1
|
Xiang C, Du Y, Han W, Guan B, Liu H, An Y, Liu Y, Jiang H, Chang J, Ge Y. Proper C/N ratio enhances the effect of plant diversity on nitrogen removal and greenhouse effect mitigation in floating constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12036-12051. [PMID: 38225493 DOI: 10.1007/s11356-024-31985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Treating wastewater with low carbon-to-nitrogen (C/N) ratios by constructed wetlands (CWs) is still problematic. Adding chemicals is costly and may cause secondary pollution. Configuring plant diversity in substrate-based CWs has been found to be a better way to treat low-C/N wastewater, but wastewater treatment in floating CWs needs to be studied. In this study, wastewater with C/N ratios of 5 and 10 were set in simulated floating CWs, and 9 combinations with plant species richness (SR) of 1, 3, and 4 were configured. The results showed that (1) increasing SR improved the total N mass removal (NMR) by 29% at a C/N ratio of 5 but not 10; (2) the presence of Oenanthe javanica in the microcosms increased the NMR by 13% and 20% with C/N ratios of 5 and 10, respectively; (3) increasing SR mitigated the net global warming potential (GWP) by 120% at a C/N ratio of 5 but not 10; and (4) a Hemerocallis fulva × O. javanica × Echinodorus parviflours × Iris hybrids mixture resulted in a high NMR and low net GWP. In summary, assembling plant diversity in floating CWs is an efficient and clean measure during the treatment of wastewater with a C/N ratio of 5.
Collapse
Affiliation(s)
- Chenxu Xiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yuanyuan Du
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Huaxin Design Group Co., Ltd, Wuxi, 214100, People's Republic of China
| | - Wenjuan Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, People's Republic of China
| | - Baohua Guan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Hua Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yu An
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Hang Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jie Chang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Ying Ge
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
2
|
Vera-Puerto I, Valdés H, Correa C, Olave J, Pérez V, Arias CA. Variation of the feeding/resting period in modified vertical treatment wetlands (depth, zeolite as medium) employed for treating rural domestic wastewater in tourist areas. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1394-1403. [PMID: 37768743 PMCID: wst_2023_283 DOI: 10.2166/wst.2023.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
This work aimed to evaluate the performance of modified vertical flow treatment wetlands (VF-TWs) in terms of depth and medium to assess the effect of the feeding/resting periods and footprint (FP). The modifications were proposed for treating domestic wastewater in rural areas with flow variations such as tourist sites. The experimental setup included six laboratory-scale VF-TWs: (a) normal (VF-N), bed depth 1.0 m, filled with sand and (b) modified (VF-M), bed depth 0.5 m, filled with sand (upper) and zeolite (bottom, saturated). The operation was divided into three phases (3 months each), varying the feeding/resting period and FP: phase I, 5 d/10 d, 2.6 m2/person-equivalent (PE); phase II, 3.5 d/3.5 d, 1.7 m2/PE; and phase III, only feeding no resting, 0.85 m2/PE. Influent and effluent grab samples were taken every 2 weeks. The results showed effective removal (above 60%) of total solids, organic matter, and pathogens for both VF-N and VF-M. Regarding nutrients, VF-M showed a phosphate removal below 60%, but no consistent removal (15-60%) of total nitrogen. Thus, the results suggest that proposed modifications can be an option to be established in tourist sites, but further work should be conducted to improve and optimize total nitrogen removal.
Collapse
Affiliation(s)
- Ismael Vera-Puerto
- Departamento de Obras Civiles, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile E-mail: ;
| | - Hugo Valdés
- Departamento de Computación e Industrias, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile
| | - Christian Correa
- Departamento de Obras Civiles, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile; Consultora e Ingeniería Ciudad Verde Ltda, Camino a Puertas Negras S/N, Talca, Chile
| | - Jorge Olave
- Centro de Investigación y Desarrollo en Recursos Hídricos, Universidad Arturo Prat, Vivar 461-489, Iquique, Chile
| | - Valeria Pérez
- Departamento de Obras Civiles, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile; Departamento de Infraestructura, Universidad Católica del Maule, Avenida San Miguel 3605, Talca, Chile
| | - Carlos A Arias
- Department of Biology - Aquatic Biology, Aarhus University, Nordre Ringgade 1, 8000, Aarhus C, Denmark; WATEC Aarhus University Centre for Water Technology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Aarhus C, Denmark
| |
Collapse
|
3
|
Wastewater Treatment Using Constructed Wetland: Current Trends and Future Potential. Processes (Basel) 2021. [DOI: 10.3390/pr9111917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Constructed wetlands (CW) is an environmentally friendly technique for removing pollutants from wastewater and has been applied to municipal wastewater, petroleum refinery wastewater, agriculture drainage, acid mine drainage, etc. The past decade has seen a remarkable number of innovations in the exponentially growing field of microbiology. This manuscript covers a critical review of key aspects of CW, such as various types of CW, the contaminants and their removal mechanisms, degradation pathways, challenges and opportunities, materials, applications, and theory with a focus on recent advances in the last three decades. In addition, an attempt has been taken to project future advances in the field of CW and facilitate these advances by framing key unsolved problems in CW. Guidelines are prepared for the fast-growing CW field through the standardization of key design aspects. This review covers the evaluation of the current state-of-the-art of CW technology and provides definitions and performance metric nomenclature in an effort to unify the fast-growing CW community. It also contains an outlook on the emerging trends in CW and proposes future research and development directions.
