1
|
Pioch CO, Ziegahn N, Allomba C, Busack LM, Schnorr AN, Tosolini A, Fuhlrott BR, Zagkla S, Othmer T, Syunyaeva Z, Graeber SY, Yoosefi M, Thee S, Steinke E, Röhmel J, Mall MA, Stahl M. Elexacaftor/tezacaftor/ivacaftor improves nasal nitric oxide in patients with cystic fibrosis. J Cyst Fibros 2024; 23:863-869. [PMID: 38508948 DOI: 10.1016/j.jcf.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND In health, nitric oxide (NO) shows high concentrations in the upper airways, while nasal NO (nNO) is significantly lower in patients with sinonasal inflammation, such as people with cystic fibrosis (PwCF). In PwCF treated with elexacaftor/tezacaftor/ivacaftor (ETI; PwCF-ETI), clinical improvement of sinonasal symptoms and inflammation was observed. We therefore hypothesised that ETI may increase nNO in PwCF. METHODS 25 PwCF-ETI underwent nNO measurement at baseline and after 3 to 24 months of ETI treatment. NNO was measured using velum closure (VC) techniques in cooperative patients and tidal breathing (TB) for all patients. As controls, 7 CF patients not eligible for ETI (PwCF-non ETI) and 32 healthy controls (HC) were also repeatedly investigated. RESULTS In PwCF-ETI, sinonasal symptoms, lung function parameters and sweat chloride levels improved from baseline to follow-up whereas there was no change in PwCF-non ETI and HC. NNO increased from a median (IQR) value at baseline to follow-up from 348.2 (274.4) ppb to 779.6 (364.7) ppb for VC (P < 0.001) and from 198.2 (107.0) ppb to 408.3 (236.1) ppb for TB (P < 0.001). At follow-up, PwCF-ETI reached nNO values in the normal range. In PwCF-non ETI as well as HC, nNO did not change between baseline and follow-up. CONCLUSIONS In PwCF-ETI, the nNO values significantly increased after several months of ETI treatment in comparison to baseline and reached values in the normal range. This suggests that nNO is a potential non-invasive biomarker to examine sinonasal inflammatory disease in PwCF and supports the observation of clinical improvement in these patients.
Collapse
Affiliation(s)
- Charlotte O Pioch
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Niklas Ziegahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Allomba
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie M Busack
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandra N Schnorr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Apolline Tosolini
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bent R Fuhlrott
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Styliani Zagkla
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Till Othmer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zulfiya Syunyaeva
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehrak Yoosefi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), associated partner, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Sadr S, Tahermohammadi H, Kaveh S, Khanbabaee G, Tabatabaei SA, Choopani R, Rouzbahani AK, Fadavi N, Derikvandi S. Fractional Exhalation Nitric Oxide (FeNO) changes in cystic fibrosis patients induced by compound honey syrup: a pretest-posttest clinical trial. BMC Pulm Med 2023; 23:488. [PMID: 38053097 PMCID: PMC10696786 DOI: 10.1186/s12890-023-02787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVE To evaluate the effect of Persian medicine Syrup 'compound honey syrup (CHS)' on fractional exhalation nitric oxide (FENO) changes in patients with cystic fibrosis (CF). STUDY DESIGN We conducted a before-after clinical trial on 70 CF patients. All patients received classical treatments for CF along with CHS (including honey, Ginger, cinnamon, saffron, cardamom and galangal), 5-10 cc (depending on the age and weight of patients) in 100 cc of warm boiled water twice a day, 30 min after meals. In this clinical trial, before and 12 weeks after the start of the CHS, FeNO test was evaluated. RESULTS From 70 patients were enrolled, 44 patients completed this 12-week course of treatment. At the end of the study, changes in FeNO was significantly different before and after treatment (P-value < 0.05). At the end of the study, no dangerous side effects of CHS was reported. CONCLUSIONS This study revealed that CHS can be effective as a complementary and safe drug in the medication of CF patients.
