1
|
Sunnucks EJ, Thurn B, Brown AO, Zhang W, Liu T, Forbes SL, Su S, Ueland M. Performance of a Novel Electronic Nose for the Detection of Volatile Organic Compounds Relating to Starvation or Human Decomposition Post-Mass Disaster. SENSORS (BASEL, SWITZERLAND) 2024; 24:5918. [PMID: 39338662 PMCID: PMC11435962 DOI: 10.3390/s24185918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
There has been a recent increase in the frequency of mass disaster events. Following these events, the rapid location of victims is paramount. Currently, the most reliable search method is scent detection dogs, which use their sense of smell to locate victims accurately and efficiently. Despite their efficacy, they have limited working times, can give false positive responses, and involve high costs. Therefore, alternative methods for detecting volatile compounds are needed, such as using electronic noses (e-noses). An e-nose named the 'NOS.E' was developed and has been used successfully to detect VOCs released from human remains in an open-air environment. However, the system's full capabilities are currently unknown, and therefore, this work aimed to evaluate the NOS.E to determine the efficacy of detection and expected sensor response. This was achieved using analytical standards representative of known human ante-mortem and decomposition VOCs. Standards were air diluted in Tedlar gas sampling bags and sampled using the NOS.E. This study concluded that the e-nose could detect and differentiate a range of VOCs prevalent in ante-mortem and decomposition VOC profiles, with an average LOD of 7.9 ppm, across a range of different chemical classes. The NOS.E was then utilized in a simulated mass disaster scenario using donated human cadavers, where the system showed a significant difference between the known human donor and control samples from day 3 post-mortem. Overall, the NOS.E was advantageous: the system had low detection limits while offering portability, shorter sampling times, and lower costs than dogs and benchtop analytical instruments.
Collapse
Affiliation(s)
- Emily J Sunnucks
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Bridget Thurn
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amber O Brown
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wentian Zhang
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Taoping Liu
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China
| | - Shari L Forbes
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Steven Su
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia
- College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Jinan 250117, China
| | - Maiken Ueland
- Centre for Forensic Sciences, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Hyphenated Mass Spectrometry Laboratory, School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Aviles-Rosa EO, Medrano AC, Cantu A, Prada-Tiedemann PA, Maughan MN, Gadberry JD, Greubel RR, Hall NJ. Development of an automated human scent olfactometer and its use to evaluate detection dog perception of human scent. PLoS One 2024; 19:e0299148. [PMID: 38427659 PMCID: PMC10906837 DOI: 10.1371/journal.pone.0299148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024] Open
Abstract
Working Dogs have shown an extraordinary ability to utilize olfaction for victim recovery efforts. Although instrumental analysis has chemically characterized odor volatiles from various human biospecimens, it remains unclear what perceptually constitutes human scent (HS) for dogs. This may be in part due to the lack of methodology and equipment to train and evaluate HS perception. The aims of this research were 1) to develop an automated human scent olfactometer (AHSO) to present HS to dogs in a controlled setting and 2) use the AHSO to evaluate dogs' response to different scented articles and individual components of HS. A human volunteer was placed in a clear acrylic chamber and using a vacuum pump and computer-controlled valves, the headspace of this chamber was carried to one of three ports in a different room. Dogs were trained to search all three ports of the olfactometer and alert to the one containing HS. In Experiment 1 and 2, the AHSO was validated by testing two dogs naïve to HS (Experiment 1) and five certified Search and Rescue (SAR) teams naïve to the apparatus (Experiment 2). All dogs showed sensitivity and specificity to HS > 95% in the apparatus. In Experiment 3, we used a spontaneous generalization paradigm to evaluate generalization from the HS chamber to different scented articles exposed to the same volunteer and to a breath sample. Dogs' response rate to the different scented articles was < 10% but exceeded 40% for the breath sample. In Experiment 4, we replicated this result by re-testing spontaneous generalization to breath and when the volunteer had breath exhausted/removed from the chamber. Dogs' response rate to breath alone was 88% and only 50% when breath was removed. Altogether, the data indicate that exhaled breath is an important and salient component of HS under these conditions.
