1
|
Du J, Huo S, Li B, Zhang X, Zhang J, Fu Y, Shao B, Li Y, Song M. The toxic effects and mechanisms of maternal exposure to Bisphenol F during gestation and lactation on lungs in female offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124800. [PMID: 39178933 DOI: 10.1016/j.envpol.2024.124800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
Epidemiologic studies suggest that prenatal exposure to bisphenols may increase the risk of respiratory disease in children. Bisphenol F (BPF), a member of the bisphenol family, is widely used in industrial production. However, the potential pulmonary toxic effects and mechanisms of BPF exposure on offspring remain unclear. In this study, maternal mice were exposed to 0, 40, 400, and 4000 μg/kg BPF during gestation and lactation. The results showed that an inflammatory response was observed in lungs of BPF-exposed female offspring mice, characterized by peribronchial inflammatory cell infiltration and an increase in the number of inflammatory cells in BALF. Subsequent transcriptome analysis identified a total of 685 differentially expressed genes (DEGs) were in lungs of female offspring mice exposed to high-dose BPF, with 526 upregulated genes and 159 downregulated genes. Among upregulated DEGs of top 10, most of the upregulated genes were associated with inflammatory responses. In addition, enrichment analysis showed that immunosuppression and oxidative damage were significantly enriched in lungs of female offspring mice, suggesting that BPF could induce immunosuppression and oxidative stress in lungs of female offspring mice. Overall, our findings provide mechanistic insights into the potential pulmonary toxicity associated with BPF exposure during gestation and lactation.
Collapse
Affiliation(s)
- Jiayu Du
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Siming Huo
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China; Shandong First Medical University & Shandong Academy of Medical Sciences, JiNan, 250117, China
| | - Bo Li
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Xuliang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Jian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China; Shandong First Medical University & Shandong Academy of Medical Sciences, JiNan, 250117, China
| | - Yang Fu
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China; Department of Veterinary Medicine, Heze Vocational College, Heze, 274031, China
| | - Bing Shao
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
2
|
Siora A, Vontetsianos A, Chynkiamis N, Anagnostopoulou C, Bartziokas K, Anagnostopoulos N, Rovina N, Bakakos P, Papaioannou AI. Small airways in asthma: From inflammation and pathophysiology to treatment response. Respir Med 2024; 222:107532. [PMID: 38228215 DOI: 10.1016/j.rmed.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Small airways are characterized as those with an inner diameter less than 2 mm and constitute a major site of pathology and inflammation in asthma disease. It is estimated that small airways dysfunction may occur before the emergence of noticeable symptoms, spirometric abnormalities and imaging findings, thus characterizing them as "the quiet or silent zone" of the lungs. Despite their importance, measuring and quantifying small airways dysfunction presents a considerable challenge due to their inaccessibility in usual functional measurements, primarily due to their size and peripheral localization. Several pulmonary function tests have been proposed for the assessment of the small airways, including impulse oscillometry, nitrogen washout, body plethysmography, as well as imaging methods. Nevertheless, none of these methods has been established as the definitive "gold standard," thus, a combination of them should be used for an effective assessment of the small airways. Widely used asthma treatments seem to also affect several parameters of the small airways. Emerging biologic treatments show promising results in reducing small airways inflammation and remodelling, providing evidence for potential alterations in the disease's progression and outcomes. These novel therapies have implications not only in the clinical aspects of asthma but also in its inflammatory and functional aspects.
Collapse
Affiliation(s)
- Anastasia Siora
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece.
| | - Angelos Vontetsianos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikolaos Chynkiamis
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Christina Anagnostopoulou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Nektarios Anagnostopoulos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Petros Bakakos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Andriana I Papaioannou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| |
Collapse
|
3
|
Oliva L, Alemany M, Remesar X, Fernández-López JA. The Food Energy/Protein Ratio Regulates the Rat Urea Cycle but Not Total Nitrogen Losses. Nutrients 2019; 11:nu11020316. [PMID: 30717282 PMCID: PMC6412698 DOI: 10.3390/nu11020316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023] Open
Abstract
Nitrogen balance studies have shown that a portion of the N ingested but not excreted is not accounted for. We compared several diets (standard, high-fat, high-protein, and self-selected cafeteria) to determine how diet-dependent energy sources affect nitrogen handling, i.e., the liver urea cycle. Diet components and rat homogenates were used for nitrogen, lipid, and energy analyses. Plasma urea and individual amino acids, as well as liver urea cycle enzyme activities, were determined. Despite ample differences in N intake, circulating amino acids remained practically unchanged in contrast to marked changes in plasma urea. The finding of significant correlations between circulating urea and arginine-succinate synthase and lyase activities supported their regulatory role of urea synthesis, the main N excretion pathway. The cycle operation also correlated with the food protein/energy ratio, in contraposition to total nitrogen losses and estimated balance essentially independent of dietary energy load. The different regulation mechanisms observed have potentially important nutritional consequences, hinting at nitrogen disposal mechanisms able to eliminate excess nitrogen under conditions of high availability of both energy and proteins. Their operation reduces urea synthesis to allow for a safe (albeit unknown) mechanism of N/energy excess accommodation.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER OBN), 08028 Barcelona, Spain.
