1
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
2
|
Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D Printing for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402301. [PMID: 38580291 DOI: 10.1002/adma.202402301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Indexed: 04/07/2024]
Abstract
4D (bio-)printing endows 3D printed (bio-)materials with multiple functionalities and dynamic properties. 4D printed materials have been recently used in biomedical engineering for the design and fabrication of biomedical devices, such as stents, occluders, microneedles, smart 3D-cell engineered microenvironments, drug delivery systems, wound closures, and implantable medical devices. However, the success of 4D printing relies on the rational design of 4D printed objects, the selection of smart materials, and the availability of appropriate types of external (multi-)stimuli. Here, this work first highlights the different types of smart materials, external stimuli, and design strategies used in 4D (bio-)printing. Then, it presents a critical review of the biomedical applications of 4D printing and discusses the future directions of biomedical research in this exciting area, including in vivo tissue regeneration studies, the implementation of multiple materials with reversible shape memory behaviors, the creation of fast shape-transformation responses, the ability to operate at the microscale, untethered activation and control, and the application of (machine learning-based) modeling approaches to predict the structure-property and design-shape transformation relationships of 4D (bio)printed constructs.
Collapse
Affiliation(s)
- Ebrahim Yarali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Ava Ghalayaniesfahani
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Chemistry, Materials and Chemical Engineering, Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, 20133, Italy
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| | - Pedro J Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Mekelweg 2, Delft, 2628 CD, The Netherlands
| |
Collapse
|
3
|
Salih T, Caputo M, Ghorbel MT. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Biomolecules 2024; 14:861. [PMID: 39062575 PMCID: PMC11274841 DOI: 10.3390/biom14070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, requiring invasive surgery often before a child's first birthday. Current materials used during CHD surgery lack the ability to grow, remodel, and regenerate. To solve those limitations, 3D bioprinting is an emerging tool with the capability to create tailored constructs based on patients' own imaging data with the ability to grow and remodel once implanted in children with CHD. It has the potential to integrate multiple bioinks with several cell types and biomolecules within 3D-bioprinted constructs that exhibit good structural fidelity, stability, and mechanical integrity. This review gives an overview of CHD and recent advancements in 3D bioprinting technologies with potential use in the treatment of CHD. Moreover, the selection of appropriate biomaterials based on their chemical, physical, and biological properties that are further manipulated to suit their application are also discussed. An introduction to bioink formulations composed of various biomaterials with emphasis on multiple cell types and biomolecules is briefly overviewed. Vasculogenesis and angiogenesis of prefabricated 3D-bioprinted structures and novel 4D printing technology are also summarized. Finally, we discuss several restrictions and our perspective on future directions in 3D bioprinting technologies in the treatment of CHD.
Collapse
Affiliation(s)
- Tasneem Salih
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Mohamed T. Ghorbel
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| |
Collapse
|
4
|
Park DY, Kim SH, Park SH, Jang JS, Yoo JJ, Lee SJ. 3D Bioprinting Strategies for Articular Cartilage Tissue Engineering. Ann Biomed Eng 2024; 52:1883-1893. [PMID: 37204546 DOI: 10.1007/s10439-023-03236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Articular cartilage is the avascular and aneural tissue which is the primary connective tissue covering the surface of articulating bone. Traumatic damage or degenerative diseases can cause articular cartilage injuries that are common in the population. As a result, the demand for new therapeutic options is continually increasing for older people and traumatic young patients. Many attempts have been made to address these clinical needs to treat articular cartilage injuries, including osteoarthritis (OA); however, regenerating highly qualified cartilage tissue remains a significant obstacle. 3D bioprinting technology combined with tissue engineering principles has been developed to create biological tissue constructs that recapitulate the anatomical, structural, and functional properties of native tissues. In addition, this cutting-edge technology can precisely place multiple cell types in a 3D tissue architecture. Thus, 3D bioprinting has rapidly become the most innovative tool for manufacturing clinically applicable bioengineered tissue constructs. This has led to increased interest in 3D bioprinting in articular cartilage tissue engineering applications. Here, we reviewed current advances in bioprinting for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Do Young Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Orthopedic Surgery, Ajou University Hospital, Suwon, Republic of Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sang-Hyug Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Ji Su Jang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
5
|
Zheng Z, Tang W, Li Y, Ai Y, Tu Z, Yang J, Fan C. Advancing cardiac regeneration through 3D bioprinting: methods, applications, and future directions. Heart Fail Rev 2024; 29:599-613. [PMID: 37943420 DOI: 10.1007/s10741-023-10367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Cardiovascular diseases (CVDs) represent a paramount global mortality concern, and their prevalence is on a relentless ascent. Despite the effectiveness of contemporary medical interventions in mitigating CVD-related fatality rates and complications, their efficacy remains curtailed by an array of limitations. These include the suboptimal efficiency of direct cell injection and an inherent disequilibrium between the demand and availability of heart transplantations. Consequently, the imperative to formulate innovative strategies for cardiac regeneration therapy becomes unmistakable. Within this context, 3D bioprinting technology emerges as a vanguard contender, occupying a pivotal niche in the realm of tissue engineering and regenerative medicine. This state-of-the-art methodology holds the potential to fabricate intricate heart tissues endowed with multifaceted structures and functionalities, thereby engendering substantial promise. By harnessing the prowess of 3D bioprinting, it becomes plausible to synthesize functional cardiac architectures seamlessly enmeshed with the host tissue, affording a viable avenue for the restitution of infarcted domains and, by extension, mitigating the onerous yoke of CVDs. In this review, we encapsulate the myriad applications of 3D bioprinting technology in the domain of heart tissue regeneration. Furthermore, we usher in the latest advancements in printing methodologies and bioinks, culminating in an exploration of the extant challenges and the vista of possibilities inherent to a diverse array of approaches.
Collapse
Affiliation(s)
- Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Weijie Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yichen Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Yinze Ai
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Zhi Tu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
6
|
Vernon MJ, Mela P, Dilley RJ, Jansen S, Doyle BJ, Ihdayhid AR, De-Juan-Pardo EM. 3D printing of heart valves. Trends Biotechnol 2024; 42:612-630. [PMID: 38238246 DOI: 10.1016/j.tibtech.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 05/04/2024]
Abstract
3D printing technologies have the potential to revolutionize the manufacture of heart valves through the ability to create bespoke, complex constructs. In light of recent technological advances, we review the progress made towards 3D printing of heart valves, focusing on studies that have utilised these technologies beyond manufacturing patient-specific moulds. We first overview the key requirements of a heart valve to assess functionality. We then present the 3D printing technologies used to engineer heart valves. By referencing International Organisation for Standardisation (ISO) Standard 5840 (Cardiovascular implants - Cardiac valve prostheses), we provide insight into the achieved functionality of these valves. Overall, 3D printing promises to have a significant positive impact on the creation of artificial heart valves and potentially unlock full complex functionality.
Collapse
Affiliation(s)
- Michael J Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Petra Mela
- Medical Materials and Implants, Department of Mechanical Engineering, Munich Institute of Biomedical Engineering and TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Rodney J Dilley
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia; Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia; Heart and Vascular Research Institute, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Abdul R Ihdayhid
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia; Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Elena M De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and University of Western Australia Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; School of Engineering, The University of Western Australia, Perth, WA 6009, Australia; Curtin Medical School, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
7
|
Singh K, Wychowaniec JK, Edwards-Gayle CJC, Reynaud EG, Rodriguez BJ, Brougham DF. Structure-dynamics correlations in composite PF127-PEG-based hydrogels; cohesive/hydrophobic interactions determine phase and rheology and identify the role of micelle concentration in controlling 3D extrusion printability. J Colloid Interface Sci 2024; 660:302-313. [PMID: 38244497 DOI: 10.1016/j.jcis.2023.12.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
A library of composite polymer networks (CPNs) were formed by combining Pluronic F127, as the primary gelator, with a range of di-acrylate functionalised PEG polymers, which tune the rheological properties and provide UV crosslinkability. A coarse-grained sol-gel room temperature phase diagram was constructed for the CPN library, which identifies PEG-dependent disruption of micelles as leading to liquefication. Small angle X-ray scattering and rheological measurements provide detailed insight into; (i) micelle-micelle ordering; (ii) micelle-micelle disruption, and; (iii) acrylate-micelle disruption; with contributions that depend on composition, including weak PEG chain length and end group effects. The influence of composition on 3D extrusion printability through modulation of the cohesive/hydrophobic interactions was assessed. It was found that only micelle content provides consistent changes in printing fidelity, controlled largely by printing conditions (pressure and feed rate). Finally, the hydrogels were shown to be UV photo-crosslinkable, which further improves fidelity and structural integrity, and usefully reduces the mesh size. Our results provide a guide for design of 3D-printable CPN inks for future biomedical applications.