Collapse
Affiliation(s)
- Edgar O. Aviles-Rosa
- Department of Animal & Food Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Andrea C. Medrano
- Department of Environmental Toxicology, Forensic Analytical Chemistry and Odor Profiling Laboratory, Lubbock, Texas, United States of America
| | - Ariela Cantu
- Department of Environmental Toxicology, Forensic Analytical Chemistry and Odor Profiling Laboratory, Lubbock, Texas, United States of America
| | - Paola A. Prada-Tiedemann
- Department of Environmental Toxicology, Forensic Analytical Chemistry and Odor Profiling Laboratory, Lubbock, Texas, United States of America
| | | | | | | | - Nathaniel J. Hall
- Department of Animal & Food Science, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
3
|
Rankin-Turner S, McMeniman CJ. A headspace collection chamber for whole body volatilomics. Analyst 2022; 147:5210-5222. [DOI: 10.1039/d2an01227h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human body secretes a complex blend of volatile organic compounds (VOCs) via the skin, breath and bodily fluids. In this study, we have developed a headspace collection chamber for whole body volatilome profiling.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Conor J. McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Lippi G, Heaney LM. The "olfactory fingerprint": can diagnostics be improved by combining canine and digital noses? Clin Chem Lab Med 2021; 58:958-967. [PMID: 31990659 DOI: 10.1515/cclm-2019-1269] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022]
Abstract
A sniffer (detecting) dog is conventionally defined as an animal trained to use its olfactory perceptions for detecting a vast array of substances, mostly volatile organic compounds (VOCs), including those exceptionally or exclusively generated in humans bearing specific pathologies. Such an extraordinary sniffing performance translates into the capability of detecting compounds close to the femtomolar level, with performance comparable to that of current mass spectrometry-based laboratory applications. Not only can dogs accurately detect "abnormal volatilomes" reflecting something wrong happening to their owners, but they can also perceive visual, vocal and behavioral signals, which altogether would contribute to raise their alertness. Although it seems reasonable to conclude that sniffer dogs could never be considered absolutely "diagnostic" for a given disorder, several lines of evidence attest that they may serve as efficient screening aids for many pathological conditions affecting their human companions. Favorable results have been obtained in trials on cancers, diabetes, seizures, narcolepsy and migraine, whilst interesting evidence is also emerging on the capability of early and accurately identifying patients with infectious diseases. This would lead the way to proposing an "olfactory fingerprint" loop, where evidence that dogs can identify the presence of human pathologies provides implicit proof of the existence of disease-specific volatilomes, which can be studied for developing laboratory techniques. Contextually, the evidence that specific pathologies are associated with abnormal VOC generation may serve as reliable basis for training dogs to detect these compounds, even (or especially) in patients at an asymptomatic phase.
Collapse
Affiliation(s)
- Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement, University Hospital of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Experimental Validation of Finite Element Models for Reinforced Concrete Beams with Discontinuities That Form Dowel-Type Joints. VIBRATION 2021. [DOI: 10.3390/vibration4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Earthquakes have the highest rate of mortality among the natural disasters and regularly lead to collapsed structures with people trapped inside them. When a reinforced concrete building collapses due to an earthquake, many of the concrete elements (i.e., beams and columns) are damaged and there are large sections where the concrete is missing and the steel reinforcement is exposed (i.e., concrete discontinuities). The prediction of vibration transmission in collapsed and severely damaged reinforced-concrete buildings could help decisions when trying to detect trapped survivors; hence there is need for experimentally validated finite element models of damaged concrete elements. This paper investigates the dynamic behaviour of damaged reinforced concrete beams using Experimental Modal Analysis (EMA) and Finite Element Methods (FEM). FEM models are assessed using two beams with one or more concrete discontinuities that form dowel-type joints. These models used either beam or spring elements for the exposed steel bars and were experimentally validated against EMA in terms of eigenfrequencies and mode shapes. Improved agreement was achieved when using springs instead of beam elements in the FEM model. The comparison of mode shapes used the Partial Modal Vector Ratio (PMVR) as a supplement to the Modal Assurance Criterion (MAC) to confirm that spring elements provide a more accurate representation of the response on all concrete parts of the beams.
Collapse
|
6
|
Importance of Team Experience and Coordination in Disaster Response: Building Collapse. Disaster Med Public Health Prep 2021; 16:1341-1345. [PMID: 34176545 DOI: 10.1017/dmp.2021.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective of this study was to determine whether coordination of prehospital emergency health services and Disaster and Emergency Management Presidency (DEMP) and being prepared for disasters, such as building collapses, allow quick evaluation and fast intervention. METHODS The information flow, hierarchy, treatment, and rehabilitation processes, and rescue organization and planning during the rescue attempt for 35 people who needed help due to this building collapse were reviewed. RESULTS Of the 43 people who lived in this 8-story building, 35 were inside the building during the collapse; 40% of them were assessed as injured and 60% as exitus. Almost two-thirds (64.3%) of the injured individuals who were rescued were women. The mean duration until rescue was 330 (57.0-512.0) min. CONCLUSIONS Leading and important factors that can increase the success rate in search and rescue interventions are informing official authorities as first early warning by individuals who can clearly define the situation, early security measures by security forces arriving before the health and search-rescue teams, accurate identification of estimated numbers of injured victims, and identifying and informing appropriate hospitals which victims rescued from the debris will be transferred to there.
