1
|
Abaci A, Guvendiren M. 3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity. Biofabrication 2024; 16:035027. [PMID: 38821144 DOI: 10.1088/1758-5090/ad52f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.
Collapse
Affiliation(s)
- Alperen Abaci
- Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Murat Guvendiren
- Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
- Bioengineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
2
|
Teng F, Wang W, Wang ZQ, Wang GX. Analysis of bioprinting strategies for skin diseases and injuries through structural and temporal dynamics: historical perspectives, research hotspots, and emerging trends. Biofabrication 2024; 16:025019. [PMID: 38350130 DOI: 10.1088/1758-5090/ad28f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
This study endeavors to investigate the progression, research focal points, and budding trends in the realm of skin bioprinting over the past decade from a structural and temporal dynamics standpoint. Scholarly articles on skin bioprinting were obtained from WoSCC. A series of bibliometric tools comprising R software, CiteSpace, HistCite, and an alluvial generator were employed to discern historical characteristics, evolution of active topics, and upcoming tendencies in the area of skin bioprinting. Over the past decade, there has been a consistent rise in research interest in skin bioprinting, accompanied by an extensive array of meaningful scientific collaborations. Concurrently, diverse dynamic topics have emerged during various periods, as substantiated by an aggregate of 22 disciplines, 74 keywords, and 187 references demonstrating citation bursts. Four burgeoning research subfields were discerned through keyword clustering-namely, #3 'in situbioprinting', #6 'vascular', #7 'xanthan gum', and #8 'collagen hydrogels'. The keyword alluvial map reveals that Module 1, including 'transplantation' etc, has primarily dominated the research module over the previous decade, maintaining enduring relevance despite annual shifts in keyword focus. Additionally, we mapped out the top six key modules from 2023 being 'silk fibroin nanofiber', 'system', 'ionic liquid', 'mechanism', and 'foot ulcer'. Three recent research subdivisions were identified via timeline visualization of references, particularly Clusters #0 'wound healing', #4 'situ mineralization', and #5 '3D bioprinter'. Insights derived from bibliometric analyses illustrate present conditions and trends in skin bioprinting research, potentially aiding researchers in pinpointing central themes and pioneering novel investigative approaches in this field.
Collapse
Affiliation(s)
- Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Wei Wang
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Zhi-Qiang Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, People's Republic of China
| |
Collapse
|
3
|
Utagawa Y, Ino K, Hiramoto K, Shiku H. Simple, Rapid, and Large-Scale Fabrication of Multi-Branched Hydrogels Based on Viscous Fingering for Cell Culture Applications. Macromol Biosci 2023; 23:e2300069. [PMID: 37055930 DOI: 10.1002/mabi.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Indexed: 04/15/2023]
Abstract
Hydrogels are widely used in cell culture applications. For fabricating tissues and organs, it is essential to produce hydrogels with specific structures. For instance, multiple-branched hydrogels are desirable for the development of network architectures that resemble the biological vascular network. However, existing techniques are inefficient and time-consuming for this application. To address this issue, a simple, rapid, and large-scale fabrication method based on viscous fingering is proposed. This approach utilizes only two plates. To produce a thin solution, a high-viscosity solution is introduced into the space between the plates, and one of the plates is peeled off. During this procedure, the solution's high viscosity results in the formation of multi-branched structures. Using this strategy, 180 mm × 200 mm multi-branched Pluronic F-127 hydrogels are successfully fabricated within 1 min. These structures are used as sacrificial layers for the fabrication of polydimethylsiloxane channels for culturing human umbilical vein endothelial cells (HUVECs). Similarly, multi-branched Matrigel and calcium (Ca)-alginate hydrogel structures are fabricated, and HUVECs are successfully cultured inside the hydrogels. Also, the hydrogels are collected from the plate, while maintaining their structures. The proposed fabrication technique will contribute to the development of network architectures such as vascular structures in tissue engineering.
Collapse
Affiliation(s)
- Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, 980-8579, Japan
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kaoru Hiramoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies, Tohoku University, Sendai, 980-8579, Japan
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
4
|
House A, Cornick J, Butt Q, Guvendiren M. Elastomeric platform with surface wrinkling patterns to control cardiac cell alignment. J Biomed Mater Res A 2023; 111:1228-1242. [PMID: 36762538 DOI: 10.1002/jbm.a.37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/07/2022] [Accepted: 01/29/2023] [Indexed: 02/11/2023]
Abstract
There is a growing interest in creating 2D cardiac tissue models that display native extracellular matrix (ECM) cues of the heart tissue. Cellular alignment alone is known to be a crucial cue for cardiac tissue development by regulating cell-cell and cell-ECM interactions. In this study, we report a simple and robust approach to create lamellar surface wrinkling patterns enabling spatial control of pattern dimensions with a wide range of pattern amplitude (A ≈ 2-55 μm) and wavelength (λ ≈ 35-100 μm). For human cardiomyocytes (hCMs) and human cardiac fibroblasts (hCFs), our results indicate that the degree of cellular alignment and pattern recognition are correlated with pattern A and λ. We also demonstrate fabrication of devices composed of micro-well arrays with user-defined lamellar patterns on the bottom surface of each well for high-throughput screening studies. Results from a screening study indicate that cellular alignment is strongly diminished with increasing seeding density. In another study, we show our ability to vary hCM/hCF seeding ratio for each well to create co-culture systems where seeding ratio is independent of cellular alignment.