Collapse
Affiliation(s)
- Krutika Singh
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| | | | - Emmanuel G Reynaud
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian J Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Ciobotaru V, Batistella M, De Oliveira Emmer E, Clari L, Masson A, Decante B, Le Bret E, Lopez-Cuesta JM, Hascoet S. Aortic Valve Engineering Advancements: Precision Tuning with Laser Sintering Additive Manufacturing of TPU/TPE Submillimeter Membranes. Polymers (Basel) 2024; 16:900. [PMID: 38611158 PMCID: PMC11013727 DOI: 10.3390/polym16070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Synthetic biomaterials play a crucial role in developing tissue-engineered heart valves (TEHVs) due to their versatile mechanical properties. Achieving the right balance between mechanical strength and manufacturability is essential. Thermoplastic polyurethanes (TPUs) and elastomers (TPEs) garner significant attention for TEHV applications due to their notable stability, fatigue resistance, and customizable properties such as shear strength and elasticity. This study explores the additive manufacturing technique of selective laser sintering (SLS) for TPUs and TPEs to optimize process parameters to balance flexibility and strength, mimicking aortic valve tissue properties. Additionally, it aims to assess the feasibility of printing aortic valve models with submillimeter membranes. The results demonstrate that the SLS-TPU/TPE technique can produce micrometric valve structures with soft shape memory properties, resembling aortic tissue in strength, flexibility, and fineness. These models show promise for surgical training and manipulation, display intriguing echogenicity properties, and can potentially be personalized to shape biocompatible valve substitutes.
Collapse
Affiliation(s)
- Vlad Ciobotaru
- Centre Hospitalier Universitaire de Nîmes, Service de Radiologie, Imagerie Cardiovasculaire, 4 Rue du Professeur Robert Debré, 30900 Nîmes, France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
- 3DHeartModeling, 30132 Caissargues, France
| | - Marcos Batistella
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Emily De Oliveira Emmer
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Louis Clari
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Arthur Masson
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Benoit Decante
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| | - Emmanuel Le Bret
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| | - José-Marie Lopez-Cuesta
- Polymers Composites and Hybrids Department, IMT Mines Alès, 30319 Ales, France; (M.B.); (E.D.O.E.); (L.C.); (A.M.); (J.-M.L.-C.)
| | - Sebastien Hascoet
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Faculté de Médecine Paris-Saclay, Université Paris-Saclay, Inserm UMR-S 999, BME Lab, 133 Avenue de la Résistance, 92350 Le Plessis Robinson, France; (B.D.); (E.L.B.); (S.H.)
| |
Collapse
|
9
|
Rana MM, De la Hoz Siegler H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024; 10:216. [PMID: 38667635 PMCID: PMC11049329 DOI: 10.3390/gels10040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels, being hydrophilic polymer networks capable of absorbing and retaining aqueous fluids, hold significant promise in biomedical applications owing to their high water content, permeability, and structural similarity to the extracellular matrix. Recent chemical advancements have bolstered their versatility, facilitating the integration of the molecules guiding cellular activities and enabling their controlled activation under time constraints. However, conventional synthetic hydrogels suffer from inherent weaknesses such as heterogeneity and network imperfections, which adversely affect their mechanical properties, diffusion rates, and biological activity. In response to these challenges, hybrid hydrogels have emerged, aiming to enhance their strength, drug release efficiency, and therapeutic effectiveness. These hybrid hydrogels, featuring improved formulations, are tailored for controlled drug release and tissue regeneration across both soft and hard tissues. The scientific community has increasingly recognized the versatile characteristics of hybrid hydrogels, particularly in the biomedical sector. This comprehensive review delves into recent advancements in hybrid hydrogel systems, covering the diverse types, modification strategies, and the integration of nano/microstructures. The discussion includes innovative fabrication techniques such as click reactions, 3D printing, and photopatterning alongside the elucidation of the release mechanisms of bioactive molecules. By addressing challenges, the review underscores diverse biomedical applications and envisages a promising future for hybrid hydrogels across various domains in the biomedical field.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada;
- Centre for Blood Research, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
10
|
Sun X, Huang D, Li G, Sun J, Zhang Y, Hu B, Xie M, Zhao M, Zhang X, Yu J, Li G. Artificial heart valve reinforced with silk woven fabric and poly (ethylene glycol) diacrylate hydrogels composite. Int J Biol Macromol 2024; 260:129485. [PMID: 38237838 DOI: 10.1016/j.ijbiomac.2024.129485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The present study describes the preparation of woven silk fabric (WSF) and poly(ethylene glycol) diacrylate (PEGDA) hydrogel composite reinforced artificial heart valve (SPAHV). Interestingly, the longitudinal and latitudinal elastic modulus of the SPAHV composite can achieve at 54.08 ± 3.29 MPa and 23.96 ± 2.18 MPa, respectively, while its volume/mass swelling ratio and water permeability was 1.9 %/2.8 % and 3 mL/(cm2∙min), respectively, revealing remarkable anisotropic mechanical properties, low water swelling property and water permeability. The in vitro & in vivo biocompatibility and anti-calcification ability of SPAHV were further examined using L929 mouse fibroblasts and Sprague Dawley (SD) male rat model under 8 weeks of subcutaneous implantation. The expression of pro-inflammatory cytokine TNF-α and anti-inflammatory cytokine IL-10 was determined by immunohistochemical staining, as well as the H&E staining and alizarin red staining were accessed. The results showed that the composites possess better biocompatibility, resistance to degradation and anti-calcification ability compared to the control group (p < 0.05). Thus, the SPAHV composite with robust mechanical properties and biocompatibility has potential application for artificial heart valves.
Collapse
Affiliation(s)
- Xuan Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Di Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guanqiang Li
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Jing Sun
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yaoyu Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Bo Hu
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Xicheng Zhang
- Dapartment of Vascular Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou 215000, China.
| | - Jia Yu
- School of Physical Education, Department of Orthopedics, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Suzhou 215021, China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Zhang C, Hua W, Mitchell K, Raymond L, Delzendehrooy F, Wen L, Do C, Chen J, Yang Y, Linke G, Zhang Z, Krishnan MA, Kuss M, Coulter R, Bandala E, Liao Y, Duan B, Zhao D, Chai G, Jin Y. Multiscale embedded printing of engineered human tissue and organ equivalents. Proc Natl Acad Sci U S A 2024; 121:e2313464121. [PMID: 38346211 PMCID: PMC10907305 DOI: 10.1073/pnas.2313464121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Creating tissue and organ equivalents with intricate architectures and multiscale functional feature sizes is the first step toward the reconstruction of transplantable human tissues and organs. Existing embedded ink writing approaches are limited by achievable feature sizes ranging from hundreds of microns to tens of millimeters, which hinders their ability to accurately duplicate structures found in various human tissues and organs. In this study, a multiscale embedded printing (MSEP) strategy is developed, in which a stimuli-responsive yield-stress fluid is applied to facilitate the printing process. A dynamic layer height control method is developed to print the cornea with a smooth surface on the order of microns, which can effectively overcome the layered morphology in conventional extrusion-based three-dimensional bioprinting methods. Since the support bath is sensitive to temperature change, it can be easily removed after printing by tuning the ambient temperature, which facilitates the fabrication of human eyeballs with optic nerves and aortic heart valves with overhanging leaflets on the order of a few millimeters. The thermosensitivity of the support bath also enables the reconstruction of the full-scale human heart on the order of tens of centimeters by on-demand adding support bath materials during printing. The proposed MSEP demonstrates broader printable functional feature sizes ranging from microns to centimeters, providing a viable and reliable technical solution for tissue and organ printing in the future.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Lily Raymond
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Fatemeh Delzendehrooy
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, NV89557
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN37831-6475
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN37830
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, NV89557
| | - Gabe Linke
- Three-Dimensional Advanced Visualization Laboratory, Department of Pediatric Radiology, Children’s Hospital & Medical Center, Omaha, NE68114
| | - Zhengyi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Mena Asha Krishnan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Ryan Coulter
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Erick Bandala
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| | - Yiliang Liao
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA50011
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Danyang Zhao
- State Key Laboratory of High-Performance Precision Manufacturing, School of Mechanical Engineering, Dalian University of Technology, Dalian116024, China
| | - Guangrui Chai
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang110004, China
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, NV89557
| |
Collapse
|
12
|
Cheng YJ, Wu TH, Tseng YS, Chen WF. Development of hybrid 3D printing approach for fabrication of high-strength hydroxyapatite bioscaffold using FDM and DLP techniques. Biofabrication 2024; 16:025003. [PMID: 38226849 DOI: 10.1088/1758-5090/ad1b20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
This study develops a hybrid 3D printing approach that combines fused deposition modeling (FDM) and digital light processing (DLP) techniques for fabricating bioscaffolds, enabling rapid mass production. The FDM technique fabricates outer molds, while DLP prints struts for creating penetrating channels. By combining these components, hydroxyapatite (HA) bioscaffolds with different channel sizes (600, 800, and 1000μm) and designed porosities (10%, 12.5%, and 15%) are fabricated using the slurry casting method with centrifugal vacuum defoaming for significant densification. This innovative method produces high-strength bioscaffolds with an overall porosity of 32%-37%, featuring tightly bound HA grains and a layered surface structure, resulting in remarkable cell viability and adhesion, along with minimal degradation rates and superior calcium phosphate deposition. The HA scaffolds show hardness ranging from 1.43 to 1.87 GPa, with increasing compressive strength as the designed porosity and channel size decrease. Compared to human cancellous bone at a similar porosity range of 30%-40%, exhibiting compressive strengths of 13-70 MPa and moduli of 0.8-8 GPa, the HA scaffolds demonstrate robust strengths ranging from 40 to 73 MPa, paired with lower moduli of 0.7-1.23 GPa. These attributes make them well-suited for cancellous bone repair, effectively mitigating issues like stress shielding and bone atrophy.