Collapse
Affiliation(s)
- Saeed Sadr
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Tahermohammadi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahpar Kaveh
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ghamartaj Khanbabaee
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ahmad Tabatabaei
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasool Choopani
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nafise Fadavi
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Derikvandi
- Faculty of Veterinary Medicine, Student University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Kofoed A, Hindborg M, Hjembæk-Brandt J, Sørensen CD, Kolpen M, Bestle MH. Exhaled nitric oxide in intubated ICU patients on mechanical ventilation-a feasibility study. J Breath Res 2023; 17:046014. [PMID: 37657436 DOI: 10.1088/1752-7163/acf607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
It can be a clinical challenge to distinguish inflammation from infection in critically ill patients. Therefore, valid and conclusive surrogate markers for infections are desired. Nitric oxide (NO) might be that marker since concentrations of exhaled NO have shown to change in the presence of various diseases. This observational, prospective, single-center feasibility study aimed to investigate if fractional exhaled NO (FeNO) can be measured in intubated patients with or without infection, pneumonia and septic shock in a standardized, reliable setting. 20 intubated patients in the intensive care unit (ICU) were included for analysis. FeNO mean values were measured in the endotracheal tube via the suction channel using a chemiluminescence based analyzer. We developed a pragmatic method to measure FeNO repeatedly and reliably in intubated patients using a chemiluminescence based analyzer. We found a median of 0.98 (0.59-1.44) FeNO mean (ppb) in exhaled breath from all 20 intubated patient. Intubated patient with suspected infection had a significantly lower median FeNO mean compared with the intubated patients without suspected infection. Similarly did patients with septic shock demonstrate a significantly lower median FeNO mean than without septic shock. We found no statistical difference in median FeNO mean for intubated patients with pneumonia. It was feasible to measure FeNO in intubated patients in the ICU. Our results indicate decreased levels of FeNO in infected intubated patients in the ICU. The study was not powered to provide firm conclusions, so larger trials are needed to confirm the results and to prove FeNO as a useful biomarker for distinguishment between infection and inflammation in the ICU.
Collapse
Affiliation(s)
- Andreas Kofoed
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Mathias Hindborg
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Jeppe Hjembæk-Brandt
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Christian Dalby Sørensen
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten H Bestle
- Department of Anesthesia and Intensive Care, Copenhagen University Hospital-North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ceci Bonello E, Bianco R, Gouder C. Knowledge of fractional exhaled nitric oxide use among doctors working in a local respiratory department. PNEUMON 2023. [DOI: 10.18332/pne/157588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
6
|
Lehtimäki L, Karvonen T, Högman M. Clinical Values of Nitric Oxide Parameters from the Respiratory System. Curr Med Chem 2021; 27:7189-7199. [PMID: 32493184 DOI: 10.2174/0929867327666200603141847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/24/2020] [Accepted: 03/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fractional exhaled nitric oxide (FENO) concentration reliably reflects central airway inflammation, but it is not sensitive to changes in the NO dynamics in the lung periphery. By measuring FENO at several different flow rates one can estimate alveolar NO concentration (CANO), bronchial NO flux (JawNO), bronchial wall NO concentration (CawNO) and the bronchial diffusivity of NO (DawNO). OBJECTIVE We aimed to describe the current knowledge and clinical relevance of NO parameters in different pulmonary diseases. METHODS We conducted a systematic literature search to identify publications reporting NO parameters in subjects with pulmonary or systemic diseases affecting the respiratory tract. A narrative review was created for those with clinical relevance. RESULTS Estimation of pulmonary NO parameters allows for differentiation between central and peripheral inflammation and a more precise analysis of central airway NO output. CANO seems to be a promising marker of parenchymal inflammation in interstitial lung diseases and also a marker of tissue damage and altered gas diffusion in chronic obstructive pulmonary disease and systemic diseases affecting the lung. In asthma, CANO can detect small airway involvement left undetected by ordinary FENO measurement. Additionally, CawNO and DawNO can be used in asthma to assess if FENO is increased due to enhanced inflammatory activity (increased CawNO) or tissue changes related to bronchial remodelling (altered DawNO). CONCLUSION NO parameters may be useful for diagnosis, prediction of disease progression and prediction of treatment responses in different parenchymal lung and airway diseases. Formal trials to test the added clinical value of NO parameters are needed.