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER OBN), 08028 Barcelona, Spain.
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology,08028 Barcelona, Spain.
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER OBN), 08028 Barcelona, Spain.
| |
Collapse
|
4
|
Doğruel D, Yılmaz M, Bingöl G, Altıntaş DU, Güneşer Kendirli S. Fraction of exhaled nitric oxide as a predictor in juvenile idiopathic arthritis progression. Clin Rheumatol 2016; 36:541-546. [PMID: 27511473 DOI: 10.1007/s10067-016-3371-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 01/25/2023]
Abstract
In this study, the relation between the nitric oxide (NO) levels in the serum and fraction of exhaled nitric oxide (FENO) in children with juvenile idiopathic arthritis (JIA) and the activation criteria of the disease has been investigated. The study group consisted of 35 JIA-diagnosed patients and 18 healthy children. According to the clinical and laboratory findings, the patients with JIA were divided into two groups, active (group I) and in remission (group II). The healthy children were classified as group III. The activation criteria of the disease were determined for each patient. The serum NO level and FENO level were measured in all the patients. In the group with JIA, correlation was detected between FENO level and number of involved joints and number of joints with limited motion. In addition, correlation was determined between the FENO level and number of involved joints in group I and the serum NO level and activity score in group II. However, it was seen that there is no statistical difference in the serum NO level and FENO level of the patients with JIA and the control group and groups I and II. This study demonstrated the correlation between FENO level and number of involved joints and number of joints with limited motion in patients with JIA. Our results matter in terms of FENO being a noninvasive laboratory marker in following the progression of the disease.
Collapse
Affiliation(s)
- Dilek Doğruel
- Department of Pediatric Allergy and Immunology, Çukurova University Faculty of Medicine, Adana, Turkey.
| | - Mustafa Yılmaz
- Department of Pediatric Allergy and Immunology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Gülbin Bingöl
- Department of Pediatric Allergy and Immunology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Derya Ufuk Altıntaş
- Department of Pediatric Allergy and Immunology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Seval Güneşer Kendirli
- Department of Pediatric Allergy and Immunology, Çukurova University Faculty of Medicine, Adana, Turkey
| |
Collapse
|
5
|
Hendel N, Akmatov MK, Hamel J, Vogelberg C, Pessler F. Exhaled breath analysis in childhood rheumatic disorders--a longitudinal study. J Breath Res 2016; 10:021001. [PMID: 27093271 DOI: 10.1088/1752-7155/10/2/021001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We aimed to evaluate the fraction of exhaled nitric oxide (FENO50) and deaerated exhaled breath condensate pH (dEBCpH) as non-invasive markers of subclinical airway inflammation in pediatric patients with rheumatologic disorders. We determined FENO50 and dEBCpH in a prospective study spanning at least 12 months, comprising 85 pediatric patients with rheumatologic disorders, including juvenile idiopathic arthritis (JIA, n = 63), chronic recurrent multifocal osteomyelitis (CRMO, n = 6), systemic lupus erythematosus (SLE, n = 3), juvenile dermatomyositis (JDM, n = 1) and other rheumatic disorders (n = 12). dEBCpH was determined once in a group of children without evidence of rheumatologic or pulmonary disease (controls, n = 90). Findings were correlated with results of pulmonary function tests. Atopic sensitization was assessed by RAST or skin prick test in 76 patients. Atopic sensitization was detected in 34% (26/76) of patients. Neither FENO50 nor dEBCpH correlated with disease activity, but intermediately (20-35 ppb) or highly elevated (>35 ppb) levels were observed at least once in 26 patients (31%), 19 of whom had atopic sensitization. Median dEBCpH did not differ between cases and controls (8.05 versus 8.02; p = 0.48). Median dEBCpH decreased slightly over the study period (p = 0.02), whereas FENO50 values did not change significantly (p = 0.89). There were several patients with significantly abnormal dEBCpH values that could not be readily explained by diagnosis, higher disease activity, medications, or atopic sensitization. Thus, there were no consistent abnormalities in FENO50 or dEBCpH in this cohort of Caucasian patients with relatively stable rheumatologic disorders, but there were some patients with abnormal values of unknown significance.