Collapse
|
7
|
An Analysis on the Performance of a Mobile Platform with Gas Sensors for Real Time Victim Localization. SENSORS 2021; 21:s21062018. [PMID: 33809293 PMCID: PMC7999499 DOI: 10.3390/s21062018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022]
Abstract
This work concerns the performance analysis of the sensors contained in a victim detection system. The system is a mobile platform with gas sensors utilized for real time victim localization in urban environments after a disaster has caused the entrapment of people in partially collapsed building structures. The operating principle of the platform is the sampling of air from potential survival spaces (voids) and the measurement of the sampled air's temperature and concentration of CO2 and O2. Humans in a survival space are modelled as sources of CO2 and heat and sinks of O2. The physical openings of a survival space are modelled as sources of fresh air and sinks of the internal air. These sources and sinks dynamically affect the monitored properties of the air inside a survival space. In this paper, the effects of fresh air sources and internal air sinks are first examined in relation to local weather conditions. Then, the effect of human sources of CO2 and sinks of O2 in the space are examined. A model is formulated in order to reliably estimate the concentration of CO2 and O2 as a function of time for given reasonable entrapment scenarios. The input parameters are the local weather conditions, the openings of the survival space, and the number and type of entrapped humans. Three different tests successfully verified the presented theoretical estimations. A detection system with gas sensors of specified or measured capabilities, by utilizing this model and based on the expected concentrations, may inform the operator of the minimum required presence of humans in a survival space that can be detected after "some time".
Collapse
|
8
|
Proof of concept apparatus for the design of a simple, low cost, mobile e-nose for real-time victim localization (human presence) based on indoor air quality monitoring sensors. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Vautz W, Seifert L, Mohammadi M, Klinkenberg IAG, Liedtke S. Detection of axillary perspiration metabolites using ion mobility spectrometry coupled to rapid gas chromatography. Anal Bioanal Chem 2019; 412:223-232. [PMID: 31836923 DOI: 10.1007/s00216-019-02262-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/11/2019] [Accepted: 11/06/2019] [Indexed: 11/30/2022]
Abstract
The composition of human sweat-and as a consequence the composition of volatiles released from human skin-strongly depends on genetic preconditions, diet, stress, personal hygiene but also on health status and medication. Accordingly, the composition is a carrier of information on the physical and mental states of a person. Therefore, rapid on-site analysis of the relevant substances may be used for medical diagnosis and medication control or even for psychological characterisation. Ion mobility spectrometry coupled to rapid gas chromatography (GC-IMS) was applied to the analysis of human axillary sweat as a sensitive, selective, rapid, and non-invasive method in a feasibility study. For this purpose, a sampling chamber was designed and manufactured. The design and the experimental setup were validated successfully. At least 179 human metabolites could be detected by GC-IMS from the skin of 7 volunteers. Fifteen metabolites were available in all samples from all volunteers and therefore can be characterised as basic sweat compounds which might enable the localisation of hidden persons. Furthermore, in a preliminary feasibility study, the potential of GC-IMS for differentiating the composition of sweat after physical exercises and in a stressful situation-even gender specific-could be demonstrated. Thus, with GC-IMS, a rapid and mobile analytical tool for the analysis of skin volatiles is available for a broad range of applications, e.g. with regard to axillary odour, human health, nutrition, consumption of remedies or drugs of abuse, the localisation of trapped or hidden persons, or even the characterisation of the reaction on stressful situations. Graphical abstract.
Collapse
Affiliation(s)
- Wolfgang Vautz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany. .,ION-GAS GmbH, Konrad-Adenauer-Allee 11, 44263, Dortmund, Germany.
| | - Luzia Seifert
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Marziyeh Mohammadi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Isabelle A G Klinkenberg
- Institute of Biomagnetism and Biosignalanalysis, Medical Faculty, University of Muenster, Malmedyweg 15, 48149, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Sascha Liedtke
- ION-GAS GmbH, Konrad-Adenauer-Allee 11, 44263, Dortmund, Germany
| |
Collapse
|
10
|
Bruderer T, Gaisl T, Gaugg MT, Nowak N, Streckenbach B, Müller S, Moeller A, Kohler M, Zenobi R. On-Line Analysis of Exhaled Breath Focus Review. Chem Rev 2019; 119:10803-10828. [PMID: 31594311 DOI: 10.1021/acs.chemrev.9b00005] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
On-line analysis of exhaled breath offers insight into a person's metabolism without the need for sample preparation or sample collection. Due to its noninvasive nature and the possibility to sample continuously, the analysis of breath has great clinical potential. The unique features of this technology make it an attractive candidate for applications in medicine, beyond the task of diagnosis. We review the current methodologies for on-line breath analysis, discuss current and future applications, and critically evaluate challenges and pitfalls such as the need for standardization. Special emphasis is given to the use of the technology in diagnosing respiratory diseases, potential niche applications, and the promise of breath analysis for personalized medicine. The analytical methodologies used range from very small and low-cost chemical sensors, which are ideal for continuous monitoring of disease status, to optical spectroscopy and state-of-the-art, high-resolution mass spectrometry. The latter can be utilized for untargeted analysis of exhaled breath, with the capability to identify hitherto unknown molecules. The interpretation of the resulting big data sets is complex and often constrained due to a limited number of participants. Even larger data sets will be needed for assessing reproducibility and for validation of biomarker candidates. In addition, molecular structures and quantification of compounds are generally not easily available from on-line measurements and require complementary measurements, for example, a separation method coupled to mass spectrometry. Furthermore, a lack of standardization still hampers the application of the technique to screen larger cohorts of patients. This review summarizes the present status and continuous improvements of the principal on-line breath analysis methods and evaluates obstacles for their wider application.
