that PCL-ShHL nanofibers strongly elevated cellular adhesion, proliferation, and in vitro wound healing features compared to PCL nanofibers. According to obtained results it is assumed that newly synthetized levan and PCL mediated nanofibers are very encouraging for healing tympanic membrane perforations.
Collapse
Affiliation(s)
- Busra Akgul
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Cansu Gulcan
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Selay Tornaci
- IBSBDepartment of BioengineeringMarmara UniversityIstanbul34854Turkey
| | - Merve Erginer
- Institute of Nanotechnology and BiotechnologyIstanbul University‐CerrahpaşaIstanbul34500Turkey
- Health Biotechnology Joint Research and Application Center of ExcellenceEsenlerIstanbul34220Turkey
| | - Ebru Toksoy Oner
- IBSBDepartment of BioengineeringMarmara UniversityIstanbul34854Turkey
| | - Emrah Sefik Abamor
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Serap Acar
- Department of BioengineeringYildiz Technical UniversityIstanbul34220Turkey
| | - Adil M. Allahverdiyev
- The V. Akhundov Scientific Research Medical Preventive InstituteBakuAZ1004Azerbaijan
| |
Collapse
|
3
|
Chen S, Guo X, Yang Y, Deng J, Xu T, Yuan Z, Xue H, Niu L, Wang R, Shen Y. Tough and self-adhesive zwitterionic hydrogels with mechano-responsive release of bFGF for tympanic membrane repair. Mater Today Bio 2024; 28:101212. [PMID: 39687063 PMCID: PMC11647963 DOI: 10.1016/j.mtbio.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tympanic membrane (TM) is constantly in a state of vibrating. However, there is currently a lack of drug-delivery scaffolds suitable for the dynamic environment of TM perforation. In this study, a mechano-responsive tough hydrogel was developed. It consists of basic fibroblast growth factor (bFGF)-loaded sodium alginate (SA) microspheres, polysulfobetaine methacrylate (polySBMA), and gelatin methacrylate (GelMA). This hydrogel was designed to serve as a TM scaffold to promote perforation healing under dynamic conditions. bFGF was encapsulated in SA microspheres, which were then incorporated into polySBMA-GelMA hydrogels through photo-initiated free radical polymerization. The mechanical properties, tissue adhesiveness, swelling properties, and degradation of the hydrogels were evaluated before and after microsphere incorporation. It was observed that incorporating bFGF-loaded SA microspheres did not significantly impact the adhesion and degradation mechanisms of the hydrogel. The compressive strength and tensile strength of the microsphere-incorporated hydrogel were up to 6.6 MPa and 64.1 kPa, respectively, suitable for a TM scaffold. The release behavior of bFGF from the hydrogel could be controlled by vibration stimulation without significantly affecting the hydrogel's mechanical properties, indicating a mechano-responsive nature of the hydrogel. The in vitro cytotoxicity assay demonstrated that the hydrogels showed no cytotoxic effects. Moreover, cell culture assays demonstrated that vibration stimulation could enhance the release of bFGF, significantly promoting cell proliferation and migration. The results demonstrate the significant potential of the mechano-responsive hydrogel as a scaffold for repairing TM perforations.
Collapse
Affiliation(s)
- Shengjia Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, PR China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
- School of Medicine, Ningbo University, Ningbo, 315211, PR China
| | - Xiangshu Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Yanyu Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Ting Xu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Zhechen Yuan
- School of Medicine, Ningbo University, Ningbo, 315211, PR China
| | - Hao Xue
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, PR China
| | - Longxing Niu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, PR China
| | - Yi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, PR China
- School of Medicine, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
4
|
Xue H, Chen S, Hu Y, Huang J, Shen Y. Advances in 3D printing for the repair of tympanic membrane perforation: a comprehensive review. Front Bioeng Biotechnol 2024; 12:1439499. [PMID: 39188376 PMCID: PMC11345550 DOI: 10.3389/fbioe.2024.1439499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Tympanic membrane perforation (TMP) is one of the most common conditions in otolaryngology worldwide, and hearing damage caused by inadequate or prolonged healing can be distressing for patients. This article examines the rationale for utilizing three-dimensional (3D) printing to produce scaffolds for repairing TMP, compares the advantages and disadvantages of 3D printed and bioprinted grafts with traditional autologous materials and other tissue engineering materials in TMP repair, and highlights the practical and clinical significance of 3D printing in TMP repair while discussing the current progress and promising future of 3D printing and bioprinting. There is a limited number of reviews specifically dedicated to 3D printing for TMP repair. The majority of reviews offer a general overview of the applications of 3D printing in the broader realm of tissue regeneration, with some mention of TMP repair. Alternatively, they explore the biopolymers, cells, and drug molecules utilized for TMP repair. However, more in-depth analysis is needed on the strategies for selecting bio-inks that integrate biopolymers, cells, and drug molecules for tympanic membrane repair.