Collapse
Affiliation(s)
- Lauri Lehtimäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Tuomas Karvonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marieann Högman
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, S-75185 Uppsala, Sweden
| |
Collapse
|
7
|
Local and Systemic Alterations of the L-Arginine/Nitric Oxide Pathway in Sputum, Blood, and Urine of Pediatric Cystic Fibrosis Patients and Effects of Antibiotic Treatment. J Clin Med 2020; 9:jcm9123802. [PMID: 33255369 PMCID: PMC7761143 DOI: 10.3390/jcm9123802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the L-arginine (Arg)/nitric oxide (NO) pathway have been reported in cystic fibrosis (CF; OMIM 219700) as the result of various factors including systemic and local inflammatory activity in the airways. The aim of the present study was to evaluate the Arg/NO metabolism in pediatric CF patients with special emphasis on lung impairment and antibiotic treatment. Seventy CF patients and 78 healthy controls were included in the study. CF patients (43% male, median age 11.8 years) showed moderately impaired lung functions (FEV1 90.5 ± 19.1% (mean ± SD); 21 (30%) had a chronic Pseudomonas aeruginosa (PSA) infection, and 24 (33%) had an acute exacerbation). Plasma, urinary, and sputum concentrations of the main Arg/NO metabolites, nitrate, nitrite, Arg, homoarginine (hArg), and asymmetric dimethylarginine (ADMA) were determined in pediatric CF patients and in healthy age-matched controls. Clinical parameters in CF patients included lung function and infection with PSA. Additionally, the Arg/NO pathway in sputum samples of five CF patients was analyzed before and after routine antibiotic therapy. CF patients with low fractionally exhaled NO (FENO) showed lower plasma Arg and nitrate concentrations. During acute exacerbation, sputum Arg and hArg levels were high and dropped after antibiotic treatment: Arg: pre-antibiotics: 4.14 nmol/25 mg sputum vs. post-antibiotics: 2.33 nmol/25 mg sputum, p = 0.008; hArg: pre-antibiotics: 0.042 nmol/25 mg sputum vs. post-antibiotics: 0.029 nmol/25 mg sputum, p = 0.035. The activated Arg/NO metabolism in stable CF patients may be a result of chronic inflammation. PSA infection did not play a major role regarding these differences. Exacerbation increased and antibiotic therapy decreased sputum Arg concentrations.
Collapse
|
8
|
Gostelie R, Stegeman I, Berkers G, Bittermann J, Ligtenberg-van der Drift I, van Kipshagen PJ, de Winter - de Groot K, Speleman L. The impact of ivacaftor on sinonasal pathology in S1251N-mediated cystic fibrosis patients. PLoS One 2020; 15:e0235638. [PMID: 32687499 PMCID: PMC7371187 DOI: 10.1371/journal.pone.0235638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
IMPORTANCE Sinonasal symptoms in patients suffering from cystic fibrosis can negatively influence the quality of life and sinuses can be a niche for pathogens causing infection and inflammation leading to a decrease of lung function. Ivacaftor, a potentiator of the Cystic Fibrosis Transmembrane Conductance Regulator protein, has shown improvement in pulmonary function in cystic fibrosis patients with different forms of class III gating mutations. However, the effects of ivacaftor on sinonasal pathology have hardly been studied. OBJECTIVE To determine the impact of ivacaftor therapy on sinonasal pathology in patients with cystic fibrosis with an S1251N mutation. DESIGN Prospective observational mono-center cohort study, between June 2015 and December 2016. SETTING A tertiary referral center in Utrecht, The Netherlands. PARTICIPANTS Eight patients with cystic fibrosis with an S1251N mutation, treated with the potentiator ivacaftor were investigated. EXPOSURES Ivacaftor (Kalydeco, VX-770) therapy. Computed tomography imaging of paranasal sinuses. Nasal nitric oxide concentration measurements and nasal endoscopy. MAIN OUTCOMES AND MEASURES Primary outcome is opacification of paranasal sinuses examined with computed tomography scan analysis and scaled by the modified Lund-Mackay score before and one year after treatment. Secondary outcomes are nasal nitric oxide concentration levels, sinonasal symptoms and nasal endoscopic findings before and approximately two months and in some cases one year after treatment. RESULTS Computed tomography scan analysis showed a significant decrease in opacification of the majority of paranasal sinuses comparing the opacification score per paranasal sinus before and after one year of treatment with ivacaftor. Median nasal nitric oxide levels significantly improved from 220.00 (IQR:136.00-341.18) to 462.84 (IQR:233.17-636.25) (p = 0.017) parts per billion. Likewise, the majority of sinonasal symptoms and nasal endoscopic pathology decreased or resolved at two months after the use of ivacaftor. CONCLUSION AND RELEVANCE Ivacaftor appears to improve sinonasal outcome parameters and thereby sinonasal health in patients with cystic fibrosis with an S1251N mutation.