Collapse
Affiliation(s)
- Yu-Jui Cheng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tsung-Han Wu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Orthopaedics, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Yu-Sheng Tseng
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Wen-Fan Chen
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
13
|
He W, Deng J, Ma B, Tao K, Zhang Z, Ramakrishna S, Yuan W, Ye T. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS APPLIED BIO MATERIALS 2024; 7:17-43. [PMID: 38091514 DOI: 10.1021/acsabm.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
Collapse
Affiliation(s)
- Wen He
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhi Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Li MC, Chang PY, Luo HR, Chang LY, Lin CY, Yang CY, Lee OKS, Wu Lee YH, Tarng DC. Functioning tailor-made 3D-printed vascular graft for hemodialysis. J Vasc Access 2024; 25:244-253. [PMID: 35773975 DOI: 10.1177/11297298221086173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The two ends of arteriovenous graft (AVG) are anastomosed to the upper limb vessels by surgery for hemodialysis therapy. However, the size of upper limb vessels varies to a large extent among different individuals. METHODS According to the shape and size of neck vessels quantified from the preoperative computed tomography angiographic scan, the ethylene-vinyl acetate (EVA)-based AVG was produced in H-shape by the three-dimensional (3D) printer and then sterilized. This study investigated the function of this novel 3D-printed AVG in vitro and in vivo. RESULTS This 3D-printed AVG can be implanted in the rabbit's common carotid artery and common jugular vein with ease and functions in vivo. The surgical procedure was quick, and no suture was required. The blood loss was minimal, and no hematoma was noted at least 1 week after the surgery. The blood flow velocity within the implanted AVG was 14.9 ± 3.7 cm/s. Additionally, the in vitro characterization experiments demonstrated that this EVA-based biomaterial is biocompatible and possesses a superior recovery property than ePTFE after hemodialysis needle cannulation. CONCLUSIONS Through the 3D printing technology, the EVA-based AVG can be tailor-made to fit the specific vessel size. This kind of 3D-printed AVG is functioning in vivo, and our results realize personalized vascular implants. Further large-animal studies are warranted to examine the long-term patency.
Collapse
Affiliation(s)
- Ming-Chia Li
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
| | - Huai-Rou Luo
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Ling-Yuan Chang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Chuan-Yi Lin
- Taiwan Instrument Research Center, National Applied Research Laboratories, Hsinchu
| | - Chih-Yu Yang
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Der-Cherng Tarng
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
| |
Collapse
|
15
|
Sabzevari A, Rayat Pisheh H, Ansari M, Salati A. Progress in bioprinting technology for tissue regeneration. J Artif Organs 2023; 26:255-274. [PMID: 37119315 DOI: 10.1007/s10047-023-01394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/09/2023] [Indexed: 05/01/2023]
Abstract
In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.
Collapse
Affiliation(s)
- Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Amir Salati
- Tissue Engineering and Applied Cell Sciences Group, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
16
|
Ortiz-Ortiz DN, Mokarizadeh AH, Segal M, Dang F, Zafari M, Tsige M, Joy A. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters. Biomacromolecules 2023; 24:5091-5104. [PMID: 37882707 DOI: 10.1021/acs.biomac.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Three-dimensional (3D) printing is becoming increasingly prevalent in tissue engineering, driving the demand for low-modulus, high-performance, biodegradable, and biocompatible polymers. Extrusion-based direct-write (EDW) 3D printing enables printing and customization of low-modulus materials, ranging from cell-free printing to cell-laden bioinks that closely resemble natural tissue. While EDW holds promise, the requirement for soft materials with excellent printability and shape fidelity postprinting remains unmet. The development of new synthetic materials for 3D printing applications has been relatively slow, and only a small polymer library is available for tissue engineering applications. Furthermore, most of these polymers require high temperature (FDM) or additives and solvents (DLP/SLA) to enable printability. In this study, we present low-modulus 3D printable polyester inks that enable low-temperature printing without the need for solvents or additives. To maintain shape fidelity, we incorporate physical and chemical cross-linkers. These 3D printable polyester inks contain pendant amide groups as the physical cross-linker and coumarin pendant groups as the photochemical cross-linker. Molecular dynamics simulations further confirm the presence of physical interactions between different pendants, including hydrogen bonding and hydrophobic interactions. The combination of the two types of cross-linkers enhances the zero-shear viscosity and hence provides good printability and shape fidelity.
Collapse
Affiliation(s)
- Deliris N Ortiz-Ortiz
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abdol Hadi Mokarizadeh
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Maddison Segal
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Francis Dang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mahdi Zafari
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
17
|
Snyder Y, Jana S. Strategies for Development of Synthetic Heart Valve Tissue Engineering Scaffolds. PROGRESS IN MATERIALS SCIENCE 2023; 139:101173. [PMID: 37981978 PMCID: PMC10655624 DOI: 10.1016/j.pmatsci.2023.101173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The current clinical solutions, including mechanical and bioprosthetic valves for valvular heart diseases, are plagued by coagulation, calcification, nondurability, and the inability to grow with patients. The tissue engineering approach attempts to resolve these shortcomings by producing heart valve scaffolds that may deliver patients a life-long solution. Heart valve scaffolds serve as a three-dimensional support structure made of biocompatible materials that provide adequate porosity for cell infiltration, and nutrient and waste transport, sponsor cell adhesion, proliferation, and differentiation, and allow for extracellular matrix production that together contributes to the generation of functional neotissue. The foundation of successful heart valve tissue engineering is replicating native heart valve architecture, mechanics, and cellular attributes through appropriate biomaterials and scaffold designs. This article reviews biomaterials, the fabrication of heart valve scaffolds, and their in-vitro and in-vivo evaluations applied for heart valve tissue engineering.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Perea-Lowery L, Gibreel M, Garoushi S, Vallittu P, Lassila L. Evaluation of flexible three-dimensionally printed occlusal splint materials: An in vitro study. Dent Mater 2023; 39:957-963. [PMID: 37666693 DOI: 10.1016/j.dental.2023.08.178] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVE To evaluate and compare the mechanical properties, water sorption, water solubility, and degree of double bond conversion of three different commercially available three-dimensional (3D) printing resins used for the fabrication of flexible occlusal splints. METHODS A digital printer was used to generate specimens from the evaluated splint materials (KeySplint Soft, IMPRIMO LC Splint flex, and V-Print splint comfort). The specimens were equally divided and tested either dry or after water storage at 37 °C for 30 days. A three-point bending test was used to assess flexural strength, elastic modulus, and fracture toughness. A two-body wear test was performed using a dual-axis chewing simulator. Water sorption and water solubility were measured after 30 days. The degree of double bond conversion was determined by FTIR-spectrometry. All data for the evaluated properties were collected and statistically analyzed. RESULTS Both material and storage conditions had a significant effect on the flexural strength (P < 0.001), elastic modulus (P < 0.001), fracture toughness (P < 0.001), and wear (P < 0.001). The highest water sorption was noticed with IMPRIMO LC Splint flex (1.9 ± 0.0 %), while V-Print splint comfort displayed the lowest water solubility (0.2 ± 0.0 %). For the degree of conversion, it was statistically non-significant among the different materials (P = 0.087). SIGNIFICANCE Different flexible 3D-printed splints available in the market displayed variations in the evaluated properties and clinicians should consider these differences when choosing occlusal device materials. Among the tested flexible splint materials, KeySplint Soft had the greatest flexural strength, elastic modulus, fracture toughness, wear resistance, and degree of conversion. It also showed the lowest water sorption.