Collapse
Affiliation(s)
- Tobias Bruderer
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland.,Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Thomas Gaisl
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Martin T Gaugg
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Nora Nowak
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Simona Müller
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine , University Children's Hospital Zurich and Children's Research Center Zurich , CH-8032 Zurich , Switzerland
| | - Malcolm Kohler
- Department of Pulmonology , University Hospital Zurich , CH-8091 Zurich , Switzerland.,Center for Integrative Human Physiology , University of Zurich , CH-8091 Zurich , Switzerland.,Zurich Center for Interdisciplinary Sleep Research , University of Zurich , CH-8091 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , Swiss Federal Institute of Technology , CH-8093 Zurich , Switzerland
| |
Collapse
|
11
|
Sensors' array of aspiration ion mobility spectrometer as a tool for bacteria discrimination. Talanta 2019; 206:120233. [PMID: 31514847 DOI: 10.1016/j.talanta.2019.120233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
The possibility of achieving bacterial discrimination using a miniaturized aspiration ion mobility spectrometer model ChemPro-100i (Environics Oy) has been tested by interrogating the headspace air samples above in vitro bacterial cultures of three species - Escherichia coli, Bacillus subtilis and Staphylococcus aureus, respectively. The ChemPro-100i highly integrated seven sensor array, composed of one a-IMS cell, three MOS (metal oxide sensors), one FET (field effect transistor) sensor and two SC (semiconductor) sensors, provided enough analytical information to discriminate between the three bacterial species. Statistical data processing using either principal component analysis (PCA) or partial least squares discriminant analysis (PLS-DA) was accomplished. We concluded that although the data from the aspiration-type ion mobility sensor, with its 16 ion detectors, is absolutely sufficient to discriminate between various bacteria using their volatile compounds' chemical profile, the other six sensors deliver additional, valuable information.
Collapse
|
12
|
Giannoukos S, Agapiou A, Brkić B, Taylor S. Volatolomics: A broad area of experimentation. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1105:136-147. [PMID: 30584978 DOI: 10.1016/j.jchromb.2018.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023]
Abstract
Chemical analysis (detection and monitoring) of compounds associated with the metabolic activities of an organism is at the cutting edge of science. Volatile metabolomics (volatolomics) are applied in a broad range of applications including: biomedical research (e.g. disease diagnostic tools, personalized healthcare and nutrition, etc.), toxicological analysis (e.g. exposure tool to environmental pollutants, toxic and hazardous chemical environments, industrial accidents, etc.), molecular communications, forensics, safety and security (e.g. search and rescue operations). In the present review paper, an overview of recent advances and applications of volatolomics will be given. The main focus will be on volatile organic compounds (VOCs) originating from biological secretions of various organisms (e.g. microorganisms, insects, plants, humans) and resulting fusion of chemical information. Bench-top and portable or field-deployable technologies-systems will also be presented and discussed.
Collapse
Affiliation(s)
- S Giannoukos
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland; University of Liverpool, Department of Electrical Engineering and Electronics, Liverpool L69 3GJ, UK
| | - A Agapiou
- University of Cyprus, Department of Chemistry, P.O. Box 20357, 1678 Nicosia, Cyprus.
| | - B Brkić
- BioSense Institute, University of Novi Sad, Dr Zorana Đinđića 1, 21 101 Novi Sad, Serbia
| | - S Taylor
- University of Liverpool, Department of Electrical Engineering and Electronics, Liverpool L69 3GJ, UK; Q Technologies Ltd, 100 Childwall Road, Liverpool L15 6UX, UK.
| |
Collapse
|
13
|
Zhang D, Sessa S, Kasai R, Cosentino S, Giacomo C, Mochida Y, Yamada H, Guarnieri M, Takanishi A. Evaluation of a Sensor System for Detecting Humans Trapped under Rubble: A Pilot Study. SENSORS 2018. [PMID: 29534055 PMCID: PMC5877370 DOI: 10.3390/s18030852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid localization of injured survivors by rescue teams to prevent death is a major issue. In this paper, a sensor system for human rescue including three different types of sensors, a CO2 sensor, a thermal camera, and a microphone, is proposed. The performance of this system in detecting living victims under the rubble has been tested in a high-fidelity simulated disaster area. Results show that the CO2 sensor is useful to effectively reduce the possible concerned area, while the thermal camera can confirm the correct position of the victim. Moreover, it is believed that the use of microphones in connection with other sensors would be of great benefit for the detection of casualties. In this work, an algorithm to recognize voices or suspected human noise under rubble has also been developed and tested.
Collapse
Affiliation(s)
- Di Zhang
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Salvatore Sessa
- Hibot Corporation, Watanabe Corporation Building 4F, 5-9-15 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan.
| | - Ritaro Kasai
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Sarah Cosentino
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
| | - Cimarelli Giacomo
- Hibot Corporation, Watanabe Corporation Building 4F, 5-9-15 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan.
| | - Yasuaki Mochida
- Hibot Corporation, Watanabe Corporation Building 4F, 5-9-15 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan.
| | - Hiroya Yamada
- Hibot Corporation, Watanabe Corporation Building 4F, 5-9-15 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan.
| | - Michele Guarnieri
- Hibot Corporation, Watanabe Corporation Building 4F, 5-9-15 Kitashinagawa, Shinagawa-ku, Tokyo 141-0001, Japan.
| | - Atsuo Takanishi
- Department of Modern Mechanical Engineering, Waseda University, Tokyo 169-8555, Japan.
