1
|
Li X, Chang P, Liu X, Kang Y, Zhao Z, Duan Y, Liu J, Zhang W. Exhaled breath is found to be better than blood samples for determining propofol concentrations in the brain tissues of rats. J Breath Res 2024; 18:026004. [PMID: 38211315 DOI: 10.1088/1752-7163/ad1d65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The correlation between propofol concentration in exhaled breath (CE) and plasma (CP) has been well-established, but its applicability for estimating the concentration in brain tissues (CB) remains unknown. Given the impracticality of directly sampling human brain tissues, rats are commonly used as a pharmacokinetic model due to their similar drug-metabolizing processes to humans. In this study, we measuredCE,CP, andCBin mechanically ventilated rats injected with propofol. Exhaled breath samples from the rats were collected every 20 s and analyzed using our team's developed vacuum ultraviolet time-of-flight mass spectrometry. Additionally, femoral artery blood samples and brain tissue samples at different time points were collected and measured using high-performance liquid chromatography mass spectrometry. The results demonstrated that propofol concentration in exhaled breath exhibited stronger correlations with that in brain tissues compared to plasma levels, suggesting its potential suitability for reflecting anesthetic action sites' concentrations and anesthesia titration. Our study provides valuable animal data supporting future clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Pan Chang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xing Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhongjun Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yixiang Duan
- School of Mechanical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Zhang X, Frankevich V, Ding J, Ma Y, Chingin K, Chen H. Direct mass spectrometry analysis of exhaled human breath in real-time. MASS SPECTROMETRY REVIEWS 2023. [PMID: 37565588 DOI: 10.1002/mas.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2022] [Accepted: 10/01/2022] [Indexed: 08/12/2023]
Abstract
The molecular composition of exhaled human breath can reflect various physiological and pathological conditions. Considerable progress has been achieved over the past decade in real-time analysis of exhaled human breath using direct mass spectrometry methods, including selected ion flow tube mass spectrometry, proton transfer reaction mass spectrometry, extractive electrospray ionization mass spectrometry, secondary electrospray ionization mass spectrometry, acetone-assisted negative photoionization mass spectrometry, atmospheric pressure photoionization mass spectrometry, and low-pressure photoionization mass spectrometry. Here, recent developments in direct mass spectrometry analysis of exhaled human breath are reviewed with regard to analytical performance (chemical sensitivity, selectivity, quantitative capabilities) and applications of the developed methods in disease diagnosis, targeted molecular detection, and real-time metabolic monitoring.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Jianhua Ding
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
| | - Yuanyuan Ma
- Department of GCP, Shanghai Public Health Clinical Center, Shanghai, China
| | - Konstantin Chingin
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People's Republic of China
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| |
Collapse
|
3
|
Weiss F, Chawaguta A, Tolpeit M, Volk V, Schiller A, Ruzsanyi V, Hillinger P, Lederer W, Märk TD, Mayhew CA. Detecting Hexafluoroisopropanol Using Soft Chemical Ionization Mass Spectrometry and Analytical Applications to Exhaled Breath. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:958-968. [PMID: 36995741 PMCID: PMC10161230 DOI: 10.1021/jasms.3c00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here we explore the potential use of proton transfer reaction/selective reagent ion-time-of-flight-mass spectrometry (PTR/SRI-ToF-MS) to monitor hexafluoroisopropanol (HFIP) in breath. Investigations of the reagent ions H3O+, NO+, and O2+• are reported using dry (relative humidity (rH) ≈ 0%) and humid (rH ≈ 100%)) nitrogen gas containing traces of HFIP, i.e., divorced from the complex chemical environment of exhaled breath. HFIP shows no observable reaction with H3O+ and NO+, but it does react efficiently with O2+• via dissociative charge transfer resulting in CHF2+, CF3+, C2HF2O+, and C2H2F3O+. A minor competing hydride abstraction channel results in C3HF6O+ + HO2• and, following an elimination of HF, C3F5O+. There are two issues associated with the use of the three dominant product ions of HFIP, CHF2+, CF3+, and C2H2F3O+, to monitor it in breath. One is that CHF2+ and CF3+ also result from the reaction of O2+• with the more abundant sevoflurane. The second is the facile reaction of these product ions with water, which reduces analytical sensitivity to detect HFIP in humid breath. To overcome the first issue, C2H2F3O+ is the ion marker for HFIP. The second issue is surmounted by using a Nafion tube to reduce the breath sample's humidity prior to its introduction into drift tube. The success of this approach is illustrated by comparing the product ion signals either in dry or humid nitrogen gas flows and with or without the use of the Nafion tube, and practically from the analysis of a postoperative exhaled breath sample from a patient volunteer.