Collapse
Affiliation(s)
- Romee Gostelie
- University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Inge Stegeman
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Gitte Berkers
- Department of Pediatric Respiratory Medicine and Allergology, Cystic Fibrosis Center, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Joost Bittermann
- Department of Pediatric Otorhinolaryngology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Ivonne Ligtenberg-van der Drift
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | - Karin de Winter - de Groot
- Department of Pediatric Respiratory Medicine and Allergology, Cystic Fibrosis Center, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Lucienne Speleman
- Department of Pediatric Otorhinolaryngology, University Medical Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Brinkmann F, Hanusch B, Ballmann M, Mayorandan S, Bollenbach A, Chobanyan-Jürgens K, Jansen K, Schmidt-Choudhury A, Derichs N, Tsikas D, Lücke T. Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results. J Clin Med 2020; 9:jcm9062012. [PMID: 32604946 PMCID: PMC7356307 DOI: 10.3390/jcm9062012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF; OMIM 219700) is a rare genetic disorder caused by a chloride channel defect, resulting in lung disease, pancreas insufficiency and liver impairment. Altered L-arginine (Arg)/nitric oxide (NO) metabolism has been observed in CF patients’ lungs and in connection with malnutrition. The aim of the present study was to investigate markers of the Arg/NO pathway in the plasma and urine of CF patients and to identify possible risk factors, especially associated with malnutrition. We measured the major NO metabolites nitrite and nitrate, Arg, a semi-essential amino acid and NO precursor, the NO synthesis inhibitor asymmetric dimethylarginine (ADMA) and its major urinary metabolite dimethylamine (DMA) in plasma and urine samples of 70 pediatric CF patients and 78 age-matched healthy controls. Biomarkers were determined by gas chromatography–mass spectrometry and high-performance liquid chromatography. We observed higher plasma Arg (90.3 vs. 75.6 µM, p < 0.0001), ADMA (0.62 vs. 0.57 µM, p = 0.03), Arg/ADMA ratio (148 vs. 135, p = 0.01), nitrite (2.07 vs. 1.95 µM, p = 0.03) and nitrate (43.3 vs. 33.1 µM, p < 0.001) concentrations, as well as higher urinary DMA (57.9 vs. 40.7 µM/mM creatinine, p < 0.001) and nitrate (159 vs. 115 µM/mM creatinine, p = 0.001) excretion rates in the CF patients compared to healthy controls. CF patients with pancreatic sufficiency showed plasma concentrations of the biomarkers comparable to those of healthy controls. Malnourished CF patients had lower Arg/ADMA ratios (p = 0.02), indicating a higher NO synthesis capacity in sufficiently nourished CF patients. We conclude that NO production, protein-arginine dimethylation, and ADMA metabolism is increased in pediatric CF patients. Pancreas and liver function influence Arg/NO metabolism. Good nutritional status is associated with higher NO synthesis capacity and lower protein-arginine dimethylation.
Collapse
Affiliation(s)
- Folke Brinkmann
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Beatrice Hanusch
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
- Correspondence: ; Tel.: +49-234-5092615
| | - Manfred Ballmann
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
- Paediatric Clinic, University Medicine Rostock, 18057 Rostock, Germany
| | - Sebene Mayorandan
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- Department of Paediatrics, University Clinic Münster, 48149 Münster, Germany
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany; (A.B.); (D.T.)
| | - Kristine Chobanyan-Jürgens
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of General Pediatrics, Neuropediatrics, Metabolism, Gastroenterology, Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Pediatric Clinical-Pharmacological Trial Center (paedKliPS), Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kathrin Jansen
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Anjona Schmidt-Choudhury
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Nico Derichs
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- KinderPneumologieDerichs, Pediatric Pneumology and Allergology, CFTR & Pulmonary Research Center, 30173 Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany; (A.B.); (D.T.)