Collapse
Affiliation(s)
- Hao Xue
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shengjia Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Hu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Juntao Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China
- Centre for Medical Research, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
5
|
Wang F, Song P, Wang J, Wang S, Liu Y, Bai L, Su J. Organoid bioinks: construction and application. Biofabrication 2024; 16:032006. [PMID: 38697093 DOI: 10.1088/1758-5090/ad467c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Organoids have emerged as crucial platforms in tissue engineering and regenerative medicine but confront challenges in faithfully mimicking native tissue structures and functions. Bioprinting technologies offer a significant advancement, especially when combined with organoid bioinks-engineered formulations designed to encapsulate both the architectural and functional elements of specific tissues. This review provides a rigorous, focused examination of the evolution and impact of organoid bioprinting. It emphasizes the role of organoid bioinks that integrate key cellular components and microenvironmental cues to more accurately replicate native tissue complexity. Furthermore, this review anticipates a transformative landscape invigorated by the integration of artificial intelligence with bioprinting techniques. Such fusion promises to refine organoid bioink formulations and optimize bioprinting parameters, thus catalyzing unprecedented advancements in regenerative medicine. In summary, this review accentuates the pivotal role and transformative potential of organoid bioinks and bioprinting in advancing regenerative therapies, deepening our understanding of organ development, and clarifying disease mechanisms.
Collapse
Affiliation(s)
- Fuxiao Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Jian Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- These authors contributed equally
| | - Sicheng Wang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200444, People's Republic of China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
- Wenzhou Institute of Shanghai University, Wenzhou 325000, People's Republic of China
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
6
|
Svistushkin M, Kotova S, Zolotova A, Fayzullin A, Antoshin A, Serejnikova N, Shekhter A, Voloshin S, Giliazova A, Istranova E, Nikiforova G, Khlytina A, Shevchik E, Nikiforova A, Selezneva L, Shpichka A, Timashev PS. Collagen Matrix to Restore the Tympanic Membrane: Developing a Novel Platform to Treat Perforations. Polymers (Basel) 2024; 16:248. [PMID: 38257047 PMCID: PMC10820519 DOI: 10.3390/polym16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Modern otology faces challenges in treating tympanic membrane (TM) perforations. Instead of surgical intervention, alternative treatments using biomaterials are emerging. Recently, we developed a robust collagen membrane using semipermeable barrier-assisted electrophoretic deposition (SBA-EPD). In this study, a collagen graft shaped like a sponge through SBA-EPD was used to treat acute and chronic TM perforations in a chinchilla model. A total of 24 ears from 12 adult male chinchillas were used in the study. They were organized into four groups. The first two groups had acute TM perforations and the last two had chronic TM perforations. We used the first and third groups as controls, meaning they did not receive the implant treatment. The second and fourth groups, however, were treated with the collagen graft implant. Otoscopic assessments were conducted on days 14 and 35, with histological evaluations and TM vibrational studies performed on day 35. The groups treated with the collagen graft showed fewer inflammatory changes, improved structural recovery, and nearly normal TM vibrational properties compared to the controls. The porous collagen scaffold successfully enhanced TM regeneration, showing high biocompatibility and biodegradation potential. These findings could pave the way for clinical trials and present a new approach for treating TM perforations.
Collapse
Affiliation(s)
- Mikhail Svistushkin
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Anna Zolotova
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Artem Antoshin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Natalia Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Galina Nikiforova
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Arina Khlytina
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Elena Shevchik
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Anna Nikiforova
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Liliya Selezneva
- Department for ENT Diseases, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (M.S.); (A.Z.); (G.N.); (A.K.); (E.S.); (A.N.); (L.S.)