Collapse
Affiliation(s)
- Leila Perea-Lowery
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku 20520, Finland.
| | - Mona Gibreel
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku 20520, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku 20520, Finland; City of Turku Welfare Division, Oral Health Care, Puolalankatu 5, 20101 Welfare Division, Turku FI-20101, Finland
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku 20520, Finland
| |
Collapse
|
19
|
Rajabi M, Cabral JD, Saunderson S, Gould M, Ali MA. Development and optimisation of hydroxyapatite-polyethylene glycol diacrylate hydrogel inks for 3D printing of bone tissue engineered scaffolds. Biomed Mater 2023; 18:065009. [PMID: 37699400 DOI: 10.1088/1748-605x/acf90a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
In the event of excessive damage to bone tissue, the self-healing process alone is not sufficient to restore bone integrity. Three-dimensional (3D) printing, as an advanced additive manufacturing technology, can create implantable bone scaffolds with accurate geometry and internal architecture, facilitating bone regeneration. This study aims to develop and optimise hydroxyapatite-polyethylene glycol diacrylate (HA-PEGDA) hydrogel inks for extrusion 3D printing of bone tissue scaffolds. Different concentrations of HA were mixed with PEGDA, and further incorporated with pluronic F127 (PF127) as a sacrificial carrier. PF127 provided good distribution of HA nanoparticle within the scaffolds and improved the rheological requirements of HA-PEGDA inks for extrusion 3D printing without significant reduction in the HA content after its removal. Higher printing pressures and printing rates were needed to generate the same strand diameter when using a higher HA content compared to a lower HA content. Scaffolds with excellent shape fidelity up to 75-layers and high resolution (∼200 µm) with uniform strands were fabricated. Increasing the HA content enhanced the compression strength and decreased the swelling degree and degradation rate of 3D printed HA-PEGDA scaffolds. In addition, the incorporation of HA improved the adhesion and proliferation of human bone mesenchymal stem cells (hBMSCs) onto the scaffolds. 3D printed scaffolds with 2 wt% HA promoted osteogenic differentiation of hBMSCs as confirmed by the expression of alkaline phosphatase activity and calcium deposition. Altogether, the developed HA-PEGDA hydrogel ink has promising potential as a scaffold material for bone tissue regeneration, with excellent shape fidelity and the ability to promote osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Mina Rajabi
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Jaydee D Cabral
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Sarah Saunderson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
20
|
Vyas J, Shah I, Singh S, Prajapati BG. Biomaterials-based additive manufacturing for customized bioengineering in management of otolaryngology: a comprehensive review. Front Bioeng Biotechnol 2023; 11:1234340. [PMID: 37744247 PMCID: PMC10515088 DOI: 10.3389/fbioe.2023.1234340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Three-dimensional (3D)/four-dimensional (4D) printing, also known as additive manufacturing or fast prototyping, is a manufacturing technique that uses a digital model to generate a 3D/4D solid product. The usage of biomaterials with 3D/4D printers in the pharma and healthcare industries is gaining significant popularity. 3D printing has mostly been employed in the domain of otolaryngology to build portable anatomical models, personalized patient-centric implants, biologic tissue scaffolds, surgical planning in individuals with challenging conditions, and surgical training. Although identical to 3D printing technology in this application, 4D printing technology comprises a fourth dimension of time. With the use of 4D printing, a printed structure may alter over time under various stimuli. Smart polymeric materials are also generally denoted as bioinks are frequently employed in tissue engineering applications of 3D/4D printing. In general, 4D printing could significantly improve the safety and efficacy of otolaryngology therapies. The use of bioprinting in otolaryngology has an opportunity to transform the treatment of diseases influencing the ear, nose, and throat as well as the field of tissue regeneration. The present review briefs on polymeric material including biomaterials and cells used in the manufacturing of patient centric 3D/4D bio-printed products utilized in management of otolaryngology.
Collapse
Affiliation(s)
- Jigar Vyas
- Sigma Institute of Pharmacy, Vadodara, Gujarat, India
| | - Isha Shah
- Sigma Institute of Pharmacy, Vadodara, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, India
| |
Collapse
|
21
|
Hafeez S, Decarli MC, Aldana A, Ebrahimi M, Ruiter FAA, Duimel H, van Blitterswijk C, Pitet LM, Moroni L, Baker MB. In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301242. [PMID: 37370137 DOI: 10.1002/adma.202301242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023]
Abstract
Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.
Collapse
Affiliation(s)
- Shahzad Hafeez
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Monize Caiado Decarli
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Agustina Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Mahsa Ebrahimi
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Floor A A Ruiter
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology- Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hans Duimel
- Maastricht MultiModal Molecular Imaging Institute, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Louis M Pitet
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
22
|
Zhang C, Hao J, Shi W, Su Y, Mitchell K, Hua W, Jin W, Lee S, Wen L, Jin Y, Zhao D. Sacrificial scaffold-assisted direct ink writing of engineered aortic valve prostheses. Biofabrication 2023; 15:10.1088/1758-5090/aceffb. [PMID: 37579750 PMCID: PMC10566457 DOI: 10.1088/1758-5090/aceffb] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Heart valve disease has become a serious global health problem, which calls for numerous implantable prosthetic valves to fulfill the broader needs of patients. Although current three-dimensional (3D) bioprinting approaches can be used to manufacture customized valve prostheses, they still have some complications, such as limited biocompatibility, constrained structural complexity, and difficulty to make heterogeneous constructs, to name a few. To overcome these challenges, a sacrificial scaffold-assisted direct ink writing approach has been explored and proposed in this work, in which a sacrificial scaffold is printed to temporarily support sinus wall and overhanging leaflets of an aortic valve prosthesis that can be removed easily and mildly without causing any potential damages to the valve prosthesis. The bioinks, composed of alginate, gelatin, and nanoclay, used to print heterogenous valve prostheses have been designed in terms of rheological/mechanical properties and filament formability. The sacrificial ink made from Pluronic F127 has been developed by evaluating rheological behavior and gel temperature. After investigating the effects of operating conditions, complex 3D structures and homogenous/heterogenous aortic valve prostheses have been successfully printed. Lastly, numerical simulation and cycling experiments have been performed to validate the function of the printed valve prostheses as one-way valves.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Jiangtao Hao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Weiliang Shi
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Ya Su
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Kellen Mitchell
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Weijian Hua
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Wenbo Jin
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Serena Lee
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Lai Wen
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, School of Medicine, University of Nevada, Reno, Reno, NV, United States of America
| | - Yifei Jin
- Department of Mechanical Engineering, University of Nevada, Reno, Reno, NV, United States of America
| | - Danyang Zhao
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
23
|
Sun Z, Zhao J, Leung E, Flandes-Iparraguirre M, Vernon M, Silberstein J, De-Juan-Pardo EM, Jansen S. Three-Dimensional Bioprinting in Cardiovascular Disease: Current Status and Future Directions. Biomolecules 2023; 13:1180. [PMID: 37627245 PMCID: PMC10452258 DOI: 10.3390/biom13081180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) printing plays an important role in cardiovascular disease through the use of personalised models that replicate the normal anatomy and its pathology with high accuracy and reliability. While 3D printed heart and vascular models have been shown to improve medical education, preoperative planning and simulation of cardiac procedures, as well as to enhance communication with patients, 3D bioprinting represents a potential advancement of 3D printing technology by allowing the printing of cellular or biological components, functional tissues and organs that can be used in a variety of applications in cardiovascular disease. Recent advances in bioprinting technology have shown the ability to support vascularisation of large-scale constructs with enhanced biocompatibility and structural stability, thus creating opportunities to replace damaged tissues or organs. In this review, we provide an overview of the use of 3D bioprinting in cardiovascular disease with a focus on technologies and applications in cardiac tissues, vascular constructs and grafts, heart valves and myocardium. Limitations and future research directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jack Zhao
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Emily Leung
- School of Medicine, Faculty of Health Sciences, The University of Western Australia, Perth, WA 6009, Australia; (J.Z.); (E.L.)
| | - Maria Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, 31008 Pamplona, Spain;
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Michael Vernon
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jenna Silberstein
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Elena M. De-Juan-Pardo
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and UWA Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; (M.V.); (E.M.D.-J.-P.)