| | - Thomas Lücke
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| |
Collapse
|
10
|
Galiniak S, Biesiadecki M, Aebisher D, Rachel M. Nasal nitric oxide in upper airways in children with asthma and allergic rhinitis. Adv Med Sci 2020; 65:127-133. [PMID: 31927424 DOI: 10.1016/j.advms.2019.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study is to compare levels of nasal nitric oxide (nNO) in pediatric patients with respiratory diseases. MATERIALS AND METHODS nNO was measured by an electrochemical analyzer in 179 patients aged 7-15 with asthma, allergic rhinitis or with asthma and allergic rhinitis and in healthy children recruited from a local allergology clinic. Correlations between nNO levels and patient clinical parameters were assessed. RESULTS nNO was significantly higher in patients with allergic rhinitis (2316.3 ± 442.33 ppb, p < 0.001) as well as with asthma and allergic rhinitis (2399.9 ± 446.73 ppb, p < 0.001) compared to asthmatic and healthy children (1066.4 ± 416.75; 836.2 ± 333.47 ppb, respectively). A receiver operating characteristic curve analysis revealed that a cut-off value of 1545 ppb nNO and 1459 ppb nNO has sensitivity of 100% and specificity of 100% in distinguishing allergic rhinitis and combined asthma and allergic rhinitis from healthy subjects. A positive correlation between nNO and age and height was determined only in groups of healthy controls. We found no association between nNO level and clinical parameters including percent of eosinophils and total IgE. CONCLUSION Levels of nNO are currently measured by different analyzers and with different methods, so assessment of nNO is in need of standardization improvement to become a more reliable tool. However, because it is cheap, painless and fast, it may be helpful in combination with recognition of clinical symptoms and typical diagnostic methods, especially in estimation of inflammation.
Collapse
Affiliation(s)
| | | | - David Aebisher
- Faculty of Medicine, Rzeszów University, Rzeszów, Poland
| | - Marta Rachel
- Faculty of Medicine, Rzeszów University, Rzeszów, Poland; Allergology Outpatient Department, Provincial Hospital No 2, Rzeszow, Poland
| |
Collapse
|
11
|
Gore A, Gauthier AG, Lin M, Patel V, Thomas DD, Ashby CR, Mantell LL. The nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO), increases survival by attenuating hyperoxia-compromised innate immunity in bacterial clearance in a mouse model of ventilator-associated pneumonia. Biochem Pharmacol 2020; 176:113817. [PMID: 31972169 DOI: 10.1016/j.bcp.2020.113817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Mechanical ventilation (MV) with supraphysiological levels of oxygen (hyperoxia) is a life-saving therapy for the management of patients with respiratory distress. However, a significant number of patients on MV develop ventilator-associated pneumonia (VAP). Previously, we have reported that prolonged exposure to hyperoxia impairs the capacity of macrophages to phagocytize Pseudomonas aeruginosa (PA), which can contribute to the compromised innate immunity in VAP. In this study, we show that the high mortality rate in mice subjected to hyperoxia and PA infection was accompanied by a significant decrease in the airway levels of nitric oxide (NO). Decreased NO levels were found to be, in part, due to a significant reduction in NO release by macrophages upon exposure to PA lipopolysaccharide (LPS). Based on these findings, we postulated that NO supplementation should restore hyperoxia-compromised innate immunity and decrease mortality by increasing the clearance of PA under hyperoxic conditions. To test this hypothesis, cultured macrophages were exposed to hyperoxia (95% O2) in the presence or absence of the NO donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NONOate/D-NO). Interestingly, D-NO (up to 37.5 µM) significantly attenuated hyperoxia-compromised macrophage migratory, phagocytic, and bactericidal function. To determine whether the administration of exogenous NO enhances the host defense in bacteria clearance, C57BL/6 mice were exposed to hyperoxia (99% O2) and intranasally inoculated with PA in the presence or absence of D-NO. D-NO (300 µM-800 µM) significantly increased the survival of mice inoculated with PA under hyperoxic conditions, and significantly decreased bacterial loads in the lung and attenuated lung injury. These results suggest the NO donor, D-NO, can improve the clinical outcomes in VAP by augmenting the innate immunity in bacterial clearance. Thus, provided these results can be extrapolated to humans, NO supplementation may represent a potential therapeutic strategy for preventing and treating patients with VAP.