- Humanoid Robotics Institute (HRI), Waseda University, Tokyo 162-0044, Japan.
| |
Collapse
|
14
|
Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS). J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:29-34. [DOI: 10.1016/j.jchromb.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 11/24/2022]
|
15
|
Mass spectrometric techniques for the analysis of volatile organic compounds emitted from bacteria. Bioanalysis 2017; 9:1069-1092. [PMID: 28737423 DOI: 10.4155/bio-2017-0051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteria are the main cause of many human diseases. Typical bacterial identification methods, for example culture-based, serological and genetic methods, are time-consuming, delaying the potential for an early and accurate diagnosis and the appropriate subsequent treatment. Nevertheless, there is a stringent need for in situ tests that are rapid, noninvasive and sensitive, which will greatly facilitate timely treatment of the patients. This review article presents volatile organic metabolites emitted from various micro-organism strains responsible for common bacterial infections in humans. Additionally, the manuscript shows the application of different analytical techniques for fast bacterial identification. Details of these techniques are given, which focuses on their advantages and drawbacks in using for volatile organic components analysis.
Collapse
|
16
|
Ratiu IA, Bocos-Bintintan V, Patrut A, Moll VH, Turner M, Thomas CLP. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Anal Chim Acta 2017; 982:209-217. [PMID: 28734362 DOI: 10.1016/j.aca.2017.06.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023]
Abstract
The objective of our study was to investigate whether one may quickly and reliably discriminate different microorganism strains by direct monitoring of the headspace atmosphere above their cultures. Headspace samples above a series of in vitro bacterial cultures were directly interrogated using an aspiration type ion mobility spectrometer (a-IMS), which produced distinct profiles ("fingerprints") of ion currents generated simultaneously by the detectors present inside the ion mobility cell. Data processing and analysis using principal component analysis showed net differences in the responses produced by volatiles emitted by various bacterial strains. Fingerprint assignments were conferred on the basis of product ion mobilities; ions of differing size and mass were deflected in a different degree upon their introduction of a transverse electric field, impacting finally on a series of capacitors (denominated as detectors, or channels) placed in a manner analogous to sensor arrays. Three microorganism strains were investigated - Escherichia coli, Bacillus subtilis and Staphylococcus aureus; all strains possess a relatively low pathogenic character. Samples of air with a 5 cm3 volume from the headspace above the bacterial cultures in agar growth medium were collected using a gas-tight chromatographic syringe and injected inside the closed-loop pneumatic circuit of the breadboard a-IMS instrument model ChemPro-100i (Environics Oy, Finland), at a distance of about 1 cm from the ionization source. The resulting chemical fingerprints were produced within two seconds from the moment of injection. The sampling protocol involved to taking three replicate samples from each of 10 different cultures for a specific strain, during a total period of 72 h after the initial incubation - at 24, 48 and 72 h, respectively. Principal component analysis (PCA) was used to discriminate between the IMS fingerprints. PCA was found to successfully discriminate between bacteria at three levels in the experimental campaign: 1) between blank samples from growth medium and samples from bacterial cultures, 2) between samples from different bacterial strains, and 3) between time evolutions of headspace samples from the same bacterial strain over the 3-day sampling period. Consistent classification between growth medium samples and growth medium inoculated with bacteria was observed in both positive and negative detection/ionization modes. In parallel, headspace air samples of 1 dm3 were collected from each bacterial culture and loaded onto Tenax™-Carbograph desorption tubes, using a custom built sampling unit based on a portable sampling pump. One sample was taken for each of 10 different cultures of a strain, at 24, 48 and 72 h after the initial incubation. These adsorption tubes were subsequently analyzed using thermal desorption - gas chromatography - mass spectrometry (TD-GC-MS). This second dataset was intended to produce a qualitative analysis of the volatiles present in the headspace above the bacterial cultures.
Collapse
Affiliation(s)
- Ileana Andreea Ratiu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Str. Fântânele 30, Cluj-Napoca, RO-400294, Romania; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, 4 Wileńska Str., 87-100 Torun, Poland.
