1
|
Hamid Y, Chen Y, Lin Q, Haris M, Usman M, Saqib Rashid M, Anastopoulos I, Hussain B, Ali HM, Hannan F, Yin X, Yang X. Functionality of wheat straw-derived biochar enhanced its efficiency for actively capping Cd and Pb in contaminated water and soil matrices: Insights through batch adsorption and flow-through experiments. CHEMOSPHERE 2024; 362:142770. [PMID: 38969230 DOI: 10.1016/j.chemosphere.2024.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100, Arta, Greece
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou, 324002, China.
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Baran A, Ertaş E, Baran MF, Eftekhari A, Gunes Z, Keskin C, Usanov SA, Khalilov R. Green-Synthesized Characterization, Antioxidant and Antibacterial Applications of CtAC/MNPs-Ag Nanocomposites. Pharmaceuticals (Basel) 2024; 17:772. [PMID: 38931439 PMCID: PMC11206647 DOI: 10.3390/ph17060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of antibiotic resistance, caused by the improper use of antibiotics, is a significant challenge in combating infectious diseases, leading to millions of annual fatalities. The occurrence of antimicrobial side effects catalyzes the investigation of novel antimicrobial compounds and sources of drugs. Consequently, the research on biological activity that is conducted on plants, plant extracts, and compounds that are produced from plant components is of utmost significance. In this study, CtAC/MNPs were obtained by the reaction of activated carbon (AC) obtained from the fruits of the Celtis tournefortii (Ct) plant and magnetic nanoparticles (MNPs), and a CtAC/MNPs-Ag nanocomposite was synthesized by the reduction in silver ions added to the reaction. The synthesized CtAC/MNPs and CtAC/MNPs-Ag nanocomposites were analyzed spectroscopically (FTIR, XRD), microscopically (SEM, EDX), optically (DLS), electrochemically (zeta potential) and magnetically (VSM). The antibacterial activities of CtAC/MNPs and CtAC/MNPs-Ag nanocomposites against S. aureus and E. coli were investigated by microdilution method using minimal inhibitory concentration (MIC) and disk diffusion methods. Antioxidant activity study, including total phenolic content and DPPH and cuprac assays, revealed the remarkable effect of the CtAC/MNPs-Ag nanocomposite. This study has the advantages of obtaining CtAC/MNPs and CtAC/MNPs-Ag nanocomposites in a short time without requiring energy, and most importantly, the reaction takes place without using any toxic substances. In addition, according to the data obtained in the study, the CtAC/MNPs-Ag nanocomposite is thought to shed light on biomedical research.
Collapse
Affiliation(s)
- Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin 47200, Turkey;
| | - Erdal Ertaş
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman 72000, Turkey; (E.E.); (M.F.B.)
| | - Mehmet Fırat Baran
- Department of Food Technology, Vocational School of Technical Sciences, Batman University, Batman 72000, Turkey; (E.E.); (M.F.B.)
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Turkey
- Department of Life Sciences, Western Caspian University, Baku AZ1072, Azerbaijan
| | - Zübeyir Gunes
- Department of Crops and Animal Production, Mardin Artuklu University, Mardin 47200, Turkey;
| | - Cumali Keskin
- Department of Medical Services, Vocational School of Health Services, Mardin Artuklu University, Mardin 47200, Turkey;
| | - Sergey A. Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku AZ1148, Azerbaijan
- Institute of Radiation Problems, Ministry of Science and Education Republic of Azerbaijan, Baku AZ1143, Azerbaijan
| |
Collapse
|
3
|
Valadez-Renteria E, Oliva J, Oliva AI, Ruiz-Gomez MA, Encinas A, Rodriguez-Gonzalez V. A solar evaporator fabricated from corncob waste for the desalination of seawater and removal of oil/herbicides from contaminated water. CHEMOSPHERE 2024; 350:141030. [PMID: 38154668 DOI: 10.1016/j.chemosphere.2023.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Corncob (CC) based solar evaporators were employed to desalinize seawater brought from the Vallarta coast in Mexico. The pure CC produced an evaporation-rate and evaporation-efficiency of 0.63 kg m-2 h-1 and 38.4%, respectively, under natural solar light. Later, the CC was coated with carbonized CC (CCCE evaporator) or was coated with graphene (CCGE evaporator). Those evaporators were used for the desalination of seawater and obtained higher evaporation rates of 1.59-1.67 kg m-2 h-1, and higher evaporation efficiencies of 92-94% (under natural solar light). The desalination experiments were repeated under artificial solar light and the evaporation-rates/evaporation-efficiencies slightly decreased to 1.43-1.52 kg m-2 h-1/88-92%. The surface analysis of the evaporators by FTIR, XPS and Raman revealed that the CCGE evaporator had on its surface a lower content of defects and a higher amount of OH groups than the CCCE evaporator. Therefore, the CCGE evaporator had higher evaporation-rates/evaporation-efficiencies in comparison with the CCCE evaporator. Furthermore, we purified water contaminated with three different herbicides (fomesafen, 2-6 dichlorobenzamide and 4-chlorophenol at 30 ppm) by evaporation and using natural solar light. Interestingly, the CCCE and CCGE evaporators also removed the herbicides by physical adsorption with efficiencies of 12-22.5%. Moreover, the CCGE evaporator removed vegetable oil from contaminated water by adsorption and its maximum adsorption capacity was 1.72 g/g. Overall, our results demonstrated that the corncob-based evaporators studied here are a low-cost alternative to obtain clean water under natural solar light and this one was more effective for the desalination of seawater than the artificial sunlight (Xe lamp).