Collapse
Affiliation(s)
- Florentin Weiss
- Institute for Breath Research, Universität Innsbruck, Innrain 66, A-6020 Innsbruck, Austria
| | - Anesu Chawaguta
- Institute for Breath Research, Universität Innsbruck, Innrain 66, A-6020 Innsbruck, Austria
| | - Matthias Tolpeit
- Department of Anaesthesiology and Critical Care, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Valeria Volk
- Department of Anaesthesiology and Critical Care, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institute for Breath Research, Universität Innsbruck, Innrain 66, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institute for Breath Research, Universität Innsbruck, Innrain 66, A-6020 Innsbruck, Austria
| | - Petra Hillinger
- Department of Anaesthesiology and Critical Care, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Wolfgang Lederer
- Department of Anaesthesiology and Critical Care, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Tilmann D Märk
- Institute for Ion Physics and Applied Physics, Universität Innsbruck, Technikerstraße 25/3, A-6020 Innsbruck, Austria
| | - Chris A Mayhew
- Institute for Breath Research, Universität Innsbruck, Innrain 66, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Minami K, Kobayashi H, Matoba M, Kamiya Y, Maji S, Nemoto T, Tohno M, Nakakubo R, Yoshikawa G. Measurement of Volatile Fatty Acids in Silage through Odors with Nanomechanical Sensors. BIOSENSORS 2023; 13:152. [PMID: 36831918 PMCID: PMC9953262 DOI: 10.3390/bios13020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The measurement of volatile fatty acids (VFAs) is of great importance in the fields of food and agriculture. There are various methods to measure VFAs, but most methods require specific equipment, making on-site measurements difficult. In this work, we demonstrate the measurements of VFAs in a model sample, silage, through its vapor using an array of nanomechanical sensors-Membrane-type Surface stress Sensors (MSS). Focusing on relatively slow desorption behaviors of VFAs predicted with the sorption kinetics of nanomechanical sensing and the dissociation nature of VFAs, the VFAs can be efficiently measured by using features extracted from the decay curves of the sensing response, resulting in sufficient discrimination of the silage samples. Since the present sensing system does not require expensive, bulky setup and pre-treatment of samples, it has a great potential for practical applications including on-site measurements.
Collapse
Affiliation(s)
- Kosuke Minami
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Hisami Kobayashi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768 Senbonmatsu, Nasushiobara 329-2793, Tochigi, Japan
| | - Masaaki Matoba
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yuko Kamiya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768 Senbonmatsu, Nasushiobara 329-2793, Tochigi, Japan
| | - Subrata Maji
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Takahiro Nemoto
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Masanori Tohno
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 768 Senbonmatsu, Nasushiobara 329-2793, Tochigi, Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8602, Ibaraki, Japan
| | - Ryoh Nakakubo
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Ibaraki, Japan
| | - Genki Yoshikawa
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
5
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD. J Clin Med 2020; 10:jcm10010032. [PMID: 33374433 PMCID: PMC7796324 DOI: 10.3390/jcm10010032] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases that have risen worldwide, posing a major public health issue, encompassing not only physical and psychological morbidity and mortality, but also incurring significant societal costs. The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a result of the disease often not being detected until a late stage. Although COPD and asthma are conditions with considerably lower mortality, they are extremely distressful to people and involve high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but are also invasive, thereby adding to people’s stress. It has been appreciated for many decades that the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of the lung. However, after decades of research associated with breath biomarker discovery, no breath VOC tests are clinically available. Reasons for this include the little consensus as to which breath volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease provide guidance as to what volatiles need further investigation for use in differential diagnosis, highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic tests for lung disease. This review provides an overview of these issues from evaluating key studies that have been undertaken in the years 2010–2019, in order to present objective and comprehensive updated information that presents the progress that has been made in this field. The potential of this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed. This review will be of interest to chemists, biologists, medical doctors and researchers involved in the development of analytical instruments for breath diagnosis.
Collapse
|