| | - Victor Bocos-Bintintan
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Str. Fântânele 30, Cluj-Napoca, RO-400294, Romania
| | - Adrian Patrut
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Str. Arany Janos 11, Cluj-Napoca, RO-400028, Romania
| | - Victor Hugo Moll
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Ashley Road, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - Matthew Turner
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Ashley Road, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - C L Paul Thomas
- Centre for Analytical Science, Department of Chemistry, Loughborough University, Ashley Road, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
17
|
Tang X, Misztal PK, Nazaroff WW, Goldstein AH. Volatile Organic Compound Emissions from Humans Indoors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12686-12694. [PMID: 27934268 DOI: 10.1021/acs.est.6b04415] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Research on the sources of indoor airborne chemicals has traditionally focused on outdoor air, building materials, furnishings, and activities such as smoking, cooking, and cleaning. Relatively little research has examined the direct role of occupant emissions, even though this source clearly contributes to indoor volatile organic compounds (VOCs) and influences indoor chemistry. In this work, we quantify occupant-related gaseous VOC emissions in a university classroom using a proton-transfer-reaction time-of-flight mass spectrometer. Time-resolved concentrations of VOCs in room air and supply air were measured continuously during occupied and unoccupied periods. The emission factor for each human-emitted VOC was determined by dividing the occupant-associated source rate by the corresponding occupancy. Among the most abundant species detected were compounds associated with personal care products. Also prominent were human metabolic emissions, such as isoprene, methanol, acetone, and acetic acid. Additional sources included human skin oil oxidation by ozone, producing compounds such as 4-oxopentanal (4-OPA) and 6-methyl-5-hepten-2-one (6-MHO). By mass, human-emitted VOCs were the dominant source (57%) during occupied periods in a well-ventilated classroom, with ventilation supply air the second most important (35%), and indoor nonoccupant emissions the least (8%). The total occupant-associated VOC emission factor was 6.3 mg h-1 per person.
Collapse
Affiliation(s)
- Xiaochen Tang
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710 United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy and Management, University of California , Berkeley, California 94720-3114 United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710 United States
| | - Allen H Goldstein
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710 United States
- Department of Environmental Science, Policy and Management, University of California , Berkeley, California 94720-3114 United States
| |
Collapse
|
18
|
Giannoukos S, Brkić B, Taylor S, Marshall A, Verbeck GF. Chemical Sniffing Instrumentation for Security Applications. Chem Rev 2016; 116:8146-72. [PMID: 27388215 DOI: 10.1021/acs.chemrev.6b00065] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and
Collapse
Affiliation(s)
- Stamatios Giannoukos
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K
| | - Boris Brkić
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K.,Q-Technologies Ltd., 100 Childwall Road, Liverpool, L15 6UX, U.K
| | - Stephen Taylor
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K.,Q-Technologies Ltd., 100 Childwall Road, Liverpool, L15 6UX, U.K
| | - Alan Marshall
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool, L69 3GJ, U.K
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas , Denton, Texas 76201, United States
| |
Collapse
|
19
|
Kwak J, Geier BA, Fan M, Gogate SA, Rinehardt SA, Watts BS, Grigsby CC, Ott DK. Detection of volatile organic compounds indicative of human presence in the air. J Sep Sci 2015; 38:2463-9. [DOI: 10.1002/jssc.201500261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Jae Kwak
- The Henry M. Jackson Foundation for the Advancement of Military Medicine; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution; University of Veterinary Medicine Vienna; Austria
| | - Brian A. Geier
- InfoSciTex Corporation; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Maomian Fan
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Sanjay A. Gogate
- Air Force Research Laboratory; U.S. Air Force School of Aerospace Medicine; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Sage A. Rinehardt
- UES; Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Brandy S. Watts
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Claude C. Grigsby
- Air Force Research Laboratory; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| | - Darrin K. Ott
- Air Force Research Laboratory; U.S. Air Force School of Aerospace Medicine; 711th Human Performance Wing, Wright-Patterson AFB Fairborn OH USA
| |
Collapse
|
20
|
Mochalski P, Unterkofler K, Teschl G, Amann A. Potential of volatile organic compounds as markers of entrapped humans for use in urban search-and-rescue operations. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 2015; 140:1376-90. [PMID: 25465076 PMCID: PMC4331213 DOI: 10.1039/c4an01100g] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences in ion mobilities under an electric field. All IMS instruments operate with an electric field that provides space separation, but some IMS instruments also operate with a drift gas flow that provides also a temporal separation. In this review we will summarize the current IMS instrumentation. IMS techniques have received an increased interest as new instrumentation and have become available to be coupled with mass spectrometry (MS). For each of the eight types of IMS instruments reviewed it is mentioned whether they can be hyphenated with MS and whether they are commercially available. Finally, out of the described devices, the six most-consolidated ones are compared. The current review article is followed by a companion review article which details the IMS hyphenated techniques (mainly gas chromatography and mass spectrometry) and the factors that make the data from an IMS device change as a function of device parameters and sampling conditions. These reviews will provide the reader with an insightful view of the main characteristics and aspects of the IMS technique.