Collapse
|
4
|
Vera-Puerto I, Valdés H, Correa C, Perez V, Gomez R, Alarcon E, Arias C. Evaluation of Bed Depth Reduction, Media Change, and Partial Saturation as Combined Strategies to Modify in Vertical Treatment Wetlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4842. [PMID: 34062738 PMCID: PMC8124162 DOI: 10.3390/ijerph18094842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022]
Abstract
The aim of this work was to evaluate the performance of vertical subsurface flow treatment wetlands (VSSF TWs) for treating rural domestic wastewater when strategies such as bed depth reduction and media change are used in combination with bottom saturation. Two treatment wetland systems were implemented: normal (VF-N), with a bed depth of 1.0 m, and modified (VF-M), with a bed depth of 0.5 m and a bottom layer of natural zeolite. Schoenoplectus californicus was used as experimental plant. These two treatment systems were operated at a hydraulic loading rate of 120 mm/d in two phases. Phase I did not use bottom saturation, while Phase II involved a bottom saturation of the zeolite layer of the VF-M system. The results show that bed depth reduction did not have a significant effect (p > 0.05) in terms of organic matter, solids, and ammonium removal. Conversely, it had a significant influence (p < 0.05) on phosphate as well as a negative effect on pathogen removal. This influence could be explained by initial media capacity for phosphorus removal and filtration importance in the case of pathogens. Partial saturation only had a positive influence on total nitrogen removal. The addition of a bottom layer of natural zeolite showed no positive effect on nutrient removal. The plant showed adaptation and positive development in both VF-N and VF-M. The water balance showed that water loss was not influenced by bed depth reduction. Therefore, according to the previous results, a combination of the proposal modifications to VSSF TWs can be introduced for treating rural domestic wastewater.
Collapse
Affiliation(s)
- Ismael Vera-Puerto
- Centro de Innovación en Ingeniería Aplicada, Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile; (I.V.-P.); (C.C.); (E.A.)
| | - Hugo Valdés
- Centro de Innovación en Ingeniería Aplicada, Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile;
| | - Christian Correa
- Centro de Innovación en Ingeniería Aplicada, Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile; (I.V.-P.); (C.C.); (E.A.)
| | - Valeria Perez
- Escuela de Ingeniería en Construcción, Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile; (V.P.); (R.G.)
| | - Roberto Gomez
- Escuela de Ingeniería en Construcción, Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile; (V.P.); (R.G.)
| | - Erica Alarcon
- Centro de Innovación en Ingeniería Aplicada, Departamento de Obras Civiles, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Av. San Miguel 3605, Talca 3480112, Chile; (I.V.-P.); (C.C.); (E.A.)
| | - Carlos Arias
- Department of Biology-Aquatic Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
- WATEC Aarhus University Centre for Water Technology, NyMunkegade, Bldg. 1521, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111986. [PMID: 33486195 DOI: 10.1016/j.jenvman.2021.111986] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change (MoEFCC), Indira Paryavaran Bhavan, New Delhi, India
| |
Collapse
|
6
|
Perdana MC, Hadisusanto S, Purnama ILS. Implementation of a full-scale constructed wetland to treat greywater from tourism in Suluban Uluwatu Beach, Bali, Indonesia. Heliyon 2020; 6:e05038. [PMID: 33072900 PMCID: PMC7548428 DOI: 10.1016/j.heliyon.2020.e05038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/03/2020] [Accepted: 09/21/2020] [Indexed: 11/24/2022] Open
Abstract
This original research examines a full-scale subsurface Constructed Wetland (CW) system in Indonesia, where most CW research has been limited to laboratory scale experiments. The CW system was located in Bali and built in 2015 in a single series formation. This study aims to demonstrate the performance of the system in treating greywater and examine the nutrient content plants' above-ground biomass. The CW was arranged in linear sequence composed of one unplanted (CW1) and five planted treatments of Iris pseudacorus (CW2), Caladium bicolor (CW3), Rhoe discolor (CW4), Sansevieria trifasciata (CW5) and Heliconia psittacorum (CW6). There has been little research on Caladium bicolor, Rhoe discolor and Sansevieria trifasciata in a full-scale CW application. Our results showed fluctuating efficiency (%) in the reduction of Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solid (TSS), Oil and Grease (O&G), Nitrate and Phosphate. The highest removal efficiency for CW1, CW2, CW3, CW4, CW5, CW6 were O&G (63.63%), BOD (90.66%), Nitrate (83.55%), BOD (80%), BOD (82.88%) and Phosphate (89.93%) respectively. After the experimental period, S. trifasciata and H. psittacorum experienced a decrease in Total N concentration, while H. psittacorum experienced a decrease in phosphate in above-ground biomass. Species of R. discolor, C. bicolor and I. pseudacorus showed good performance in terms of their growth and development. Although high removal efficiency was observed at certain times, this study showed the negative removal efficiencies at times among parameters as a consequence of the low Hydraulic Retention Time (HRT) and high Hydraulic Loading Rate (HLR).
Collapse
Affiliation(s)
- Mayang Christy Perdana
- Graduate School of Environmental Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | |
Collapse
|