Collapse
Affiliation(s)
- N Hendel
- Department of Pediatrics, University Children's Hospital, Technical University Dresden, Dresden, Germany. Division of Pulmonary Medicine, University Children's Hospital, Technical University Dresden, Dresden, Germany. These authors contributed equally to this work
| | | | | | | | | |
Collapse
|
6
|
Eckel SP, Zhang Z, Habre R, Rappaport EB, Linn WS, Berhane K, Zhang Y, Bastain TM, Gilliland FD. Traffic-related air pollution and alveolar nitric oxide in southern California children. Eur Respir J 2016; 47:1348-56. [PMID: 26797034 DOI: 10.1183/13993003.01176-2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/22/2015] [Indexed: 11/05/2022]
Abstract
Mechanisms for the adverse respiratory effects of traffic-related air pollution (TRAP) have yet to be established. We evaluated the acute effects of TRAP exposure on proximal and distal airway inflammation by relating indoor nitric oxide (NO), a marker of TRAP exposure in the indoor microenvironment, to airway and alveolar sources of exhaled nitric oxide (FeNO).FeNO was collected online at four flow rates in 1635 schoolchildren (aged 12-15 years) in southern California (USA) breathing NO-free air. Indoor NO was sampled hourly and linearly interpolated to the time of the FeNO test. Estimated parameters quantifying airway wall diffusivity (DawNO) and flux (J'awNO) and alveolar concentration (CANO) sources of FeNO were related to exposure using linear regression to adjust for potential confounders.We found that TRAP exposure indoors was associated with elevated alveolar NO. A 10 ppb higher indoor NO concentration at the time of the FeNO test was associated with 0.10 ppb higher average CANO (95% CI 0.04-0.16) (equivalent to a 7.1% increase from the mean), 4.0% higher J'awNO (95% CI -2.8-11.3) and 0.2% lower DawNO (95% CI -4.8-4.6).These findings are consistent with an airway response to TRAP exposure that was most marked in the distal airways.
Collapse
Affiliation(s)
- Sandrah P Eckel
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zilu Zhang
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward B Rappaport
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - William S Linn
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yue Zhang
- Dept of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theresa M Bastain
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank D Gilliland
- Dept of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Agnelli S, Arriarán S, Oliva L, Remesar X, Fernández-López JA, Alemany M. Modulation of rat liver urea cycle and related ammonium metabolism by sex and cafeteria diet. RSC Adv 2016. [DOI: 10.1039/c5ra25174e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liver amino acid metabolism decreased with cafeteria diet through lower ammonium production (even lower in females) and urea cycle activity.
Collapse
Affiliation(s)
- Silvia Agnelli
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Sofía Arriarán
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Laia Oliva
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | - Xavier Remesar
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| | | | - Marià Alemany
- Department of Nutrition and Food Science
- Faculty of Biology
- University of Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
8
|
Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H, Câmara JS. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites 2015; 5:3-55. [PMID: 25584743 PMCID: PMC4381289 DOI: 10.3390/metabo5010003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/12/2014] [Indexed: 02/06/2023] Open
Abstract
Currently, a small number of diseases, particularly cardiovascular (CVDs), oncologic (ODs), neurodegenerative (NDDs), chronic respiratory diseases, as well as diabetes, form a severe burden to most of the countries worldwide. Hence, there is an urgent need for development of efficient diagnostic tools, particularly those enabling reliable detection of diseases, at their early stages, preferably using non-invasive approaches. Breath analysis is a non-invasive approach relying only on the characterisation of volatile composition of the exhaled breath (EB) that in turn reflects the volatile composition of the bloodstream and airways and therefore the status and condition of the whole organism metabolism. Advanced sampling procedures (solid-phase and needle traps microextraction) coupled with modern analytical technologies (proton transfer reaction mass spectrometry, selected ion flow tube mass spectrometry, ion mobility spectrometry, e-noses, etc.) allow the characterisation of EB composition to an unprecedented level. However, a key challenge in EB analysis is the proper statistical analysis and interpretation of the large and heterogeneous datasets obtained from EB research. There is no standard statistical framework/protocol yet available in literature that can be used for EB data analysis towards discovery of biomarkers for use in a typical clinical setup. Nevertheless, EB analysis has immense potential towards development of biomarkers for the early disease diagnosis of diseases.