Collapse
Affiliation(s)
- Ashwini Gore
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Alex G Gauthier
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Mosi Lin
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Vivek Patel
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, St. John's University, College of Pharmacy and Health Sciences, Queens, NY 11439, USA; Cardiopulmonary Research, The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, NY 11030, USA.
| |
Collapse
|
12
|
Abstract
Objective: HIV disrupts host defense mechanisms and maintains chronic inflammation in the lung. Nitric oxide is a marker of lung inflammation and can be measured in the exhaled air. We investigated the relationship between exhaled nitric oxide (eNO), HIV status and airway abnormalities in perinatally HIV-infected children aged 6–19 years. Design: A cross-sectional study. Methods: HIV-infected individuals on antiretroviral therapy and HIV-uninfected children with no active tuberculosis (TB) or acute respiratory tract infection were recruited from a public hospital in Harare, Zimbabwe. Clinical history was collected and eNO testing and spirometry was performed. The association between eNO and explanatory variables (HIV, FEV1 z-score, CD4+ cell count, viral load, history of TB) was investigated using linear regression analysis adjusted for age, sex and time of eNO testing. Results: In total, 222 HIV-infected and 97 HIV-uninfected participants were included. Among HIV-infected participants, 57 (25.7%) had a history of past TB; 56 (25.2%) had airway obstruction, but no prior TB. HIV status was associated with lower eNO level [mean ratio 0.79 (95% confidence interval, 95% CI 0.65–0.97), P = 0.03]. Within the HIV-infected group, history of past TB was associated with lower eNO levels after controlling for age, sex and time of eNO testing [0.79 (95% CI 0.67–0.94), P = 0.007]. Conclusion: HIV infection and history of TB were associated with lower eNO levels. eNO levels may be a marker of HIV and TB-induced alteration in pulmonary physiology; further studies focused on potential causes for lower eNO levels in HIV and TB are warranted.
Collapse
|
13
|
Högman M, Thornadtsson A, Bröms K, Janson C, Lisspers K, Ställberg B, Hedenström H, Malinovschi A. Different Relationships between F ENO and COPD Characteristics in Smokers and Ex-Smokers. COPD 2019; 16:227-233. [PMID: 31357875 DOI: 10.1080/15412555.2019.1638355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exhaled nitric oxide (FENO) is a marker of type-2 inflammation in asthma and is used in its management. However, smokers and ex-smokers have lower FENO values, and the clinical use of FENO values in COPD patients is unclear. Therefore, we investigated if FENO had a relationship to different COPD characteristics in smoking and ex-smoking subjects. Patients with COPD (n = 533, 58% females) were investigated while in stable condition. Measurements of FENO50, blood cell counts, IgE sensitisation and lung function were performed. Medication reconciliation was used to establish medication usage. Smokers (n = 150) had lower FENO50 9 (8, 10) ppb (geometric mean, 95% confidence interval) than ex-smokers did (n = 383) 15 (14, 16) ppb, p < 0.001. FENO50 was not associated with blood eosinophil or neutrophil levels in smokers, but in ex-smokers significant associations were found (r = 0.23, p < 0.001) and (r = -0.18, p = 0.001), respectively. Lower FENO values were associated with lower FEV1% predicted in both smokers (r = 0.17, p = 0.040) and ex-smokers (r = 0.20, p < 0.001). Neither the smokers nor ex-smokers with reported asthma or IgE sensitisation were linked to an increase in FENO50. Ex-smokers treated with inhaled corticosteroids (ICS) had lower FENO50 14 (13, 15) ppb than non-treated ex-smokers 17 (15, 19) ppb, p = 0.024. This was not found in smokers (p = 0.325). FENO is associated with eosinophil inflammation and the use of ICS in ex-smoking COPD subjects, but not in smoking subjects suggesting that the value of FENO as an inflammatory marker is more limited in smoking subjects. The association found between low FENO values and low lung function requires further investigation.