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., Moscow 119991, Russia; (S.K.); (A.F.); (A.A.); (N.S.); (A.S.); (S.V.); (A.G.); (E.I.); (P.S.T.)
| |
Collapse
|
7
|
Wang L, Han H, Wang J, Zhu Y, Liu Z, Sun Y, Wang L, Xiang S, Shi H, Ding Q. Finite element analysis of repairing tympanic membrane perforation using autologous graft material and biodegradable bionic cobweb scaffold. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107868. [PMID: 37891016 DOI: 10.1016/j.cmpb.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND OBJECTIVE As for repairing the perforated tympanic membranes (TM), temporalis fascia and tragal cartilage are popular in clinics as autologous graft materials. However, there is a significant hearing loss after repairing the TM with autologous graft materials, which needs to be addressed in biomechanical engineering. METHODS The finite element model of normal middle ear is improved from two aspects: the repair method of tympanic fibrous layer and the bionic spider web tympanic scaffold. By creating the solid-shell coupling condition and strong coupling boundary condition to simulate the repair, TM umbo and stapes footplate displacement-frequency response are explored in 200-8000 Hz. RESULTS The tympanic membrane perforation (TMP) causes a significant conductive hearing loss in high frequency region, which is positively correlated with perforation area. Both temporalis fascia and tragal cartilage still perform a certain degree of high-frequency hearing loss after repairing TMP. The TM attachment the magnesium alloy scaffold (MAS) prevents appropriately the high frequency hearing loss after autologous graft repair and makes the sound transmission closer to the normal condition. Significantly, the density of graft material has a negative effect on high-frequency sound transmission without the MAS. The modal-motion of TM repaired with temporalis fascia and tragal cartilage is improved significantly after attaching the MAS. In addition, the MAS restores effectively the configuration and vibration frequency of the repaired TM, which is similar to that of the native TM. CONCLUSION The area size of TMP is studied through the finite element method, which includes autologous graft materials, the MAS, parameter sensitivity analysis, modal analysis of graft material and the MAS in biological form on the effect of middle ear sound transmission. Relevant conclusions provide some references for clinical trial protocol and the follow-up repair ideas of TM of tympanoplasty.
Collapse
Affiliation(s)
- Liang Wang
- Department of Mechanics and Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin University, Tianjin 300350, China
| | - Hongge Han
- Department of Mechanics and Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin University, Tianjin 300350, China
| | - Jie Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing 100730, China; Beijing Engineering Research Center of Audiological Technology, Beijing 100730, China
| | - Yueting Zhu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Children's Hospital, Tianjin University, Tianjin 300400, China
| | - Zhanli Liu
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Yongtao Sun
- Department of Mechanics and Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin University, Tianjin 300350, China; National Key Laboratory of Strength and Structural Integrity, Xian, Shaanxi 710065, China.
| | - Lele Wang
- Department of Mechanics and Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin University, Tianjin 300350, China
| | - Shuyi Xiang
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Huibin Shi
- School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Ding
- Department of Mechanics and Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Delaney DS, Liew LJ, Lye J, Atlas MD, Wong EYM. Overcoming barriers: a review on innovations in drug delivery to the middle and inner ear. Front Pharmacol 2023; 14:1207141. [PMID: 37927600 PMCID: PMC10620978 DOI: 10.3389/fphar.2023.1207141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Despite significant advances in the development of therapeutics for hearing loss, drug delivery to the middle and inner ear remains a challenge. As conventional oral or intravascular administration are ineffective due to poor bioavailability and impermeability of the blood-labyrinth-barrier, localized delivery is becoming a preferable approach for certain drugs. Even then, localized delivery to the ear precludes continual drug delivery due to the invasive and potentially traumatic procedures required to access the middle and inner ear. To address this, the preclinical development of controlled release therapeutics and drug delivery devices have greatly advanced, with some now showing promise clinically. This review will discuss the existing challenges in drug development for treating the most prevalent and damaging hearing disorders, in particular otitis media, perforation of the tympanic membrane, cholesteatoma and sensorineural hearing loss. We will then address novel developments in drug delivery that address these including novel controlled release therapeutics such as hydrogel and nanotechnology and finally, novel device delivery approaches such as microfluidic systems and cochlear prosthesis-mediated delivery. The aim of this review is to investigate how drugs can reach the middle and inner ear more efficiently and how recent innovations could be applied in aiding drug delivery in certain pathologic contexts.