Collapse
Affiliation(s)
- Jorge Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Priscilla Porto-Figueira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Carina Cavaco
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Rahul Dhakne
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - Hampapathalu Nagarajaram
- Laboratory of Computational Biology, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, Andhra Pradesh 500 001, India.
| | - José S Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| |
Collapse
|
9
|
Amann A, Costello BDL, Miekisch W, Schubert J, Buszewski B, Pleil J, Ratcliffe N, Risby T. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J Breath Res 2014; 8:034001. [PMID: 24946087 DOI: 10.1088/1752-7155/8/3/034001] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer, but also during surgery and in intensive care units. The investigation of cell cultures opens up new possibilities for elucidation of the biochemical background of volatile compounds. In future studies, combined investigations of a particular compound with regard to human matrices such as breath, urine, saliva and cell culture investigations will lead to novel scientific progress in the field.
Collapse
Affiliation(s)
- Anton Amann
- Univ-Clinic for Anesthesia and Intensive Care, Innsbruck Medical University, Anichstr, 35, A-6020 Innsbruck, Austria. Breath Research Institute of the University of Innsbruck, Rathausplatz 4, A-6850 Dornbirn, Austria
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Trueba AF, Rosenfield D, Smith NB, Gorena TL, Ritz T. Social support as a predictor exhaled nitric oxide in healthy individuals across time. Int J Psychophysiol 2014; 93:356-62. [PMID: 24882793 DOI: 10.1016/j.ijpsycho.2014.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/01/2023]
Abstract
Psychosocial factors such as social support and depression have long been associated with health outcomes. Elevated depressive symptoms are usually associated with worse health outcomes, whereas social support has been related to improvements in health. Nitric oxide levels are an important marker of both cardiovascular health and immune function. Research suggests that exhaled nitric oxide is affected by stress, negative affect, and depression; however, the effect of social support has not been previously explored. Thus, we sought to examine the association of social support, negative affect, and depression with exhaled nitric oxide in a group of 35 healthy individuals (10 males and 25 females) with a mean age of 20.5years across five weekly assessments. Results showed that changes in social support within individuals were positively associated with levels of exhaled nitric oxide independent of other psychosocial factors. Further exploration of the health implications of this positive relationship between airway nitric oxide and social support is necessary.
Collapse
Affiliation(s)
- Ana F Trueba
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Noelle Bassi Smith
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Tabitha L Gorena
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
11
|
|
12
|
Amann A, Mochalski P, Ruzsanyi V, Broza YY, Haick H. Assessment of the exhalation kinetics of volatile cancer biomarkers based on their physicochemical properties. J Breath Res 2014; 8:016003. [PMID: 24566039 DOI: 10.1088/1752-7155/8/1/016003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current review provides an assessment of the exhalation kinetics of volatile organic compounds (VOCs) that have been linked with cancer. Towards this end, we evaluate various physicochemical properties, such as 'breath:air' and 'blood:fat' partition coefficients, of 112 VOCs that have been suggested over the past decade as potential markers of cancer. With these data, we show that the cancer VOC concentrations in the blood and in the fat span over 12 and 8 orders of magnitude, respectively, in order to provide a specific counterpart concentration in the exhaled breath (e.g., 1 ppb). This finding suggests that these 112 different compounds have different storage compartments in the body and that their exhalation kinetics depends on one or a combination of the following factors: (i) the VOC concentrations in different parts of the body; (ii) the VOC synthesis and metabolism rates; (iii) the partition coefficients between tissue(s), blood and air; and (iv) the VOCs' diffusion constants. Based on this analysis, we discuss how this knowledge allows modeling and simulating the behavior of a specific VOC under different sampling protocols (with and without exertion of effort). We end this review by a brief discussion on the potential role of these scenarios in screening and therapeutic monitoring of cancer.
Collapse
Affiliation(s)
- Anton Amann
- Breath Research Institute, Leopold-Franzens University of Innsbruck, 6850 Dornbirn, Austria. Department of Anesthesiology and Critical Care Medicine, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|