1
|
Indrianingsih AW, Ahla MFF, Sanjaya EH, Suryani R, Windarsih A. Synthesis of Extract-Bacterial Cellulose Composite Using Ageratum conyzoides L. and Chromolaena odorata L., Its Antibacterial Activities, and Biodegradability Properties. Appl Biochem Biotechnol 2024; 196:5127-5143. [PMID: 38112992 DOI: 10.1007/s12010-023-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Bacterial cellulose is a natural polymer produced by fermentation of coconut water using Acetobacter xylinum bacteria. This study aimed to synthesize a novel composite of bacterial cellulose impregnated with plant extracts that had an antibacterial activity that have the potential to be used as a food packaging material to maintain food quality. Pure bacterial cellulose (pure BC) was impregnated using Ageratum conyzoides L. leaf extract (AC-BC) and Chromolaena odorata L. leaf extract (CO-BC), which contain secondary metabolites with potential as antibacterial. The study began with the synthesis of pure BC, AC-BC, and CO-BC composites then characterized by SEM-EDX and FTIR, continued with antibacterial activity tests against S. aureus, S. typhimurium, E. coli, and their biodegradability tests. The results of SEM and FTIR characterization showed the success of the impregnation process for antibacterial compounds. The results of the antibacterial activity of AC-BC disc diffusion against S. typhimurium and E. coli showed good antibacterial activity of 9.82 mm and 8.41 mm, respectively. The similar result showed with the antibacterial activity of CO-BC disc diffusion against S. typhimurium and E. coli that showed good activity of 9.73 mm and 6.82 mm, respectively. On the other hand, the biodegradability test showed that the impregnation of bacterial cellulose slowed down the degradation process in the soil. This study confirmed the potential application of bacterial cellulose-plant extracts as an active and biodegradable food packaging.
Collapse
Affiliation(s)
- Anastasia W Indrianingsih
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia.
| | - Muhammad F F Ahla
- Department of Chemistry, Universitas Negeri Malang, Malang, 65145, Indonesia
| | - Eli H Sanjaya
- Department of Chemistry, Universitas Negeri Malang, Malang, 65145, Indonesia
| | - Ria Suryani
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, 55861, Indonesia
| |
Collapse
|
2
|
Ul-Islam M, Ullah MW, Khan S, Park JK. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0524-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Blanco Parte FG, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 2020; 40:397-414. [PMID: 31937141 DOI: 10.1080/07388551.2020.1713721] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adoption of biomass for the development of biobased products has become a routine agenda in evolutionary metabolic engineering. Cellulose produced by bacteria is a "rising star" for this sustainable development. Unlike plant cellulose, bacterial cellulose (BC) shows several unique properties like a high degree of crystallinity, high purity, high water retention, high mechanical strength, and enhanced biocompatibility. Favored with those extraordinary properties, BC could serve as ideal biomass for the development of various industrial products. However, a low yield and the requirement for large growth media have been a persistent challenge in mass production of BC. A significant number of techniques has been developed in achieving efficient BC production. This includes the modification of bioreactors, fermentation parameters, and growth media. In this article, we summarize progress in metabolic engineering in order to solve BC growth limitation. This article emphasizes current engineered BC production by using various bioreactors, as well as highlighting the structure of BC fermented by different types of engineered-bioreactors. The comprehensive overview of the future applications of BC, aims to provide readers with insight into new economic opportunities of BC and their modifiable properties for various industrial applications. Modifications in chemical composition, structure, and genetic regulation, which preceded the advancement of BC applications, were also emphasized.
Collapse
Affiliation(s)
- Francisco German Blanco Parte
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Chan Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Liu D, Yao K, Li J, Huang Y, Brennan CS, Chen S, Wu H, Zeng X, Brennan M, Li L. The effect of ultraviolet modification of
Acetobacter xylinum
(CGMCC No. 7431) and the use of coconut milk on the yield and quality of bacterial cellulose. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dong‐mei Liu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Kun Yao
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Jia‐hui Li
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Yan‐yan Huang
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Charles S. Brennan
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
- Department of Wine, Food and Molecular Biosciences, Centre for Food Research and Innovation Lincoln University Lincoln 85084 New Zealand
| | - Si‐min Chen
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Hui Wu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences, Centre for Food Research and Innovation Lincoln University Lincoln 85084 New Zealand
| | - Li Li
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong 510640 China
| |
Collapse
|