Collapse
Affiliation(s)
- Derek S. Delaney
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Lawrence J. Liew
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - Joey Lye
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Elaine Y. M. Wong
- Hearing Therapeutics, Ear Science Institute Australia, Nedlands, WA, Australia
- Centre for Ear Sciences, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
9
|
von Witzleben M, Stoppe T, Zeinalova A, Chen Z, Ahlfeld T, Bornitz M, Bernhardt A, Neudert M, Gelinsky M. Multimodal additive manufacturing of biomimetic tympanic membrane replacements with near tissue-like acousto-mechanical and biological properties. Acta Biomater 2023; 170:124-141. [PMID: 37696412 DOI: 10.1016/j.actbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The three additive manufacturing techniques fused deposition modeling, gel plotting and melt electrowriting were combined to develop a mimicry of the tympanic membrane (TM) to tackle large TM perforations caused by chronic otitis media. The mimicry of the collagen fiber orientation of the TM was accompanied by a study of multiple funnel-shaped mimics of the TM morphology, resulting in mechanical and acoustic properties similar to those of the eardrum. For the different 3D printing techniques used, the process parameters were optimized to allow reasonable microfiber arrangements within the melt electrowriting setup. Interestingly, the fiber pattern was less important for the acousto-mechanical properties than the overall morphology. Furthermore, the behavior of keratinocytes and fibroblasts is crucial for the repair of the TM, and an in vitro study showed a high biocompatibility of both primary cell types while mimicking the respective cell layers of the TM. A simulation of the in vivo ingrowth of both cell types resulted in a cell growth orientation similar to the original collagen fiber orientation of the TM. Overall, the combined approach showed all the necessary parameters to support the growth of a neo-epithelial layer with a similar structure and morphology to the original membrane. It therefore offers a suitable alternative to autologous materials for the treatment of chronic otitis media. STATEMENT OF SIGNIFICANCE: Millions of people worldwide suffer from chronic middle ear infections. Although the tympanic membrane (TM) can be reconstructed with autologous materials, the grafts used for this purpose require extensive manual preparation during surgery. This affects not only the hearing ability but also the stability of the reconstructed TM, especially in the case of full TM reconstruction. The synthetic alternative presented here mimicked not only the fibrous structure of the TM but also its morphology, resulting in similar acousto-mechanical properties. Furthermore, its high biocompatibility supported the migration of keratinocytes and fibroblasts to form a neo-epithelial layer. Overall, this completely new TM replacement was achieved by combining three different additive manufacturing processes.
Collapse
Affiliation(s)
- Max von Witzleben
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Thomas Stoppe
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Alina Zeinalova
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Zhaoyu Chen
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Tilman Ahlfeld
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Matthias Bornitz
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Anne Bernhardt
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany
| | - Marcus Neudert
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Carus, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden (ERCD), Fetscherstr. 74, 01307 Dresden, Germany
| | - Michael Gelinsky
- Technische Universität Dresden, Faculty of Medicine Carl Gustav Dresden, Centre for Translational Bone, Joint and Soft Tissue Research, Fetscherstr. 74, 01307 Dresden, Germany.
| |
Collapse
|
10
|
Ding Y, Wei R, Li D, Li Y, Tian Z, Xie Q, Liu Y. Comparative study of fibroblast growth factor 2 and ofloxacin ear drops for repairing large traumatic perforations: A randomized controlled study. Am J Otolaryngol 2023; 44:103954. [PMID: 37348245 DOI: 10.1016/j.amjoto.2023.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE The objective of this study was to compare the healing outcome of fibroblast growth factor 2 (FGF2), ofloxacin ear drops (OFLX) and spontaneous healing for repairing large traumatic tympanic membrane (TM) perforations. MATERIAL AND METHODS A total of 75 traumatic large perforations with >1/4 of TM were randomly divided into FGF2 (n = 25), OFLX (n = 25), and spontaneous healing (n = 25) groups. The closure rates, closure times, and hearing gains were compared at 3 months. RESULTS At 2 weeks after treatment, the closure rate was 95.8 % in the FGF2 group, 96.0 % in the ofloxacin ear drops group, and 14.3 % in the spontaneous healing group (P < 0.01), respectively. At 3 months after treatment, the closure rate was 100 % in the FGF2 group, 100 % in the OFLX group, and 85.7 % in the spontaneous healing group, no among-group differences were significant (P > 0.05). The mean closure time was 9.69 ± 2.46 days in the FGF2 group, 9.45 ± 2.32 days in the OFLX group, and 30.94 ± 8.95 days in the spontaneous healing group (P < 0.01). The mean ABG was 10.37 ± 2.51 dB for the FGF2 group, 11.01 ± 1.31 dB for the OFLX group, and 10.86 ± 1.94 dB for the spontaneous healing group, no significant difference was found among three groups (P > 0.05). CONCLUSIONS This study suggested that both FGF2 and OFLX significantly shortened the mean closure time and improved the closure rate compared with spontaneous healing for repairing large traumatic perforations, while the healing outcome wasn't significantly different among FGF2 and OFLX groups.