Collapse
Affiliation(s)
- M Högman
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University , Uppsala , Sweden
| | - A Thornadtsson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University , Uppsala , Sweden.,Center for Research & Development, Uppsala University/Region Gävleborg , Gävle , Sweden
| | - K Bröms
- Center for Research & Development, Uppsala University/Region Gävleborg , Gävle , Sweden.,Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University , Uppsala , Sweden
| | - C Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University , Uppsala , Sweden
| | - K Lisspers
- Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University , Uppsala , Sweden.,Center for Clinical Research, Uppsala University, County Council Dalarna , Falun , Sweden
| | - B Ställberg
- Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University , Uppsala , Sweden.,Center for Clinical Research, Uppsala University, County Council Dalarna , Falun , Sweden
| | - H Hedenström
- Department of Medical Sciences, Clinical Physiology, Uppsala University , Uppsala , Sweden
| | - A Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
14
|
Rachel M, Biesiadecki M, Aebisher D, Galiniak S. Exhaled nitric oxide in pediatric patients with respiratory disease. J Breath Res 2019; 13:046007. [PMID: 31234165 DOI: 10.1088/1752-7163/ab2c3d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Measurement of nitric oxide (NO) levels in exhaled air from the upper and lower airways is currently used as a non-invasive marker of inflammation in respiratory diseases. Assessment of NO exhaled from the lower air respiratory tract is considered to be a quick method for confirmation and control of asthma in patients as well as an estimation of treatment efficiency. The main aim of this study was to determine differences between levels of exhaled nitric oxide (fractional exhaled NO; FeNO) in patients with respiratory disease as measured by an electrochemical analyzer. Measurements were taken in 352 pediatric patients aged 4-17 with cystic fibrosis (CF) (n = 43), asthma (n = 69), allergic rhinitis (AR) (n = 70), asthma and AR (n = 128) and non-diseased children (n = 42) recruited from the Allergology Outpatient Department, Provincial Hospital No 2, Rzeszów. The second objective of this study was to assess any correlations between FeNO and clinical parameters of patients. The level of FeNO in patients with CF was normal when compared with control subjects (10.8 ± 2.9 versus 11.4 ± 6 ppb). We found significantly higher FeNO in patients with asthma (26.6 ± 15.3 ppb, p < 0.001), AR (18.4 ± 9.6 ppb, p < 0.01) as well as in patients with both asthma and AR (43.3 ± 31.1 ppb, p < 0.001) when compared to healthy children. Statistical analysis revealed a positive correlation between FeNO and age, height and weight of control subjects, and height in children with AR. FeNO was independent of sex, BMI, spirometry and blood results as well as the type of residence in control children and subjects with CF, asthma, AR and combined asthma and AR. In conclusion, we found normal levels of FeNO in children with CF and elevated levels in patients with asthma, AR and combined asthma and AR as compared to control subjects. Due to conflicting data, there is still a need for additional research, especially related to regarding factors that affect FeNO levels in respiratory disease.
Collapse
Affiliation(s)
- Marta Rachel
- Faculty of Medicine, University of Rzeszów, Warzywna 1, 35-315 Rzeszów, Poland. Allergology Outpatient Department, Provincial Hospital No 2, Lwowska 60, 35-301 Rzeszów, Poland
| | | | | | | |
Collapse
|
15
|
Karvonen T, Lehtimäki L. Flow-independent nitric oxide parameters in asthma: a systematic review and meta-analysis. J Breath Res 2019; 13:044001. [PMID: 31239409 DOI: 10.1088/1752-7163/ab2c99] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Fractional exhaled nitric oxide (FENO) has been proposed as a non-invasive marker of inflammation in the lungs. Measuring FENO at several flow rates enables the calculation of flow independent NO-parameters that describe the NO-exchange dynamics of the lungs more precisely. The purpose of this study was to compare the NO-parameters between asthmatics and healthy subjects in a systematic review and meta-analysis. METHODS A systematic search was performed in Ovid Medline, Web of Science, Scopus and Cochrane Library databases. All studies with asthmatic and healthy control groups with at least one NO-parameter calculated were included. RESULTS From 1137 identified studies, 33 were included in the meta-analysis. All NO-parameters (alveolar NO concentration (CANO), bronchial flux of NO (JawNO), bronchial mucosal NO concentration (CawNO) and bronchial wall NO diffusion capacity (DawNO)) were found increased in glucocorticoid-treated and glucocorticoid-naïve asthma. JawNO and CANO were most notably increased in both study groups. Elevation of DawNO and CawNO seemed less prominent in both asthma groups. DISCUSSION We found that all the NO-parameters are elevated in asthma as compared to healthy subjects. However, results were highly heterogenous and the evidence on CawNO and DawNO is still quite feeble due to only few studies reporting them. To gain more knowledge on the NO-parameters in asthma, nonlinear methods and standardized study protocols should be used in future studies.
