1
|
Cuaxinque-Flores G, Talavera-Mendoza O, Aguirre-Noyola JL, Hernández-Flores G, Martínez-Miranda V, Rosas-Guerrero V, Martínez-Romero E. Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135005. [PMID: 38996684 DOI: 10.1016/j.jhazmat.2024.135005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Microbially induced carbonate precipitation (MICP) immobilizes toxic metals and reduces their bioavailability in aqueous systems. However, its application in the treatment of acid mine drainage (AMD) is poorly understood. In this study, the genomes of Sporosarcina sp. UB5 and UB10 were sequenced. Urease, carbonic anhydrases, and metal resistance genes were identified and enzymatic assays were performed for their validation. The geochemical mechanism of precipitation in AMD was elucidated through geo-mineralogical analysis. Sporosarcina sp. UB5 was shown to be a new genomospecies, with an average nucleotide identity < 95 % (ANI) and DNA-DNA hybridization < 70 % (DDH) whereas UB10 is close to S. pasteurii. UB5 contained two urease operons, whereas only one was identified in UB10. The ureolytic activities of UB5 and UB10 were 122.67 ± 15.74 and 131.70 ± 14.35 mM NH4+ min-1, respectively. Both strains feature several carbonic anhydrases of the α, β, or γ families, which catalyzed the precipitation of CaCO3. Only Sporosarcina sp. UB5 was able to immobilize metals and neutralize AMD. Geo-mineralogical analyses revealed that UB5 directly immobilized Fe (1-23 %), Mn (0.65-1.33 %) and Zn (0.8-3 %) in AMD via MICP and indirectly through adsorption to calcite and binding to bacterial cell walls. The MICP-treated AMD exhibited high removal rates (>67 %) for Ag, Al, As, Ca, Cd, Co, Cu, Fe, Mn, Pb, and Zn, and a removal rate of 15 % for Mg. This study provides new insights into the MICP process and its applications to AMD treatment using autochthonous strains.
Collapse
Affiliation(s)
- Gustavo Cuaxinque-Flores
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico
| | - Oscar Talavera-Mendoza
- Doctorado en Recursos Naturales y Ecologia, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda, San Juan Bautista s/n, CP 40323 Taxco el Viejo, Guerrero, Mexico.
| | - José Luis Aguirre-Noyola
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Giovanni Hernández-Flores
- CONAHCyT-Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex Hacienda San Juan Bautista s/n, Taxco de Alarcón 40323, Mexico
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México, Mexico
| | - Víctor Rosas-Guerrero
- Escuela Superior en Desarrollo Sustentable, Universidad Autónoma de Guerrero, Tecpan de Galeana 40900, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
2
|
Sharma S, Sharma M, Kumar R, Akhtar MS, Umar A, Alkhanjaf AAM, Baskoutas S. Recent advances and mechanisms of microbial bioremediation of nickel from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40224-40244. [PMID: 37930578 DOI: 10.1007/s11356-023-30556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
The global concern over emerging pollutants, characterized by their low concentrations and high toxicity, necessitates effective remediation strategies. Among these pollutants, pharmaceutical and personal care products, pesticides, surfactants, and persistent organic pollutants have gained significant attention. These contaminants are extensively distributed within aquatic ecosystems, posing threats to both human and aquatic physiological systems. Nickel, a valuable metal renowned for its corrosion-resistant properties, is widely utilized in various industrial processes, leading to the generation of nickel-containing waste streams, including batteries, catalysts, wastewater, and electrolyte bleed-off. Contamination of soil, water, or air by these waste materials can have adverse effects on the environment and human health. This review article focuses on the recent advancements in environmental and economic implications associated with the removal of nickel from diverse waste sources. Physicochemical technologies employed for treating different nickel-containing effluents and wastewater are discussed, alongside bioremediation techniques and the underlying mechanisms by which microorganisms facilitate nickel removal. The recovery of nickel from waste materials holds paramount importance not only from an economic standpoint but also to mitigate environmental impacts.
