1
|
Guo L, Li S, Cheng D, Lu X, Gao X, Zhang L, Lu J. Integrated proteome and pangenome analysis revealed the variation of microalga Isochrysis galbana and associated bacterial community to 2,6-Di-tert-butyl-p-cresol (BHT) stress. World J Microbiol Biotechnol 2024; 40:364. [PMID: 39446252 DOI: 10.1007/s11274-024-04171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
The phenolic antioxidant 2,6-Di-tert-butyl-p-cresol (BHT) has been detected in various environments and is considered a potential threat to aquatic organisms. Algal-bacterial interactions are crucial for maintaining ecosystem balance and elemental cycling, but their response to BHT remains to be investigated. This study analyzed the physiological and biochemical responses of the microalga Isochrysis galbana and the changes of associated bacterial communities under different concentrations of BHT stress. Results showed that the biomass of I. galbana exhibited a decreasing trend with increasing BHT concentrations up to 40 mg/L. The reduction in chlorophyll, carotenoid, and soluble protein content of microalgal cells was also observed under BHT stress. The production of malondialdehyde and the activities of superoxide dismutase, peroxidase, and catalase were further determined. Scanning electron microscopy analysis revealed that BHT caused surface rupture of the algal cells and loss of intracellular nutrients. Proteomic analysis demonstrated the upregulation of photosynthesis and citric acid cycle pathways as a response to BHT stress. Additionally, BHT significantly increased the relative abundance of specific bacteria in the phycosphere, including Marivita, Halomonas, Marinobacter, and Alteromonas. Further experiments confirmed that these bacteria had the ability to utilize BHT as the sole carbon resource for growth, and genes related to the degradation of phenolic compounds were detected through pangenome analysis.
Collapse
Affiliation(s)
- Linke Guo
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Shuangwei Li
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Dongle Cheng
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xiao Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Xinying Gao
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| | - Jianjiang Lu
- College of Safety and Environment Engineering, Shandong University of Science & Technology, Qingdao, 266510, China.
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science & Technology, Qingdao, 266510, China.
| |
Collapse
|
2
|
M'Rabet C, Kéfi-Daly Yahia O, Chomérat N, Zentz F, Bilien G, Pringault O. Transient effect of bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP) on the cosmopolitan marine diatom Chaetoceros decipiens-lorenzianus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117362. [PMID: 34380207 DOI: 10.1016/j.envpol.2021.117362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Incubation under controlled laboratory conditions were performed to assess the toxic effects of two plastic derived chemicals, bisphenol A (BPA) and di-(2-ethylhexyl) phthalate (DEHP), on the growth, photosynthetic efficiency and photosynthetic activity of the cosmopolitan diatom Chaetoceros decipiens-lorenzianus. Non-axenic diatom cells were exposed to concentrations of BPA and DEHP (separately and in mixture), mimicking concentrations observed in contaminated marine ecosystems, for seven days. Upon short-term exposure (i.e., during the first 48 h), BPA and DEHP induced a slight but significant stimulation of biomass and photosynthetic activity relative to the control, whereas, no significant impact was observed on the photosynthetic efficiency. Nevertheless, this pattern was transient. The stimulation was followed by a return to control conditions for all treatments at the end of incubation. These results showed that the cosmopolitan diatom Chaetoceros was not impacted by representative in situ concentrations of plastic derivatives, thus confirming its ability to thrive in coastal anthropogenic environments.
Collapse
Affiliation(s)
- Charaf M'Rabet
- Tunisian National Agronomic Institute (INAT), IRESA - Carthage University. LR18ES41 (Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Univ. Tunis EL Manar), 43 Avenue Charles Nicolle, 1082, Tunis, Tunisia; UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095, Montpellier, Cedex 5, France.
| | - Ons Kéfi-Daly Yahia
- Tunisian National Agronomic Institute (INAT), IRESA - Carthage University. LR18ES41 (Laboratoire des Sciences de l'Environnement, Biologie et Physiologie des Organismes Aquatiques, Univ. Tunis EL Manar), 43 Avenue Charles Nicolle, 1082, Tunis, Tunisia.
| | - Nicolas Chomérat
- Institut Français de Recherche pour l'Exploitation de la Mer- ODE/UL/LER Bretagne Occidentale, Station de Biologie Marine, Place de la Croix, BP 40537, 29185, Concarneau, France.
| | - Frédéric Zentz
- Université de Bretagne Occidentale, Station de Biologie Marine, Place de la Croix, 29185, Concarneau, France.