Collapse
Affiliation(s)
- Yongqing Ding
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China
| | - Ruili Wei
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China
| | - Dong Li
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China
| | - Yanping Li
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China
| | - Zedong Tian
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China
| | - Qi Xie
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China
| | - Yachao Liu
- Dept Otolaryngol Head & Neck Surg. Hebei North Univ, Affiliated Hosp 1, 12 Changqing Rd, Zhangjiakou City 075000, Hebei, China.
| |
Collapse
|
11
|
Chitin nanofibrils modulate mechanical response in tympanic membrane replacements. Carbohydr Polym 2023; 310:120732. [PMID: 36925264 DOI: 10.1016/j.carbpol.2023.120732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The tympanic membrane (TM), is a thin tissue lying at the intersection of the outer and the middle ear. TM perforations caused by traumas and infections often result in a conductive hearing loss. Tissue engineering has emerged as a promising approach for reconstructing the damaged TM by replicating the native material characteristics. In this regard, chitin nanofibrils (CN), a polysaccharide-derived nanomaterial, is known to exhibit excellent biocompatibility, immunomodulation and antimicrobial activity, thereby imparting essential qualities for an optimal TM regeneration. This work investigates the application of CN as a nanofiller for poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer to manufacture clinically suitable TM scaffolds using electrospinning and fused deposition modelling. The inclusion of CN within the PEOT/PBT matrix showed a three-fold reduction in the corresponding electrospun fiber diameters and demonstrated a significant improvement in the mechanical properties required for TM repair. Furthermore, in vitro biodegradation assay highlighted a favorable influence of CN in accelerating the scaffold degradation over a period of one year. Finally, the oto- and cytocompatibility response of the nanocomposite substrates corroborated their biological relevance for the reconstruction of perforated eardrums.
Collapse
|
12
|
Electrospun nanofibrous membrane functionalized with dual drug-cyclodextrin inclusion complexes for the potential treatment of otitis externa. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Li C, Xiong Z, Zhou L, Huang W, He Y, Li L, Shi H, Lu J, Wang J, Li D, Yin S. Interfacing Perforated Eardrums with Graphene-Based Membranes for Broadband Hearing Recovery. Adv Healthc Mater 2022; 11:e2201471. [PMID: 35899802 PMCID: PMC11469052 DOI: 10.1002/adhm.202201471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/28/2023]
Abstract
Eardrum perforation and associated hearing loss is a global health problem. Grafting perforated eardrum with autologous tissues in clinic can restore low-frequency hearing but often leaves poor recovery of high-frequency hearing. In this study, the potential of incorporating a thin multilayered graphene membrane (MGM) into the eardrum for broadband hearing recovery in rats is examined. The MGM shows good biocompatibility and biostability to promote the growth of eardrum cells in a regulated manner with little sign of tissue rejection and inflammatory response. After three weeks of implantation, the MGM is found to be encapsulated by a thin layer of newly grown tissue on both sides without a significant folded overgrowth that is often seen in natural healing. The perforation is well sealed, and broadband hearing recovery (1-32 kHz) is enabled and maintained for at least 2 months. Mechanical simulations show that the high elastic modulus of MGM and thin thickness of the reconstructed eardrum play a critical role in the recovery of high-frequency hearing. This work demonstrates the promise of the use of MGM as a functional graft for perforated eardrum to recover hearing in the broadband frequency region and suggests a new acoustics-related medical application for graphene-related 2D materials.