Collapse
Affiliation(s)
- Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana (Ambala), Haryana, 133207, India.
| | - Mohammad Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdulrab Ahmed M Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500, Patras, Greece
| |
Collapse
|
3
|
Budamagunta V, Shameem N, Irusappan S, Parray JA, Thomas M, Marimuthu S, Kirubakaran R, Arul Jothi KN, Sayyed RZ, Show PL. Nanovesicle and extracellular polymeric substance synthesis from the remediation of heavy metal ions from soil. ENVIRONMENTAL RESEARCH 2023; 219:114997. [PMID: 36529326 DOI: 10.1016/j.envres.2022.114997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal toxicity affects aquatic plants and animals, disturbing biodiversity and ecological balance causing bioaccumulation of heavy metals. Industrialization and urbanization are inevitable in modern-day life, and control and detoxification methods need to be accorded to meet the hazardous environment. Microorganisms and plants have been widely used in the bioremediation of heavy metals. Sporosarcina pasteurii, a gram-positive bacterium that is widely known for its calcite precipitation property in bio-cementing applications has been explored in the study for its metal tolerance ability for the first time. S. pasteurii SRMNP1 (KF214757) can tolerate silver stress to form nanoparticles and can remediate multiple heavy metals to promote the growth of various plants. This astounding property of the isolate warranted extensive examinations to comprehend the physiological changes during an external heavy metal stress condition. The present study aimed to understand various physiological responses occurring in S. pasteuriiSRMNP1 during the metal tolerance phenomenon using electron microscopy. The isolate was subjected to heavy metal stress, and a transmission electron microscope examination was used to analyze the physiological changes in bacteria to evade the metal stress. S. pasteurii SRMNP1 was tolerant against a wide range of heavy metal ions and can withstand a broad pH range (5-9). Transmission Electron Microscopy (TEM) examination of S. pasteurii SRMNP1 followed by 5 mM nickel sulfate treatment revealed the presence of nanovesicles encapsulating nanosized particles in intra and extracellular spaces. This suggests that the bacteria evade the metal stress by converting the metal ions into nanosized particles and encapsulating them within nanovesicles to efflux them through the vesicle budding mechanism. Moreover, the TEM images revealed an excessive secretion of extracellular polymeric substances by the strain to discharge the metal particles outside the bacterial system. S. pasteurii can be foreseen as an effective bioremediation agent with the potential to produce nanosized particles, nanovesicles, and extracellular polymeric substances. This study provides physiological evidence that, besides calcium precipitation applications, S. pasteurii can further be explored for its multidimensional roles in the fields of drug delivery and environmental engineering.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar 190001, India.
| | - Sivaraj Irusappan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - Javid A Parray
- Department of Environmental Science, HKM Government Degree College Eidgah, Jammu and Kashmir 190017, India.
| | - Merin Thomas
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | | | - Rangasamy Kirubakaran
- Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation, Salem, India.
| | - K N Arul Jothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, 603203, India.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada 425409, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Sharma R, Jasrotia T, Umar A, Sharma M, Sharma S, Kumar R, Alkhanjaf AAM, Vats R, Beniwal V, Kumar R, Singh J. Effective removal of Pb(II) and Ni(II) ions by Bacillus cereus and Bacillus pumilus: An experimental and mechanistic approach. ENVIRONMENTAL RESEARCH 2022; 212:113337. [PMID: 35469857 DOI: 10.1016/j.envres.2022.113337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report a bacteria-based strategy as an efficient, reasonable, benign, and promising methodology for remediating heavy metals fed waterbodies. The contemporary study deals with isolating, screening, and characterizing heavy metal resistive bacteria from metal-rich sites. The transcriptome analysis reveals the identity of the isolated species as Bacillus pumilus and Bacillus cereus. Batch studies put forth the bioremoval results in designed conditions of different pH, concentration, dose, and time. The mechanistic actions are drawn using complementary techniques such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The theory of surface adsorption of lead (Pb(II)) and nickel (Ni(II)) is further fostered by the application of adsorption isotherms. The conducted studies establish the bacterial morphological stratagems and multifarious biochemical approaches for countering metallic ions of Pb(II) and Ni(II). The exhibition of significant removal results by the isolated bacterial strains in simulated water samples with remarkable proliferation rates has opened up its favorability for industrial platforms.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India
| | - Teenu Jasrotia
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| | - Monu Sharma
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India
| | - Sonu Sharma
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India
| | - Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | - Abdulrab Ahmed M Alkhanjaf
- Molecular Diagnostics, Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran, 11001, Saudi Arabia
| | - Rajeev Vats
- Scientist E and Head, Northern Regional Laboratory, Bureau of Indian Standards, Mohali, Punjab, India
| | - Vikas Beniwal
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar Deemed to Be University, Mullana (Ambala), 133207, Haryana, India.