| | - Gwenaël Bilien
- Institut Français de Recherche pour l'Exploitation de la Mer- ODE/UL/LER Bretagne Occidentale, Station de Biologie Marine, Place de la Croix, BP 40537, 29185, Concarneau, France.
| | - Olivier Pringault
- UMR 9190 MARBEC IRD-Ifremer-CNRS-Université de Montpellier, Place Eugène Bataillon, Case 093, 34095, Montpellier, Cedex 5, France; Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France.
| |
Collapse
|
3
|
Ranjbar Jafarabadi A, Mashjoor S, Riyahi Bakhtiari A, Cappello T. Ecotoxico Linking of Phthalates and Flame-Retardant Combustion Byproducts with Coral Solar Bleaching. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5970-5983. [PMID: 33886295 DOI: 10.1021/acs.est.0c08730] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Persian Gulf coral reefs are unique biota communities in the global sunbelts in being able to survive in multiple stressful fields during summertime (>36 °C). Despite the high-growth emerging health-hazard microplastic additive type of contaminants, its biological interactions with coral-algal symbiosis and/or its synergistic effects linked to solar-bleaching events remain unknown. This study investigated the bioaccumulation patterns of polybrominated diphenyl ether (PBDE) and phthalate ester (PAE) pollutants in six genera of living/bleached corals in Larak Island, Persian Gulf, and their ambient abiotic matrixes. Results showed that the levels of ∑18PBDEs and ∑13PAEs in abiotic matrixes followed the order of SPMs > surface sediments > seawater, and the cnidarian POP-uptake patterns (soft corals > hard corals) were as follows: coral mucus (138.49 ± 59.98 and 71.57 ± 47.39 ng g-1 dw) > zooxanthellae (82.05 ± 28.27 and 20.14 ± 12.65 ng g-1 dw) ≥ coral tissue (66.26 ± 21.42 and 34.97 ± 26.10 ng g-1 dw) > bleached corals (45.19 ± 8.73 and 13.83 ± 7.05 ng g-1 dw) > coral skeleton (35.66 ± 9.58 and 6.47 ± 6.47 ng g-1 dw, respectively). Overall, findings suggest that mucus checking is a key/facile diagnostic approach for fast detection of POP bioaccumulation (PB) in tropical corals. Although studied corals exhibited no consensus concerning hazardous levels of PB (log BSAF < 3.7), our bleaching evidence showed soft corals as the ultimate "summer winners" due to their flexibility/recovering ability.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
Zhong SS, Zhang J, Liu ZH, Dang Z, Liu Y. Inhibition Properties of Arylsulfatase and β-Glucuronidase by Hydrogen Peroxide, Hypochlorite, and Peracetic Acid. ACS OMEGA 2021; 6:8163-8170. [PMID: 33817475 PMCID: PMC8014925 DOI: 10.1021/acsomega.0c06060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Arylsulfatase and β-glucuronidase are two important enzymes in humans, which play an important role in the dynamic equilibrium of steroidal estrogens. This work probably for the first time reported that hydrogen peroxide (H2O2), hypochlorite, and peracetic acid (PAA) could effectively inhibit the activities of arylsulfatase and/or β-glucuronidase. The 50% of inhibitions (IC50) of H2O2, hypochlorite, and PAA on arylsulfatase were found to be 142.90 ± 9.00, 91.83 ± 10.01, and 43.46 ± 2.92 μM, respectively. The corresponding IC50 values of hypochlorite and PAA on β-glucuronidase were 704.90 ± 41.40 and 23.26 ± 0.82 μM, whereas H2O2 showed no inhibition on β-glucuronidase. The inhibitions of arylsulfatase and/or β-glucuronidase by these three chemicals were pH-dependent. It was further revealed that the inhibitions of hypochlorite on both arylsulfatase and β-glucuronidase were irreversible. On the contrary, the inhibitions by H2O2 and PAA were reversible. In addition, the inhibition by H2O2 was competitive and that by PAA was noncompetitive. In general, H2O2 and hypochlorite can be endogenously produced in humans, which suggested that the two compounds are potential endocrine disruption compounds (EDCs) as they can cause endocrine disruption via the inhibition of arylsulfatase and β-glucuronidase. This work further indicated that any agent that can induce the production of H2O2 or hypochlorite in humans is a potential EDC, which explains why some EDCs with very weak or no estrogenic potency can cause endocrine disruption, which is confirmed in epidemiological studies.
Collapse
Affiliation(s)
- Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
- Key Laboratory Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, Singapore 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|