Collapse
Affiliation(s)
- Chunyan Li
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Zhiyuan Xiong
- Department of Chemical EngineeringThe University of MelbourneMelbourneVictoria3010Australia
| | - Lei Zhou
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan Hospital affiliated to Fudan UniversityShanghai200032China
| | | | - Yushi He
- Shanghai Electrochemical Energy Devices Research CenterSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Linpeng Li
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Haibo Shi
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jiayu Lu
- Department of StomatologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Jian Wang
- School of Communication Science and DisordersDalhousie UniversityHalifaxB3J 1Y6Canada
| | - Dan Li
- Department of Chemical EngineeringThe University of MelbourneMelbourneVictoria3010Australia
| | - Shankai Yin
- Department of OtorhinolaryngologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
14
|
Hussain Z, Ding P, Zhang L, Zhang Y, Ullah S, Liu Y, Ullah I, Wang Z, Zheng P, Pei R. Multifaceted tannin crosslinked bioinspired dECM decorated nanofibers modulating cell-scaffold biointerface for tympanic membrane perforation bioengineering. Biomed Mater 2022; 17. [PMID: 35334475 DOI: 10.1088/1748-605x/ac6125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Tympanic membrane (TM) perforation leads to persistent otitis media, conductive deafness, and affects life quality. Ointment medication may not be sufficient to treat TM perforation due to the lack of an underlying tissue matrix and thus requiring a scaffold-based application. The engineering of scaffold biointerface close to the matrix via tissue-specific decellularized extracellular matrix (dECM) is crucial in instructing cell behaviour and regulating cell-material interaction in the bioengineering domain. Herein, polycaprolactone (PCL) and TM-dECM (from SD rats) were combined in a different ratio in nanofibrous form using an electrospinning process and crosslinked via tannic acid. The histological and biochemical assays demonstrated that chemical and enzymatic decellularization steps removed cellular/immunogenic contents while retaining collagen and glycosaminoglycan. The morphological, physicochemical, thermomechanical, contact angle, and surface chemical studies demonstrated that the tannin crosslinked PCL/dECM nanofibers fine-tune biophysical and biochemical properties. The multifaceted crosslinked nanofibers hold the tunable distribution of dECM moieties, assembled into a spool-shaped membrane, and could easily insert into perforated sites. The dECM decorated fibers provide a preferable biomimetic matrix for L929 fibroblast adhesion, proliferation, matrix adsorption, and f-actin saturation, which could be crucial for bioengineering. Overall, dECM patterning, surface hydrophilicity, interconnected microporosities, and multifaceted nanofibrous biosystem modulate cell-scaffold performance and could open opportunities to reconstruct TM perforation in a biomimetic fashion.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Pi Ding
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Hefei, Anhui, 230026, CHINA
| | - Ismat Ullah
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Penghui Zheng
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences, Suzhou, Suzhou, Jiangsu, 215123, CHINA
| |
Collapse
|
15
|
Cho GW, Moon C, Song A, Vijayakumar KA, Ang MJ, Jang CH. Effect of Growth Factor-Loaded Acellular Dermal Matrix/MSCs on Regeneration of Chronic Tympanic Membrane Perforations in Rats. J Clin Med 2021; 10:jcm10071541. [PMID: 33917576 PMCID: PMC8038787 DOI: 10.3390/jcm10071541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023] Open
Abstract
The success rate of grafting using acellular dermal matrix (ADM) for chronic tympanic membrane was reported in previous studies to be lower than fascia or perichondrium. Combining mesenchymal stem cells (MSCs) and growth factor-loaded ADM for the regeneration of chronic TMP has not been reported so far. In this study, we hypothesized that combining growth factor-loaded ADM/MSCs could promote the recruitment of MSCs and assist in TMP regeneration. We evaluated the regeneration and compared the performance of four scaffolds in both in vitro and in vivo studies. MTT, qPCR, and immunoblotting were performed with MSCs. In vivo study was conducted in 4 groups (control; ADM only, ADM/MSC, ADM/MSC/bFGF, ADM/MSC/EGF) of rats and inferences were made by otoendoscopy and histological changes. Attachment of MSCs on ADM was observed by confocal microscopy. Proliferation rate increased with time in all treated cells. Regeneration-related gene expression in the treated groups was higher. Also, graft success rate was significantly higher in ADM/MSC/EGF group than other groups. Significant relationships were disclosed in neodrum thickness between each group. The results suggest, in future, combining EGF with ADM/MSCs could possibly be used as an outpatient treatment, without the need for surgery for eardrum regeneration.
Collapse
Affiliation(s)
- Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea;
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea; (A.S.); (K.A.V.)
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (C.M.); (M.J.A.)
| | - Anji Song
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea; (A.S.); (K.A.V.)
| | - Karthikeyan A. Vijayakumar
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea; (A.S.); (K.A.V.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (C.M.); (M.J.A.)
| | - Chul Ho Jang
- Department of Otolaryngology, Medical School, Chonnam National University, Hakdong 8, Dongku, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-220-6774
| |
Collapse
|