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
| | - Shirley Jansen
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia;
- Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
- Heart and Vascular Research Institute, Harry Perkins Medical Research Institute, Perth, WA 6009, Australia
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
24
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
25
|
Peng X, Kong L, An H, Dong G. A Review of In Situ Defect Detection and Monitoring Technologies in Selective Laser Melting. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:438-466. [PMID: 37346185 PMCID: PMC10280205 DOI: 10.1089/3dp.2021.0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The additive manufacturing (AM) technique has received considerable industrial attention, as it is capable of producing complex functional parts in the aerospace and defense industry. Selective laser melting (SLM) technology is a relatively mature AM process that can manufacture complex structures both directly and efficiently. However, the quality of SLM parts is affected by many factors, resulting in a lack of repeatability and stability of this method. Therefore, several common and advanced in situ monitoring as well as defect detection methods are utilized to improve the quality and stability of SLM processes. This article aims at documenting the various defects that occurred in SLM processes and their influences on the final parts. Various types of in situ monitoring and defect detection methods and their applications are reviewed, and their integrations with the SLM processes are also discussed.
Collapse
Affiliation(s)
- Xing Peng
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lingbao Kong
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Huijun An
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Guangxi Dong
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Cai H, Xu X, Lu X, Zhao M, Jia Q, Jiang HB, Kwon JS. Dental Materials Applied to 3D and 4D Printing Technologies: A Review. Polymers (Basel) 2023; 15:2405. [PMID: 37242980 PMCID: PMC10224282 DOI: 10.3390/polym15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
As computer-aided design and computer-aided manufacturing (CAD/CAM) technologies have matured, three-dimensional (3D) printing materials suitable for dentistry have attracted considerable research interest, owing to their high efficiency and low cost for clinical treatment. Three-dimensional printing technology, also known as additive manufacturing, has developed rapidly over the last forty years, with gradual application in various fields from industry to dental sciences. Four-dimensional (4D) printing, defined as the fabrication of complex spontaneous structures that change over time in response to external stimuli in expected ways, includes the increasingly popular bioprinting. Existing 3D printing materials have varied characteristics and scopes of application; therefore, categorization is required. This review aims to classify, summarize, and discuss dental materials for 3D printing and 4D printing from a clinical perspective. Based on these, this review describes four major materials, i.e., polymers, metals, ceramics, and biomaterials. The manufacturing process of 3D printing and 4D printing materials, their characteristics, applicable printing technologies, and clinical application scope are described in detail. Furthermore, the development of composite materials for 3D printing is the main focus of future research, as combining multiple materials can improve the materials' properties. Updates in material sciences play important roles in dentistry; hence, the emergence of newer materials are expected to promote further innovations in dentistry.
Collapse
Affiliation(s)
- HongXin Cai
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| | - Xiaotong Xu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Xinyue Lu
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Menghua Zhao
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Qi Jia
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Heng-Bo Jiang
- The CONVERSATIONALIST Club, School of Stomatology, Shandong First Medical University, Jinan 250117, China; (X.X.); (X.L.); (M.Z.); (Q.J.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea;
| |
Collapse
|
27
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
28
|
Newman PLH, Yip Q, Osteil P, Anderson TA, Sun JQJ, Kempe D, Biro M, Shin J, Tam PPL, Zreiqat H. Programming of Multicellular Patterning with Mechano-Chemically Microstructured Cell Niches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204741. [PMID: 36998105 PMCID: PMC10214222 DOI: 10.1002/advs.202204741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/13/2023] [Indexed: 05/27/2023]
Abstract
Multicellular patterning of stem-cell-derived tissue models is commonly achieved via self-organizing activities triggered by exogenous morphogenetic stimuli. However, such tissue models are prone to stochastic behavior, limiting the reproducibility of cellular composition and forming non-physiological architectures. To enhance multicellular patterning in stem cell-derived tissues, a method for creating complex tissue microenvironments endowed with programmable multimodal mechano-chemical cues, including conjugated peptides, proteins, morphogens, and Young's moduli defined over a range of stiffnesses is developed. The ability of these cues to spatially guide tissue patterning processes, including mechanosensing and the biochemically driven differentiation of selected cell types, is demonstrated. By rationally designing niches, the authors engineered a bone-fat assembly from stromal mesenchyme cells and regionalized germ layer tissues from pluripotent stem cells. Through defined niche-material interactions, mechano-chemically microstructured niches enable the spatial programming of tissue patterning processes. Mechano-chemically microstructured cell niches thereby offer an entry point for enhancing the organization and composition of engineered tissues, potentiating structures that better recapitulate their native counterparts.
Collapse
Affiliation(s)
- Peter L. H. Newman
- ARC Training Centre for Innovative BioengineeringThe University of SydneySydney2006Australia
| | - Queenie Yip
- ARC Training Centre for Innovative BioengineeringThe University of SydneySydney2006Australia
| | - Pierre Osteil
- Embryology Research UnitChildren's Medical Research InstituteSydney2145Australia
- School of Medical ScienceFaculty of Medicine and HealthThe University of SydneySydney2006Australia
- Swiss Cancer Research Institute (ISREC)School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanne1005Switzerland
| | - Tim A. Anderson
- ARC Training Centre for Innovative BioengineeringThe University of SydneySydney2006Australia
| | - Jane Q. J. Sun
- Embryology Research UnitChildren's Medical Research InstituteSydney2145Australia
- School of Medical ScienceFaculty of Medicine and HealthThe University of SydneySydney2006Australia
| | - Daryan Kempe
- EMBL AustraliaSingle Molecule Science NodeSchool of Medical SciencesUNSWSydney2052Australia
| | - Maté Biro
- EMBL AustraliaSingle Molecule Science NodeSchool of Medical SciencesUNSWSydney2052Australia
| | - Jae‐Won Shin
- Department of Pharmacology and Regenerative MedicineUniversity of Illinois at ChicagoChicagoIL60607USA
| | - Patrick P. L. Tam
- Embryology Research UnitChildren's Medical Research InstituteSydney2145Australia
- School of Medical ScienceFaculty of Medicine and HealthThe University of SydneySydney2006Australia
| | - Hala Zreiqat
- ARC Training Centre for Innovative BioengineeringThe University of SydneySydney2006Australia
| |
Collapse
|
29
|
Hou YC, Cui X, Qin Z, Su C, Zhang G, Tang JN, Li JA, Zhang JY. Three-dimensional bioprinting of artificial blood vessel: Process, bioinks, and challenges. Int J Bioprint 2023; 9:740. [PMID: 37323481 PMCID: PMC10261152 DOI: 10.18063/ijb.740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023] Open
Abstract
The coronary artery bypass grafting is a main treatment for restoring the blood supply to the ischemic site by bypassing the narrow part, thereby improving the heart function of the patients. Autologous blood vessels are preferred in coronary artery bypass grafting, but their availability is often limited by due to the underlying disease. Thus, tissue-engineered vascular grafts that are devoid of thrombosis and have mechanical properties comparable to those of natural vessels are urgently required for clinical applications. Most of the commercially available artificial implants are made from polymers, which are prone to thrombosis and restenosis. The biomimetic artificial blood vessel containing vascular tissue cells is the most ideal implant material. Due to its precision control ability, three-dimensional (3D) bioprinting is a promising method to prepare biomimetic system. In the 3D bioprinting process, the bioink is at the core state for building the topological structure and keeping the cell viable. Therefore, in this review, the basic properties and viable materials of the bioink are discussed, and the research of natural polymers in bioink, including decellularized extracellular matrix, hyaluronic acid, and collagen, is emphasized. Besides, the advantages of alginate and Pluronic F127, which are the mainstream sacrificial material during the preparation of artificial vascular graft, are also reviewed. Finally, an overview of the applications in the field of artificial blood vessel is also presented.
Collapse
Affiliation(s)
- Ya-Chen Hou
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Xiaolin Cui
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhen Qin
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Chang Su
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| | - Jing-An Li
- School of Material Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, China
| | - Jin-Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Ming Z, Tang X, Liu J, Ruan B. Advancements in Research on Constructing Physiological and Pathological Liver Models and Their Applications Utilizing Bioprinting Technology. Molecules 2023; 28:molecules28093683. [PMID: 37175094 PMCID: PMC10180184 DOI: 10.3390/molecules28093683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In recent decades, significant progress has been made in liver tissue engineering through the use of 3D bioprinting technology. This technology offers the ability to create personalized biological structures with precise geometric design capabilities. The complex and multifaceted nature of liver diseases underscores the need for advanced technologies to accurately mimic the physiological and mechanical characteristics, as well as organ-level functions, of liver tissue in vitro. Bioprinting stands out as a superior option over traditional two-dimensional cell culture models and animal models due to its stronger biomimetic advantages. Through the use of bioprinting, it is possible to create liver tissue with a level of structural and functional complexity that more closely resembles the real organ, allowing for more accurate disease modeling and drug testing. As a result, it is a promising tool for restoring and replacing damaged tissue and organs in the field of liver tissue engineering and drug research. This article aims to present a comprehensive overview of the progress made in liver tissue engineering using bioprinting technology to provide valuable insights for researchers. The paper provides a detailed account of the history of liver tissue engineering, highlights the current 3D bioprinting methods and bioinks that are widely used, and accentuates the importance of existing in vitro liver tissue models based on 3D bioprinting and their biomedical applications. Additionally, the article explores the challenges faced by 3D bioprinting and predicts future trends in the field. The progress of 3D bioprinting technology is poised to bring new approaches to printing liver tissue in vitro, while offering powerful tools for drug development, testing, liver disease modeling, transplantation, and regeneration, which hold great academic and practical significance.