| | - Joginder Singh
- Department of Chemistry¸ Maharishi Markandeshwar (Deemed to Be University), Mullana (Ambala), 133207, Haryana, India
| |
Collapse
|
5
|
Kashyap S, Chandra R, Kumar B, Verma P. Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: an operational study. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:565-580. [PMID: 34184169 DOI: 10.1007/s10646-021-02445-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Realising the hazardous effect of nickel on human health, microbes and plants are effectively used for bioremediation. The endophytic microorganisms have an important role in the phytoremediation of nickel using Vigna radiata. Therefore, in order to harness the potential of microbial strains, the present study was designed to examine the metal biosorption ability of endophytic bacterial strains isolated from plants growing in nickel-contaminated soil. A total of six endophytic nickel resistance bacteria were isolated from the plant Vigna radiata. The metal tolerant bacterial strains were identified following 16 S rRNA gene sequence analysis. Nickel biosorption estimation and plant growth-promoting (PGP) activities of isolated strains were performed and found high nickel biosorption efficiency of 91.3 ± 0.72% at 600 mg L-1 using Bacillus safensis an isolated endophytic strain from Vigna radiata. Furthermore, high indole acetic acid (IAA) and exopolysaccharide (EPS) production were obtained in all the strains as compared to without nickel-containing medium used as control. Moreover, the production of high EPS suggests improved biosorption ability of isolated endophytic strains. In addition, a kinetic study was also performed to evaluate different adsorptions isotherms and support the nickel biosorption ability of endophytic strains. The treatment of nickel electroplating industrial effluent was also demonstrated by isolated endophytic strains. Among six (6) strains, B. cereus showed maximum 57.2 ± 0.62% biosorption efficiency of nickel which resulted in the removal of 1003.50 ± 0.90 mg L-1 of nickel from the electroplating industry effluents containing initial 1791 ± 0.90 mg L-1 of nickel. All other strains were also capable of significant nickel biosorption from electroplating industry effluents as well. Thus, isolated endophytic nickel tolerant strains can be further used at large-scale biosorption of nickel from electroplating industry effluent.
Collapse
Affiliation(s)
- Saket Kashyap
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Rachna Chandra
- Terrestrial Ecology Division, Gujarat Institute of Desert Ecology, Mundra Road, Bhuj, 370001, Gujarat, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
6
|
Experimental Investigation on Bioremediation of Heavy Metal Contaminated Solution by Sporosarcina pasteurii under Some Complex Conditions. WATER 2022. [DOI: 10.3390/w14040595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bioremediation of contaminated solutions has attracted extensive attention in recent years due to its wide range of applicability to various types of contaminants and environmental friendliness. Previous studies adequately confirmed the potential of Sporosarcina pasteurii (i.e., S. pasteurii)-based bioremediation for heavy metal contaminated solutions, but they focused mainly on the bioremediation ability of single-heavy-metal contaminated solutions. This study focuses on S. pasteurii-based bioremediation under more complex pollution conditions. A series of laboratory experiments were performed to explore the efficiency and mechanism of S. pasteurii-based bioremediation to heavy metal contaminated solutions under various conditions, including single-heavy-metal pollution condition, heavy metal pollution under high mineral salinity context and multi-heavy-metal pollution scenarios. The results show that S. pasteurii can effectively remove heavy metals such as Cd, Cr(III), and Zn through biomineralization; for the typical range of mineral salinity (including NaCl and KCl) possibly encountered in practice in some contaminated solutions, such as leachate of landfills, the detrimental influence of high mineral salinity on efficiency of S. pasteurii-based bioremediation can be neglected; more importantly, S. pasteurii-based bioremediation can be considered as a potential option for remedying multi-heavy-metal contaminated solutions, though the addition of some heavy metals tends to produce a substantially detrimental influence on the bioremediation ability of S. pasteurii to other heavy metals.
Collapse
|