Collapse
Affiliation(s)
- E Valadez-Renteria
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico; Tecnológico Nacional de México/ITS Zacatecas Occidente, Sombrerete, Zacatecas, 99100, Mexico
| | - J Oliva
- Centro de Física Aplicada y Tecnología avanzada, Universidad Nacional Autónoma de México, Juriquilla Querétaro, 76230, Mexico.
| | - A I Oliva
- Cinvestav IPN, Unidad Mérida, Depto. de Física Aplicada, A.P. 73-Cordemex, 97310, Mérida, Yucatán, 97310, Mexico
| | - M A Ruiz-Gomez
- CONAHCYT-Departamento de Física Aplicada, CINVESTAV-IPN, Mérida, Yucatán, 97310, Mexico
| | - A Encinas
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico
| | - V Rodriguez-Gonzalez
- División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica A. C., 78216, San Luis Potosí, SLP, Mexico
| |
Collapse
|
4
|
Atchudan R, Perumal S, Sundramoorthy AK, Manoj D, Kumar RS, Almansour AI, Lee YR. Facile Synthesis of Functionalized Porous Carbon by Direct Pyrolysis of Anacardium occidentale Nut-Skin Waste and Its Utilization towards Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101654. [PMID: 37242070 DOI: 10.3390/nano13101654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Preparing electrode materials plays an essential role in the fabrication of high-performance supercapacitors. In general, heteroatom doping in carbon-based electrode materials enhances the electrochemical properties. Herein, nitrogen, oxygen, and sulfur co-doped porous carbon (PC) materials were prepared by direct pyrolysis of Anacardium occidentale (AO) nut-skin waste for high-performance supercapacitor applications. The as-prepared AO-PC material possessed interconnected micropore/mesopore structures and exhibited a high specific surface area of 615 m2 g-1. The Raman spectrum revealed a moderate degree of graphitization of AO-PC materials. These superior properties of the as-prepared AO-PC material help to deliver high specific capacitance. After fabricating the working electrode, the electrochemical performances including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements were conducted in 1 M H2SO4 aqueous solution using a three-electrode configuration for supercapacitor applications. The AO-PC material delivered a high specific capacitance of 193 F g-1 at a current density of 0.5 A g-1. The AO-PC material demonstrated <97% capacitance retention even after 10,000 cycles of charge-discharge at the current density of 5 A g-1. All the above outcomes confirmed that the as-prepared AO-PC from AO nut-skin waste via simple pyrolysis is an ideal electrode material for fabricating high-performance supercapacitors. Moreover, this work provides a cost-effective and environmentally friendly strategy for adding value to biomass waste by a simple pyrolysis route.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Arifutzzaman A, Musa IN, Aroua MK, Saidur R. MXene based activated carbon novel nano-sandwich for efficient CO2 adsorption in fixed-bed column. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Gollakota AR, Munagapati VS, Liao SW, Shu CM, Shadangi KP, Sarangi PK, Wen JC. Ionic liquid [bmim] [TFSI] templated Na-X zeolite for the adsorption of (Cd 2+, Zn 2+), and dyes (AR, R6). ENVIRONMENTAL RESEARCH 2023; 216:114525. [PMID: 36243055 DOI: 10.1016/j.envres.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
1-butyl-3-methylimidazolium bis(triflouromethylsufonyl)imide functionalization to Na-X zeolite (IFZ) is the primary goal of this study in order to evaluate its ability to remove heavy metals (Cd2+), (Zn2+), dyes Rhodamine 6G (R6), and Alizarin Red S (AR) from aqueous streams. IFZ was thoroughly examined using analytical techniques XRD, BET, FE-SEM, and FTIR, to better understand its physical and chemical properties. The surface area and the volume of pores (IFZ; 19.93 m2/g, 0.0544 cm3/g) were reduced in comparison to the parent zeolite (Na-X; 63.92 m2/g, 0.0884 cm3/g). According to SEM, the crystal structure of the zeolite (Na-X) has not been significantly altered by XRD analysis. The mechanism, kinetics, isotherms, and thermodynamic properties of adsorption were all studied using batch adsorption experiments under various operating conditions. IFZ adsorbs dyes (AR; 76.33 mg/g, R6; 65.85 mg/g) better than metal ions (Cd2+; 30.68 mg/g, Zn2+; 41.53 mg/g) in acidic conditions. The Langmuir isotherm and pseudo-second order models were found to be the most accurate models for equilibrium data. Adsorption is endothermic and spontaneous, as revealed by the thermodynamics of the process. The IFZ can be used in three (Cd2+), two (Zn2+), four (AR), and five (R6) cycles of desorption and regeneration. For these reasons, IL-modified zeolite can be used to remove multiple types of pollutants from water in one simple step.