Collapse
Affiliation(s)
- Zibei Ming
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xinyu Tang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Jing Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| |
Collapse
|
31
|
Tran KA, DeOre BJ, Ikejiani D, Means K, Paone LS, De Marchi L, Suprewicz Ł, Koziol K, Bouyer J, Byfield FJ, Jin Y, Georges P, Fischer I, Janmey PA, Galie PA. Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds. Biomaterials 2023; 295:122061. [PMID: 36842339 PMCID: PMC10292106 DOI: 10.1016/j.biomaterials.2023.122061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Scaffolds delivered to injured spinal cords to stimulate axon connectivity often match the anisotropy of native tissue using guidance cues along the rostral-caudal axis, but current approaches do not mimic the heterogeneity of host tissue mechanics. Although white and gray matter have different mechanical properties, it remains unclear whether tissue mechanics also vary along the length of the cord. Mechanical testing performed in this study indicates that bulk spinal cord mechanics do differ along anatomical level and that these differences are caused by variations in the ratio of white and gray matter. These results suggest that scaffolds recreating the heterogeneity of spinal cord tissue mechanics must account for the disparity between gray and white matter. Digital light processing (DLP) provides a means to mimic spinal cord topology, but has previously been limited to printing homogeneous mechanical properties. We describe a means to modify DLP to print scaffolds that mimic spinal cord mechanical heterogeneity caused by variation in the ratio of white and gray matter, which improves axon infiltration compared to controls exhibiting homogeneous mechanical properties. These results demonstrate that scaffolds matching the mechanical heterogeneity of white and gray matter improve the effectiveness of biomaterials transplanted within the injured spinal cord.
Collapse
Affiliation(s)
- Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Brandon J DeOre
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - David Ikejiani
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kristen Means
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Louis S Paone
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Laura De Marchi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Katarina Koziol
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Julien Bouyer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Fitzroy J Byfield
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Jin
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Penelope Georges
- Council on Science and Technology, Princeton University, Princeton, NJ, USA
| | - Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel College of Medicine, Philadelphia, PA, USA
| | - Paul A Janmey
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
32
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
33
|
Tang M, Zhong Z, Ke C. Advanced supramolecular design for direct ink writing of soft materials. Chem Soc Rev 2023; 52:1614-1649. [PMID: 36779285 DOI: 10.1039/d2cs01011a] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The exciting advancements in 3D-printing of soft materials are changing the landscape of materials development and fabrication. Among various 3D-printers that are designed for soft materials fabrication, the direct ink writing (DIW) system is particularly attractive for chemists and materials scientists due to the mild fabrication conditions, compatibility with a wide range of organic and inorganic materials, and the ease of multi-materials 3D-printing. Inks for DIW need to possess suitable viscoelastic properties to allow for smooth extrusion and be self-supportive after printing, but molecularly facilitating 3D printability to functional materials remains nontrivial. While supramolecular binding motifs have been increasingly used for 3D-printing, these inks are largely optimized empirically for DIW. Hence, this review aims to establish a clear connection between the molecular understanding of the supramolecularly bound motifs and their viscoelastic properties at bulk. Herein, extrudable (but not self-supportive) and 3D-printable (self-supportive) polymeric materials that utilize noncovalent interactions, including hydrogen bonding, host-guest inclusion, metal-ligand coordination, micro-crystallization, and van der Waals interaction, have been discussed in detail. In particular, the rheological distinctions between extrudable and 3D-printable inks have been discussed from a supramolecular design perspective. Examples shown in this review also highlight the exciting macroscale functions amplified from the molecular design. Challenges associated with the hierarchical control and characterization of supramolecularly designed DIW inks are also outlined. The perspective of utilizing supramolecular binding motifs in soft materials DIW printing has been discussed. This review serves to connect researchers across disciplines to develop innovative solutions that connect top-down 3D-printing and bottom-up supramolecular design to accelerate the development of 3D-print soft materials for a sustainable future.
Collapse
Affiliation(s)
- Miao Tang
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Zhuoran Zhong
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| | - Chenfeng Ke
- Department of Chemistry, Dartmouth College, 41 College Street, Hanover, 03755 NH, USA.
| |
Collapse
|
34
|
Prosthetic valve thrombosis: literature review and two case reports. COR ET VASA 2023. [DOI: 10.33678/cor.2022.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
35
|
Mao X, Wang Z. Research Progress of Three-Dimensional Bioprinting Artificial Cardiac Tissue. Tissue Eng Regen Med 2023; 20:1-9. [PMID: 36401767 PMCID: PMC9852375 DOI: 10.1007/s13770-022-00495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular disease is one of the main diseases that endanger human life and health, and heart failure often occurs when the cardiovascular disease develops to the end-stage. Heart transplantation is the most effective treatment. However, there has always been a shortage of living heart organs. With the development of regenerative medicine, researchers have turned to bioprinting technology that can build tissues and organs in vitro. A large number of relevant literature on three-dimensional (3D) bioprinted hearts were searched and screened in Google Scholar. 3D bioprinting technology can accurately print biomaterials containing living cells into 3D functional living tissues, providing a feasible solution to the shortage of transplantable organs. As one of the most important organs in the human body, the research on 3D bioprinting of the heart has currently become a hot topic. This paper briefly overviews 3D bioprinting technology and the progress in bioprinting cardiac tissue. It is believed that in the future, bio-printed hearts will become a reality, making a new way of providing artificial organs for heart transplantation.
Collapse
Affiliation(s)
- Xin Mao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China
| | - Zhehui Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, People's Republic of China.
| |
Collapse
|
36
|
Bova L, Maggiotto F, Micheli S, Giomo M, Sgarbossa P, Gagliano O, Falcone D, Cimetta E. A Porous Gelatin Methacrylate-Based Material for 3D Cell-Laden Constructs. Macromol Biosci 2023; 23:e2200357. [PMID: 36305383 DOI: 10.1002/mabi.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Indexed: 11/10/2022]
Abstract
3D constructs are fundamental in tissue engineering and cancer modeling, generating a demand for tailored materials creating a suitable cell culture microenvironment and amenable to be bioprinted. Gelatin methacrylate (GelMA) is a well-known functionalized natural polymer with good printability and binding motifs allowing cell adhesion; however, its tight micropores induce encapsulated cells to retain a non-physiological spherical shape. To overcome this problem, blended GelMa is here blended with Pluronic F-127 (PLU) to modify the hydrogel internal porosity by inducing the formation of larger mesoscale pores. The change in porosity also leads to increased swelling and a slight decrease in Young's modulus. All blends form stable hydrogels both when cast in annular molds and bioprinted in complex structures. Embedded cells maintain high viability, and while Neuroblastoma cancer cells typically aggregate inside the mesoscale pores, Mesenchymal Stem Cells stretch in all three dimensions, forming cell-cell and cell-ECM interactions. The results of this work prove that the combination of tailored porous materials with bioprinting techniques enables to control both the micro and macro architecture of cell-laden constructs, a fundamental aspect for the development of clinically relevant in vitro constructs.
