1
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
2
|
Tortorella S, Vetri Buratti V, Maturi M, Sambri L, Comes Franchini M, Locatelli E. Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review. Int J Nanomedicine 2020; 15:9909-9937. [PMID: 33335392 PMCID: PMC7737557 DOI: 10.2147/ijn.s266103] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023] Open
Abstract
Presently, a plenty of concerns related to the environment are due to the overuse of petroleum-based chemicals and products; the synthesis of functional materials, starting from the natural sources, is the current trend in research. The interest for nanocellulose has recently increased in a huge range of fields, from the material science to the biomedical engineering. Nanocellulose gained this leading role because of several reasons: its natural abundance on this planet, the excellent mechanical and optical features, the good biocompatibility and the attractive capability of undergoing surface chemical modifications. Nanocellulose surface tuning techniques are adopted by the high reactivity of the hydroxyl groups available; the chemical modifications are mainly performed to introduce either charged or hydrophobic moieties that include amination, esterification, oxidation, silylation, carboxymethylation, epoxidation, sulfonation, thiol- and azido-functional capability. Despite the several already published papers regarding nanocellulose, the aim of this review involves discussing the surface chemical functional capability of nanocellulose and the subsequent applications in the main areas of nanocellulose research, such as drug delivery, biosensing/bioimaging, tissue regeneration and bioprinting, according to these modifications. The final goal of this review is to provide a novel and unusual overview on this topic that is continuously under expansion for its intrinsic sophisticated properties.
Collapse
Affiliation(s)
- Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Veronica Vetri Buratti
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Letizia Sambri
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum – University of Bologna, Bologna40136, Italy
| |
Collapse
|
3
|
From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. CRYSTALS 2020. [DOI: 10.3390/cryst10030199] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lyotropic cholesteric liquid crystal phase developed by suspensions of cellulose nanocrystals (CNCs) has come increasingly into focus from numerous directions over the last few years. In part, this is because CNC suspensions are sustainably produced aqueous suspensions of a fully bio-derived nanomaterial with attractive properties. Equally important is the interesting and useful behavior exhibited by solid CNC films, created by drying a cholesteric-forming suspension. However, the pathway along which these films are realized, starting from a CNC suspension that may have low enough concentration to be fully isotropic, is more complex than often appreciated, leading to reproducibility problems and confusion. Addressing a broad audience of physicists, chemists, materials scientists and engineers, this Review focuses primarily on the physics and physical chemistry of CNC suspensions and the process of drying them. The ambition is to explain rather than to repeat, hence we spend more time than usual on the meanings and relevance of the key colloid and liquid crystal science concepts that must be mastered in order to understand the behavior of CNC suspensions, and we present some interesting analyses, arguments and data for the first time. We go through the development of cholesteric nuclei (tactoids) from the isotropic phase and their potential impact on the final dry films; the spontaneous CNC fractionation that takes place in the phase coexistence window; the kinetic arrest that sets in when the CNC mass fraction reaches ∼10 wt.%, preserving the cholesteric helical order until the film has dried; the ’coffee-ring effect’ active prior to kinetic arrest, often ruining the uniformity in the produced films; and the compression of the helix during the final water evaporation, giving rise to visible structural color in the films.
Collapse
|
4
|
Ben Shalom T, Nevo Y, Leibler D, Shtein Z, Azerraf C, Lapidot S, Shoseyov O. Cellulose Nanocrystals (CNCs) Induced Crystallization of Polyvinyl Alcohol (PVA) Super Performing Nanocomposite Films. Macromol Biosci 2019; 19:e1800347. [PMID: 30672646 DOI: 10.1002/mabi.201800347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/20/2018] [Indexed: 11/07/2022]
Abstract
This study is aimed to explore the properties of cellulose nanocrystals (CNC)/polyvinyl alcohol (PVA) composite films with and without 1,2,3,4-butane tetracarboxylic acid (BTCA), a nontoxic crosslinker. CNC and CNC-PVA nanocomposite films are prepared using solution-casting technique. Differential scanning calorimetry (DSC) analyses show that crosslinking increased the glass transition temperature but reduced the melting temperature and crystallinity. Furthermore, high CNC concentrations in the PVA matrix interfere with PVA crystallinity, whereas in specific ratio between CNC and PVA, two different crystalline structures are observed within the PVA matrix. Film surfaces and fracture topographies characterized using scanning electron microscope indicate that at certain CNC-PVA ratios, micron-sized needle-like crystals have formed. These crystalline structures correlate with the remarkable improvement in mechanical properties of the CNC-PVA nanocomposite films, that is, enhanced tensile strain and toughness to 570% and 202 MJ m-3 , respectively, as compared to pristine PVA. BTCA enhances the tensile strain, ultimate tensile stress, toughness, and modulus of CNC films compared to pristine CNC films. Water absorption of crosslinked CNC and CNC-PVA nanocomposite films is significantly reduced, while film transparency is significantly improved as a function of PVA and crosslinker content. The presented results indicate that CNC-PVA nanocomposite films may find applications in packaging, and though materials applications.
Collapse
Affiliation(s)
- Tal Ben Shalom
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Center for Nano Science and Nano Technology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | | - Zvi Shtein
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Center for Nano Science and Nano Technology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Center for Nano Science and Nano Technology, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|