Collapse
Affiliation(s)
- Anjani Rk Gollakota
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan
| | - Venkata Subbaiah Munagapati
- Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou, 64002, Taiwan, ROC
| | - Sheng-Wei Liao
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan
| | - Chi-Min Shu
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan.
| | - Krushna Prasad Shadangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India; Department of Chemical Engineering, VSS University of Technology, Burla Sambalpur 768 018, Odisha, India
| | - Prakash K Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India.
| | - Jet-Chau Wen
- Department of Safety, Health, and Environmental Engineering, National Yunlin University of Science and Technology, Douliou City, Yunlin, 64002, Taiwan; Research Centre for Soil & Water Resources and Natural Disaster Prevention (SWAN), National Yunlin University of Science & Technology, Douliou, 64002, Taiwan, ROC
| |
Collapse
|
7
|
Zakaria NZJ, Rozali S, Mubarak NM, Ibrahim S. A review of the recent trend in the synthesis of carbon nanomaterials derived from oil palm by-product materials. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-32. [PMID: 35194538 PMCID: PMC8853439 DOI: 10.1007/s13399-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Grown only in humid tropical conditions, the palm tree provides high-quality oil essential for cooking and personal care or biofuel in the energy sector. After the refining process, this demand could cause numerous oil palm biomass waste management problems. However, the emergence of carbon nanomaterials or CNMs could be a great way to put this waste to a good cause. The composition of the palm waste can be used as a green precursor or starting materials for synthesizing CNMs. Hence, this review paper summarizes the recent progress for the CNMs production for the past 10 years. This review paper extensively discusses the method for processing CNMs, chemical vapor deposition, pyrolysis, and microwave by the current synthesis method. The parameters and conditions of the synthesis are also analyzed. The application of the CNMs from palm oil and future recommendations are also highlighted. Generally, this paper could be a handy guide in assisting the researchers in exploring economic yet simple procedures in synthesizing carbon-based nanostructured materials derived from palm oil that can fulfill the required applications. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Nurul Zariah Jakaria Zakaria
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shaifulazuar Rozali
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | - Suriani Ibrahim
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126720. [PMID: 34343883 DOI: 10.1016/j.jhazmat.2021.126720] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/24/2023]
Abstract
An emerging global necessity for alternative resources combined with maximum catalytic efficiency, low cost, and eco-friendly composite remains a hotspot in the scientific society. Hereby, a novel protocol is approached to design a heterostructure of Zinc MOF decorated on the surface of 2D activated carbon (AC) through a simplistic approach. To begin with, analytical, morphological and spectroscopical studies were performed to identify the functional moieties, cruciate-flower like morphology and oxidative state of atoms present in the composite Zn-MOF @AC. The photocatalytic material aids in degrading both cationic and anionic dye in a UV (254 nm) irradiated environment at a rate of 86.4% and 77.5% within 90 mins. Subsequently, the hybrid materials are coated on the carbon substrate to evaluate the catalytic activity using oxygen evolution and reduction reaction process. The mechanical insight for the catalytic activity relies on the electronic transitions of atoms on the edges of the sheets ascribing to d-d energy levels between the interfacial electron movement. Our composite exhibits an overpotential of 0.7 V and a Tafel slope of 70 mV/dec for the oxygen reduction reaction. This study proposes an alternate approach for developing MOF decorated carbon-based composites for photocatalytic degradability and energy necessity.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | | | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si 13120, Republic of Korea.
| |
Collapse
|
9
|
Engineered biochar modified with iron as a new adsorbent for treatment of water contaminated by selenium. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Gore PM, Gawali P, Naebe M, Wang X, Kandasubramanian B. Polycarbonate and activated charcoal-engineered electrospun nanofibers for selective recovery of oil/solvent from oily wastewater. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03609-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
11
|
Ilnicka A, Kamedulski P, Aly HM, Lukaszewicz JP. Manufacture of activated carbons using Egyptian wood resources and its application in oligothiophene dye adsorption. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|