Collapse
Affiliation(s)
- Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| | - Federico Maggiotto
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| | - Monica Giomo
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Onelia Gagliano
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Dario Falcone
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, Padova, 35131, Italy.,Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), Corso Stati Uniti 4, Padova, 35127, Italy
| |
Collapse
|
37
|
Bate C, King P, Sim J, Manogharan G. A Novel Approach to Visualize Liquid Aluminum Flow to Advance Casting Science. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020756. [PMID: 36676493 PMCID: PMC9866359 DOI: 10.3390/ma16020756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 12/08/2022] [Indexed: 05/27/2023]
Abstract
Turbulent filling of molten metal in sand-casting leads to bi-films, porosity and oxide inclusions which results in poor mechanical properties and high scrap rate of sand castings. Hence, it is critical to understand the metal flow in sand-molds, i.e., casting hydrodynamics to eliminate casting defects. While multiple numerical methods have been applied to simulate this phenomenon for decades, harsh foundry environments and expensive x-ray equipment have limited experimental approaches to accurately visualize metal flow in sand molds. In this paper, a novel approach to solve this challenge is proposed using Succinonitrile (SCN) as a more accurate metal analog in place of water. SCN has a long history in solidification research due to its BCC (Body-Centered-Cubic) crystal structure and dendrite-like solidification (melting temperature ~60 °C) like molten aluminum. However, this is the first reported study on applying SCN through novel casting hydrodynamics to accurately visualize melt flow for casting studies. This paper used numerical simulations and experiments using both water and SCN to identify the critical dimensionless numbers to perform accurate metal flow analog testing. Froude's number and wall roughness were identified as critical variables. Experimental results show that SCN flow testing was more accurate in recreating the flow profile of molten aluminum, thus validating its utility as a metal analog for metal flow research. Findings from this study can be used in future metal flow analysis such as: runner, in-gate and integrated filling-feeding-solidification studies.
Collapse
|
38
|
Assad H, Assad A, Kumar A. Recent Developments in 3D Bio-Printing and Its Biomedical Applications. Pharmaceutics 2023; 15:255. [PMID: 36678884 PMCID: PMC9861443 DOI: 10.3390/pharmaceutics15010255] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The fast-developing field of 3D bio-printing has been extensively used to improve the usability and performance of scaffolds filled with cells. Over the last few decades, a variety of tissues and organs including skin, blood vessels, and hearts, etc., have all been produced in large quantities via 3D bio-printing. These tissues and organs are not only able to serve as building blocks for the ultimate goal of repair and regeneration, but they can also be utilized as in vitro models for pharmacokinetics, drug screening, and other purposes. To further 3D-printing uses in tissue engineering, research on novel, suitable biomaterials with quick cross-linking capabilities is a prerequisite. A wider variety of acceptable 3D-printed materials are still needed, as well as better printing resolution (particularly at the nanoscale range), speed, and biomaterial compatibility. The aim of this study is to provide expertise in the most prevalent and new biomaterials used in 3D bio-printing as well as an introduction to the associated approaches that are frequently considered by researchers. Furthermore, an effort has been made to convey the most pertinent implementations of 3D bio-printing processes, such as tissue regeneration, etc., by providing the most significant research together with a comprehensive list of material selection guidelines, constraints, and future prospects.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab 144001, India
| | - Arvina Assad
- Bibi Halima College of Nursing and Medical Technology, Srinagar 190010, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science and Technology, Government of Bihar, Patna 803108, India
| |
Collapse
|
39
|
The ability to control swelling and degradation processes of hydrogels based on a mixture of PEGMA/PEGDA monomers. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
High-resolution 3D printing for healthcare. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
41
|
Ali SM, Patrawalla NY, Kajave NS, Brown AB, Kishore V. Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels. Biomacromolecules 2022; 23:5137-5147. [PMID: 36417692 PMCID: PMC11103796 DOI: 10.1021/acs.biomac.2c00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Collagen methacrylation is a promising approach to generate photo-cross-linkable cell-laden hydrogels with improved mechanical properties. However, the impact of species-based variations in amino acid composition and collagen isolation method on methacrylation degree (MD) and its subsequent effects on the physical properties of methacrylated collagen (CMA) hydrogels and cell response are unknown. Herein, we compared the effects of three collagen species (bovine, human, and rat), two collagen extraction methods (pepsin digestion and acid extraction), and two photoinitiators (lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) and Irgacure-2959 (I-2959)) on the physical properties of CMA hydrogels, printability and mesenchymal stem cell (MSC) response. Human collagen showed the highest MD. LAP was more cytocompatible than I-2959. The compressive modulus and cell viability of rat CMA were significantly higher (p < 0.05) than bovine CMA. Human CMA yielded constructs with superior print fidelity. Together, these results suggest that careful selection of collagen source and cross-linking conditions is essential for biomimetic design of CMA hydrogels for tissue engineering applications.
Collapse
Affiliation(s)
- Sarah M Ali
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Nashaita Y Patrawalla
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Nilabh S Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Alan B Brown
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida32901, United States
| |
Collapse
|
42
|
3D Bioprinting of Smart Oxygen-Releasing Cartilage Scaffolds. J Funct Biomater 2022; 13:jfb13040252. [PMID: 36412893 PMCID: PMC9680294 DOI: 10.3390/jfb13040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Three-dimensional bioprinting is a powerful technique for manufacturing improved engineered tissues. Three-dimensional bioprinted hydrogels have significantly advanced the medical field to repair cartilage tissue, allowing for such constructs to be loaded with different components, such as cells, nanoparticles, and/or drugs. Cartilage, as an avascular tissue, presents extreme difficulty in self-repair when it has been damaged. In this way, hydrogels with optimal chemical and physical properties have been researched to respond to external stimuli and release various bioactive agents to further promote a desired tissue response. For instance, methacryloyl gelatin (GelMA) is a type of modified hydrogel that allows for the encapsulation of cells, as well as oxygen-releasing nanoparticles that, in the presence of an aqueous medium and through controlled porosity and swelling, allow for internal and external environmental exchanges. This review explores the 3D bioprinting of hydrogels, with a particular focus on GelMA hydrogels, to repair cartilage tissue. Recent advances and future perspectives are described.
Collapse
|
43
|
Sousa T, Kajave N, Dong P, Gu L, Florczyk S, Kishore V. Optimization of Freeze-FRESH Methodology for 3D Printing of Microporous Collagen Constructs. 3D PRINTING AND ADDITIVE MANUFACTURING 2022; 9:411-424. [PMID: 36660295 PMCID: PMC9590344 DOI: 10.1089/3dp.2020.0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Freeform reversible embedding of suspended hydrogels (FRESH) is a layer-by-layer extrusion-based technique to enable three-dimensional (3D) printing of soft tissue constructs by using a thermo-reversible gelatin support bath. Suboptimal resolution of extrusion-based printing limits its use for the creation of microscopic features in the 3D construct. These microscopic features (e.g., pore size) are known to have a profound effect on cell migration, cell-cell interaction, proliferation, and differentiation. In a recent study, FRESH-based 3D printing was combined with freeze-casting in the Freeze-FRESH (FF) method, which yielded alginate constructs with hierarchical porosity. However, use of the FF approach allowed little control of micropore size in the printed alginate constructs. Herein, the FF methodology was optimized for 3D printing of collagen constructs with greater control of microporosity. Modifications to the FF method entailed melting of the FRESH bath before freezing to allow more efficient heat transport, achieve greater control on microporosity, and permit polymerization of collagen molecules to enable 3D printing of stable microporous collagen constructs. The effects of different freezing temperatures on microporosity and physical properties of the 3D-printed collagen constructs were assessed. In addition, finite element (FE) models were generated to predict the mechanical properties of the microporous constructs. Further, the impact of different micropore sizes on cellular response was evaluated. Results showed that the microporosity of 3D-printed collagen constructs can be tailored by customizing the FF approach. Compressive modulus of microporous constructs was significantly lower than the non-porous control, and the FE model verified these findings. Constructs with larger micropore size were more stable and showed significantly greater cell infiltration and metabolic activity. Together, these results suggest that the FF method can be customized to guide the design of 3D-printed microporous collagen constructs.
Collapse
Affiliation(s)
- Thais Sousa
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Nilabh Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| | - Stephanie Florczyk
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
44
|
Duraivel S, Subramaniam V, Chisolm S, Scheutz GM, Sumerlin BS, Bhattacharjee T, Angelini TE. Leveraging ultra-low interfacial tension and liquid-liquid phase separation in embedded 3D bioprinting. BIOPHYSICS REVIEWS 2022; 3:031307. [PMID: 38505275 PMCID: PMC10903370 DOI: 10.1063/5.0087387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/23/2022] [Indexed: 03/21/2024]
Abstract
Many recently developed 3D bioprinting strategies operate by extruding aqueous biopolymer solutions directly into a variety of different support materials constituted from swollen, solvated, aqueous, polymer assemblies. In developing these 3D printing methods and materials, great care is often taken to tune the rheological behaviors of both inks and 3D support media. By contrast, much less attention has been given to the physics of the interfaces created when structuring one polymer phase into another in embedded 3D printing applications. For example, it is currently unclear whether a dynamic interfacial tension between miscible phases stabilizes embedded 3D bioprinted structures as they are shaped while in a liquid state. Interest in the physics of interfaces between complex fluids has grown dramatically since the discovery of liquid-liquid phase separation (LLPS) in living cells. We believe that many new insights coming from this burst of investigation into LLPS within biological contexts can be leveraged to develop new materials and methods for improved 3D bioprinting that leverage LLPS in mixtures of biopolymers, biocompatible synthetic polymers, and proteins. Thus, in this review article, we highlight work at the interface between recent LLPS research and embedded 3D bioprinting methods and materials, and we introduce a 3D bioprinting method that leverages LLPS to stabilize printed biopolymer inks embedded in a bioprinting support material.