Collapse
Affiliation(s)
- R Cumeras
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB s/n, E-08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
22
|
Trace detection of endogenous human volatile organic compounds for search, rescue and emergency applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Giannoukos S, Brkić B, Taylor S, France N. Membrane inlet mass spectrometry for homeland security and forensic applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:231-239. [PMID: 25398262 DOI: 10.1007/s13361-014-1032-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
A man-portable membrane inlet mass spectrometer has been built and tested to detect and monitor characteristic odors emitted from the human body and also from threat substances. In each case, a heated membrane sampling probe was used. During human scent monitoring experiments, data were obtained for inorganic gases and volatile organic compounds emitted from human breath and sweat in a confined space. Volatile emissions were detected from the human body at low ppb concentrations. Experiments with compounds associated with narcotics, explosives, and chemical warfare agents were conducted for a range of membrane types. Test compounds included methyl benzoate (odor signature of cocaine), piperidine (precursor in clandestine phencyclidine manufacturing processes), 2-nitrotoluene (breakdown product of TNT), cyclohexanone (volatile signature of plastic explosives), dimethyl methylphosphonate (used in sarin and soman nerve agent production), and 2-chloroethyl ethyl sulfide (simulant compound for sulfur mustard gas). Gas phase calibration experiments were performed allowing sub-ppb LOD to be established. The results showed excellent linearity versus concentration and rapid membrane response times.
Collapse
Affiliation(s)
- Stamatios Giannoukos
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | | | | | | |
Collapse
|
24
|
Hybrid Quantum-Classical Protocol for Storage and Retrieval of Discrete-Valued Information. ENTROPY 2014. [DOI: 10.3390/e16063537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Mochalski P, Unterkofler K, Hinterhuber H, Amann A. Monitoring of selected skin-borne volatile markers of entrapped humans by selective reagent ionization time of flight mass spectrometry in NO+ mode. Anal Chem 2014; 86:3915-23. [PMID: 24611620 PMCID: PMC4004195 DOI: 10.1021/ac404242q] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Selective reagent ionization time-of-flight mass spectrometry with NO(+) as the reagent ion (SRI-TOF-MS (NO(+))) was applied for near real-time monitoring of selected skin-borne constituents which are potential markers of human presence. The experimental protocol involved a group of 10 healthy volunteers enclosed in a body plethysmography chamber mimicking the entrapment environment. A total of 12 preselected omnipresent in human scent volatiles were quantitatively monitored. Among them there were six aldehydes (n-propanal, n-hexanal, n-heptanal, n-octanal, n-nonanal, and 2 methyl 2-propenal), four ketones (acetone, 2-butanone, 3-buten-2-one, and 6-methyl-5-hepten-2-one), one hydrocarbon (2-methyl 2-pentene), and one terpene (DL-limonene). The observed median emission rates ranged from 0.28 to 44.8 nmol × person(-1) × min(-1) (16-1530 fmol × cm(-2) × min(-1)). Within the compounds under study, ketones in general and acetone in particular exhibited the highest abundances. The findings of this study provide invaluable information about formation and evolution of a human-specific chemical fingerprint, which could be used for the early location of entrapped victims during urban search and rescue operations (USaR).
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute, University of Innsbruck , Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | |
Collapse
|
26
|
Emission rates of selected volatile organic compounds from skin of healthy volunteers. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 959:62-70. [PMID: 24768920 PMCID: PMC4013926 DOI: 10.1016/j.jchromb.2014.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/23/2022]
Abstract
Quantification of volatiles emitted by human skin by SPME-GCMS. Determination of emission rates of 64 skin-borne species. Selection of potential skin-borne markers of human presence for rescue applications.
Gas chromatography with mass spectrometric detection (GC–MS) coupled with solid phase micro-extraction as pre-concentration method (SPME) was applied to identify and quantify volatile organic compounds (VOCs) emitted by human skin. A total of 64 C4-C10 compounds were quantified in skin emanation of 31 healthy volunteers. Amongst them aldehydes and hydrocarbons were the predominant chemical families with eighteen and seventeen species, respectively. Apart from these, there were eight ketones, six heterocyclic compounds, six terpenes, four esters, two alcohols, two volatile sulphur compounds, and one nitrile. The observed median emission rates ranged from 0.55 to 4790 fmol cm−2 min−1. Within this set of analytes three volatiles; acetone, 6-methyl-5-hepten-2-one, and acetaldehyde exhibited especially high emission rates exceeding 100 fmol cm−2 min−1. Thirty-three volatiles were highly present in skin emanation with incidence rates over 80%. These species can be considered as potential markers of human presence, which could be used for early location of entrapped victims during Urban Search and Rescue Operations (USaR).
Collapse
|
27
|
Mochalski P, King J, Klieber M, Unterkofler K, Hinterhuber H, Baumann M, Amann A. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 2013; 138:2134-45. [PMID: 23435188 DOI: 10.1039/c3an36756h] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gas chromatography with mass spectrometric detection (GC-MS) was used to identify and quantify volatile organic compounds in the blood and breath of healthy individuals. Blood and breath volatiles were pre-concentrated using headspace solid phase micro-extraction (HS-SPME) and needle trap devices (NTDs), respectively. The study involved a group of 28 healthy test subjects and resulted in the quantification of a total of 74 compounds in both types of samples. The concentrations of the species under study varied between 0.01 and 6700 nmol L(-1) in blood and between 0.02 and 2500 ppb in exhaled air. Limits of detection (LOD) ranged from 0.01 to 270 nmol L(-1) for blood compounds and from 0.01 to 0.7 ppb for breath species. Relative standard deviations for both measurement regimes varied from 1.5 to 14%. The predominant chemical classes among the compounds quantified were hydrocarbons (24), ketones (10), terpenes (8), heterocyclic compounds (7) and aromatic compounds (7). Twelve analytes were found to be highly present in both blood and exhaled air (with incidence rates higher than 80%) and for 32 species significant differences (Wilcoxon signed-rank test) between room air and exhaled breath were observed. By comparing blood, room air and breath levels in parallel, a tentative classification of volatiles into endogenous and exogenous compounds can be achieved.