Collapse
Affiliation(s)
- Tuomas Karvonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | |
Collapse
|
16
|
Hamilos DL. Biofilm Formations in Pediatric Respiratory Tract Infection : Part 1: Biofilm Structure, Role of Innate Immunity in Protection Against and Response to Biofilm, Methods of Biofilm Detection, Pediatric Respiratory Tract Diseases Associated with Mucosal Biofilm Formation. Curr Infect Dis Rep 2019; 21:6. [PMID: 30820766 DOI: 10.1007/s11908-019-0658-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Biofilm represents an organized structure of microorganisms within an extracellular matrix attached to a surface. While the importance of biofilm in prosthetic heart valve and catheter-related infections has been known since the 1980s, the role of mucosal biofilm in human disease pathogenesis has only recently been elucidated. It is now clear that mucosal biofilm is present in both healthy and pathologic states. The purpose of this review is to examine the role of mucosal biofilm in pediatric respiratory infections. RECENT FINDINGS Mucosal biofilm has been implicated in relationship to several pediatric respiratory infections, including tonsillitis, adenoiditis, otitis media with effusion, chronic rhinosinusitis, persistent endobronchial infection, and bronchiectasis. In these conditions, core pathogens are detected in the biofilm, biofilm organisms are often detected by molecular techniques when conventional cultures are negative, and biofilm presence is more extensive in relation to disease than in healthy tissues. In chronic rhinosinusitis, the presence of polymicrobial biofilm is also a predictor of poorer outcome following sinus surgery. Biofilm in the tonsillar and adenoidal compartments plays a distinct role in contributing to disease in the middle ear and sinuses. Key observations regarding the relevance of biofilm to pediatric respiratory infections include (1) the association between the presence of biofilm and persistent/recurrent and more severe disease in these tissues despite antibiotic treatment, (2) linkage between biofilm core pathogens and acute infections, and (3) interrelationship between biofilm presence in one tissue and persistent or recurrent infection in an adjacent tissue. A greater understanding of the significance of mucosal biofilm will undoubtedly emerge with the development of effective means of eradicating mucosal biofilm.
Collapse
Affiliation(s)
- Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, 55 Fruit Street, Bulfinch-422, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
17
|
Vincken S, Verbanck S, De Wachter E, Vanderhelst E. Exhaled nitric oxide in stable adult cystic fibrosis patients, during exacerbation and following CFTR-modifying treatment. Eur Respir J 2019; 53:13993003.02259-2018. [DOI: 10.1183/13993003.02259-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 11/05/2022]
|
18
|
Kroll JL, Werchan CA, Rosenfield D, Ritz T. Acute ingestion of beetroot juice increases exhaled nitric oxide in healthy individuals. PLoS One 2018; 13:e0191030. [PMID: 29370244 PMCID: PMC5784918 DOI: 10.1371/journal.pone.0191030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022] Open
Abstract
Background and objective Nitric oxide (NO) plays an important role in the airways’ innate immune response, and the fraction of exhaled NO at a flow rate of 50mL per second (FENO50) has been utilized to capture NO. Deficits in NO are linked to loss of bronchoprotective effects in airway challenges and predict symptoms of respiratory infection. While beetroot juice supplements have been proposed to enhance exercise performance by increasing dietary nitrate consumption, few studies have examined the impact of beetroot juice or nitrate supplementation on airway NO in contexts beyond an exercise challenge, which we know influences FENO50. Methods We therefore examined the influence of a beetroot juice supplement on FENO50 in healthy males and females (n = 38) during periods of rest and in normoxic conditions. FENO50, heart rate, blood pressure, and state affect were measured at baseline, 45 minutes, and 90 minutes following ingestion of 70ml beetroot juice (6.5 mmol nitrate). Identical procedures were followed with ingestion of 70ml of water on a control day. Results After beetroot consumption, average values of the natural log of FENO50 (lnFENO50) increased by 21.3% (Cohen’s d = 1.54, p < .001) 45 minutes after consumption and by 20.3% (Cohen’s d = 1.45, p < .001) 90 min after consumption. On the other hand, only very small increases in FENO50 were observed after consumption of the control liquid (less than 1% increase). A small subset (n = 4) of participants completed an extended protocol lasting over 3 hours, where elevated levels of FENO50 persisted. No significant changes in cardiovascular measures were observed with this small single dose of beetroot juice. Conclusion As NO serves a key role in innate immunity, future research is needed to explore the potential clinical utility of beetroot and dietary nitrate to elevate FENO50 and prevent respiratory infection.
Collapse
Affiliation(s)
- Juliet L. Kroll
- Southern Methodist University, Dallas, TX, United States of America
| | | | - David Rosenfield
- Southern Methodist University, Dallas, TX, United States of America
| | - Thomas Ritz
- Southern Methodist University, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|