Collapse
Affiliation(s)
- Senthilkumar Duraivel
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Vignesh Subramaniam
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Steven Chisolm
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| | - Georg M. Scheutz
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent. S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, Karnataka, India
| | - Thomas E. Angelini
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
45
|
Ching T, Vasudevan J, Chang SY, Tan HY, Sargur Ranganath A, Lim CT, Fernandez JG, Ng JJ, Toh YC, Hashimoto M. Biomimetic Vasculatures by 3D-Printed Porous Molds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203426. [PMID: 35866462 DOI: 10.1002/smll.202203426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Despite recent advances in biofabrication, recapitulating complex architectures of cell-laden vascular constructs remains challenging. To date, biofabricated vascular models have not yet realized four fundamental attributes of native vasculatures simultaneously: freestanding, branching, multilayered, and perfusable. In this work, a microfluidics-enabled molding technique combined with coaxial bioprinting to fabricate anatomically relevant, cell-laden vascular models consisting of hydrogels is developed. By using 3D porous molds of poly(ethylene glycol) diacrylate as casting templates that gradually release calcium ions as a crosslinking agent, freestanding, and perfusable vascular constructs of complex geometries are fabricated. The bioinks can be tailored to improve the compatibility with specific vascular cells and to tune the mechanical modulus mimicking native blood vessels. Crucially, the integration of relevant vascular cells (such as smooth muscle cells and endothelial cells) in a multilayer and biomimetic configuration is highlighted. It is also demonstrated that the fabricated freestanding vessels are amenable for testing percutaneous coronary interventions (i.e., drug-eluting balloons and stents) under physiological mechanical states such as stretching and bending. Overall, a versatile fabrication technique with multifaceted possibilities of generating biomimetic vascular models that can benefit future research in mechanistic understanding of cardiovascular diseases and the development of therapeutic interventions is introduced.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Jyothsna Vasudevan
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Shu-Yung Chang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Hsih Yin Tan
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive #14-01, Singapore, 117599, Singapore
| | - Anupama Sargur Ranganath
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, 14 Medical Drive #14-01, Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Javier G Fernandez
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Jun Jie Ng
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- SingVaSC, Singapore Vascular Surgical Collaborative, 5 Lower Kent Ridge Rd, Singapore, 119074, Singapore
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| |
Collapse
|
46
|
Peng X, Kong L. Development of a multi-sensor system for defects detection in additive manufacturing. OPTICS EXPRESS 2022; 30:30640-30665. [PMID: 36242164 DOI: 10.1364/oe.467451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Defects detection technology is essential for monitoring and hence maintaining the product quality of additive manufacturing (AM) processes; however, traditional detection methods based on single sensor have great limitations such as low accuracy and scarce information. In this study, a multi-sensor defect detection system (MSDDS) was proposed and developed for defect detection with the fusion of visible, infrared, and polarization detection information. The assessment criteria for imaging quality of the MSDDS have been optimized and evaluated. Meanwhile, the feasibility of processing and assembly of each sensor module has been demonstrated with tolerance sensitivity and the Monte Carlo analysis. Moreover, multi-sensor image fusion processing, super-resolution reconstruction, and feature extraction of defects are applied. Simulation and experimental studies indicate that the developed MSDDS can obtain high contrast and clear key information, and high-quality detected images of AM defects such as cracking, scratches, and porosity can be effectively extracted. The research provides a helpful and potential solution for defect detection and processing parameter optimization in AM processes such as Selective Laser Melting.
Collapse
|
47
|
Pruksawan S, Chee HL, Wang Z, Luo P, Chong YT, Thitsartarn W, Wang F. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures. Chem Asian J 2022; 17:e202200677. [PMID: 35950549 DOI: 10.1002/asia.202200677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Materials with negative Poisson's ratio have attracted considerable attention and offered high potential applications as biomedical devices due to their ability to expand in every direction when stretched. Although negative Poisson's ratio has been obtained in various base materials such as metals and polymers, there are very limited works on hydrogels due to their intrinsic brittleness. Herein, we report the use of methacrylated cellulose nanocrystals (CNCMAs) as a macro-cross-linking agent in poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels for 3D printing of auxetic structures. Our developed CNCMA-pHEMA hydrogels exhibit significant improvements in mechanical properties, which is attributed to the coexistence of multiple chemical and physical interactions between the pHEMA and CNCMAs. Structures printed by using CNCMA-pHEMA hydrogels show auxetic behavior with greatly enhanced toughness and stretchability compared to the hydrogel with a traditional cross-linking agent. Such strong and tough auxetic hydrogels would contribute toward establishing advanced flexible implantable devices such as biodegradable oesophageal self-expandable stents.
Collapse
Affiliation(s)
| | - Heng Li Chee
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | - Zizhen Wang
- National University of Singapore - Kent Ridge Campus: National University of Singapore, bioengineering, SINGAPORE
| | - Ping Luo
- Institute of Materials Research and Engineering, AMC, SINGAPORE
| | - Yi Ting Chong
- Institute of Materials Research and Engineering, PMC, SINGAPORE
| | | | - FuKe Wang
- Institute of Materiasl Research and Engineering, 3 Research Link, 117602, Singapore, SINGAPORE
| |
Collapse
|
48
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
49
|
Biofabrication of Sodium Alginate Hydrogel Scaffolds for Heart Valve Tissue Engineering. Int J Mol Sci 2022; 23:ijms23158567. [PMID: 35955704 PMCID: PMC9368972 DOI: 10.3390/ijms23158567] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Every year, thousands of aortic valve replacements must take place due to valve diseases. Tissue-engineered heart valves represent promising valve substitutes with remodeling, regeneration, and growth capabilities. However, the accurate reproduction of the complex three-dimensional (3D) anatomy of the aortic valve remains a challenge for current biofabrication methods. We present a novel technique for rapid fabrication of native-like tricuspid aortic valve scaffolds made of an alginate-based hydrogel. Using this technique, a sodium alginate hydrogel formulation is injected into a mold produced using a custom-made sugar glass 3D printer. The mold is then dissolved using a custom-made dissolving module, revealing the aortic valve scaffold. To assess the reproducibility of the technique, three scaffolds were thoroughly compared. CT (computed tomography) scans showed that the scaffolds respect the complex native geometry with minimal variations. The scaffolds were then tested in a cardiac bioreactor specially designed to reproduce physiological flow and pressure (aortic and ventricular) conditions. The flow and pressure profiles were similar to the physiological ones for the three valve scaffolds, with small variabilities. These early results establish the functional repeatability of this new biofabrication method and suggest its application for rapid fabrication of ready-to-use cell-seeded sodium alginate scaffolds for heart valve tissue engineering.
Collapse
|
50
|
Khanna A, Ayan B, Undieh AA, Yang YP, Huang NF. Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration. J Mol Cell Cardiol 2022; 169:13-27. [PMID: 35569213 PMCID: PMC9385403 DOI: 10.1016/j.yjmcc.2022.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Three-dimensional (3D) bioprinting of cellular or biological components are an emerging field to develop tissue structures that mimic the spatial, mechanochemical and temporal characteristics of cardiovascular tissues. 3D multi-cellular and multi-domain organotypic biological constructs can better recapitulate in vivo physiology and can be utilized in a variety of applications. Such applications include in vitro cellular studies, high-throughput drug screening, disease modeling, biocompatibility analysis, drug testing and regenerative medicine. A major challenge of 3D bioprinting strategies is the inability of matrix molecules to reconstitute the complexity of the extracellular matrix and the intrinsic cellular morphologies and functions. An important factor is the inclusion of a vascular network to facilitate oxygen and nutrient perfusion in scalable and patterned 3D bioprinted tissues to promote cell viability and functionality. In this review, we summarize the new generation of 3D bioprinting techniques, the kinds of bioinks and printing materials employed for 3D bioprinting, along with the current state-of-the-art in engineered cardiovascular tissue models. We also highlight the translational applications of 3D bioprinting in engineering the myocardium cardiac valves, and vascular grafts. Finally, we discuss current challenges and perspectives of designing effective 3D bioprinted constructs with native vasculature, architecture and functionality for clinical translation and cardiovascular regeneration.
Collapse
|