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ruzsanyi V, Mochalski P, Schmid A, Wiesenhofer H, Klieber M, Hinterhuber H, Amann A. Ion mobility spectrometry for detection of skin volatiles. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:84-92. [PMID: 23217311 PMCID: PMC3520010 DOI: 10.1016/j.jchromb.2012.10.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 10/01/2012] [Accepted: 10/10/2012] [Indexed: 11/24/2022]
Abstract
Volatile organic compounds (VOCs) released by humans through their skin were investigated in near real time using ion mobility spectrometry after gas chromatographic separation with a short multi-capillary column. VOCs typically found in a small nitrogen flow covering the skin are 3-methyl-2-butenal, 6-methylhept-5-en-2-one, sec-butyl acetate, benzaldehyde, octanal, 2-ethylhexanol, nonanal and decanal at volume fractions in the low part per billion-(ppb) range. The technique presented here may contribute to elucidating some physiological processes occurring in the human skin.
Collapse
Affiliation(s)
- Veronika Ruzsanyi
- University Clinic for Anesthesia, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Pawel Mochalski
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- Institute of Nuclear Physics PAN, Radzikowskiego 152, PL-31342 Kraków, Poland
| | - Alex Schmid
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | - Helmut Wiesenhofer
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | - Martin Klieber
- University Clinic for Anesthesia, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Hartmann Hinterhuber
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
| | - Anton Amann
- Breath Research Institute of the Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria
- University Clinic for Anesthesia, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| |
Collapse
|
29
|
A workflow for the metabolomic/metabonomic investigation of exhaled breath using thermal desorption GC–MS. Bioanalysis 2012; 4:2227-37. [DOI: 10.4155/bio.12.193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Confounding factors in the analysis of human breath by thermal desorption GC–MS are reviewed, with special emphasis on the high water levels encountered in human breath samples. Results: Multilinear regression optimization of breath sampling factors, along with the selection of ubiquitous sample components used as retention-time standards, enabled data registration based on retention indexing and mass spectral alignment. This was done on a component-by-component basis. The methodology developed reconciled participant safety, artefacts from accelerated hydrolysis of the stationary phase and the destructive nature of thermal desorption. Furthermore, using ubiquitous methylated cyclic-siloxanes in the thermal desorption-GC–MS chromatograms enabled secondary retention indexing for each chromatogram. This methodology enables the creation of a ‘breath matrix’ that is based on a combination of retention indexing and the mass spectral registration of isolated peaks. Conclusion: This approach facilitated more efficient data modeling and a case study from a 22-participant (10 male, 12 female) stress-intervention experiment. Principal component analysis of data registered by retention indexing did not classify successfully stressed from unstressed states. By contrast, adoption of a breath matrix approach enabled 95% separation.
Collapse
|
30
|
Mochalski P, Agapiou A, Statheropoulos M, Amann A. Permeation profiles of potential urine-borne biomarkers of human presence over brick and concrete. Analyst 2012; 137:3278-85. [PMID: 22662321 DOI: 10.1039/c2an35214a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Headspace solid phase micro-extraction gas chromatography-mass spectrometry (SPME-GC-MS) analysis was performed over an in-house made filling chamber loaded with brick or concrete, mimicking a potential entrapment scene of building collapse following natural or man-made disasters. Permeation profiles of 22 volatile species, released by human urine samples, were quantitatively monitored over the selected debris materials for a time period of 24 hours (LODs ranged from 0.05-0.8 ppb, R(2) varied from 0.991-0.999 and RSDs 3-9%). Ketones were the most abundant constituents of urine vapor with eleven representatives followed by five aldehydes, two furans, two sulphur-containing compounds, one nitrile and one heterocyclic compound. The majority of the detected compounds were found below 10 ppb, with the exception of some ketones including acetone, 2-butanone and 2-pentanone. The influence of debris materials on the permeation profiles of analytes under study depended on their fundamental physicochemical properties. Less volatile and more soluble compounds in urine (ketones and aldehydes) were found to be present for longer time periods in the surroundings of the urine samples than the more volatile and poorly soluble ones (furans, sulphur-containing compounds). More specifically, ketones exhibited longer residence times in the filling chamber and strongly interacted with the debris materials as their molecular masses were increased; their profiles were found to be significantly modified in the presence of concrete. In general, concrete demonstrated a stronger interaction with urine species than brick, affecting the observed concentrations and residence times of released volatiles in the chamber.
Collapse
Affiliation(s)
- Paweł Mochalski
- Breath Research Institute, Austrian Academy of Sciences, Rathausplatz 4, A-6850 Dornbirn, Austria.
| | | | | | | |
Collapse
|