Collapse
Affiliation(s)
- Andrew House
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jason Cornick
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Quratulain Butt
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
5
|
Mao M, Chen P, He J, Zhu G, Li X, Li D. Deciphering Fluid Transport Within Leaf-Inspired Capillary Networks Based on a 3D Computational Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108102. [PMID: 35253997 DOI: 10.1002/smll.202108102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Leaf venation provides a promising template for engineering capillary-like vasculature in vitro due to its highly efficient fluid transport capability and remarkable similarities to native capillary networks. A key challenge in exploring the potential biological applications of leaf-inspired capillary networks (LICNs) is to accurately and quantitively understand its internal fluid transport characteristics. Here, a centerline-induced partition-assembly modeling strategy is proposed to establish a 3D computational model, which can accurately simulate the flow conditions in LICNs. Based on the 3D flow simulation, the authors demonstrate the excellent defect-resistant fluid transport capability of LICNs. Interestingly, structural defects in the primary channel can effectively accelerate the overall perfusion efficiency. Flow patterns in LICNs with multiple defects can be estimated by simple superposition of the simulation results derived from the corresponding single-defect models. The 3D computational model is further used to determine the optimal perfusion parameter for the in-vitro formation of endothelialized capillary networks by mimicking native microvascular flow conditions. The endothelialized networks can recapitulate the vascular colonization process and reveal a strong correlation between cancer cell adhesion and flow-induced shear stress. This study offers a quantitative tool to scrutinize the fluid and biological transport mechanisms within LICNs for various biomedical applications.
Collapse
Affiliation(s)
- Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pengyu Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Aavani F, Biazar E, Kheilnezhad B, Amjad F. 3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Curr Stem Cell Res Ther 2022; 17:415-439. [DOI: 10.2174/1574888x17666220204144544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective bio-mimicking of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges for skin tissue engineering.
Collapse
Affiliation(s)
- Farzaneh. Aavani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Bahareh Kheilnezhad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Fatemeh Amjad
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
8
|
Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022; 11:26-38. [PMID: 34967598 PMCID: PMC8787816 DOI: 10.1021/acssynbio.1c00547] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
In recent years,
significant progress has been observed in the
field of skin bioprinting, which has a huge potential to revolutionize
the way of treatment in injury and surgery. Furthermore, it may be
considered as an appropriate platform to perform the assessment and
screening of cosmetic and pharmaceutical formulations. Therefore,
the objective of this paper was to review the latest advances in 3D
bioprinting dedicated to skin applications. In order to explain the
boundaries of this technology, the architecture and functions of the
native skin were briefly described. The principles of bioprinting
methods were outlined along with a detailed description of key elements
that are required to fabricate the skin equivalents. Next, the overview
of recent progress in 3D bioprinting studies was presented. The article
also highlighted the potential applications of bioengineered skin
substituents in various fields including regenerative medicine, modeling
of diseases, and cosmetics/drugs testing. The advantages, limitations,
and future directions of this technology were also discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Adam Kulpa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznań, Poland
| |
Collapse
|
9
|
Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS APPLIED BIO MATERIALS 2021; 4:2941-2956. [DOI: 10.1021/acsabm.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Soraia V. Lopes
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rui L. Reis
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
11
|
Fabrication of Nanopores Polylactic Acid Microtubes by Core-Sheath Electrospinning for Capillary Vascularization. Biomimetics (Basel) 2021; 6:biomimetics6010015. [PMID: 33669201 PMCID: PMC7930995 DOI: 10.3390/biomimetics6010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/20/2023] Open
Abstract
There has been substantial progress in tissue engineering of biological substitutes for medical applications. One of the major challenges in development of complex tissues is the difficulty of creating vascular networks for engineered constructs. The diameter of current artificial vascular channels is usually at millimeter or submillimeter level, while human capillaries are about 5 to 10 µm in diameter. In this paper, a novel core-sheath electrospinning process was adopted to fabricate nanoporous microtubes to mimic the structure of fenestrated capillary vessels. A mixture of polylactic acid (PLA) and polyethylene glycol (PEO) was used as the sheath solution and PEO was used as the core solution. The microtubes were observed under a scanning electron microscope and the images were analyzed by ImageJ. The diameter of the microtubes ranged from 1-8 microns. The diameter of the nanopores ranged from 100 to 800 nm. The statistical analysis showed that the microtube diameter was significantly influenced by the PEO ratio in the sheath solution, pump rate, and the viscosity gradient between the sheath and the core solution. The electrospun microtubes with nanoscale pores highly resemble human fenestrated capillaries. Therefore, the nanoporous microtubes have great potential to support vascularization in engineered tissues.
Collapse
|
12
|
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered Tools to Study Intercellular Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002825. [PMID: 33552865 PMCID: PMC7856891 DOI: 10.1002/advs.202002825] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Indexed: 05/08/2023]
Abstract
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Trisha M. Westerhof
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Kaitlyn Sabin
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Sofia D. Merajver
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Program in Cellular and Molecular Biology2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| |
Collapse
|
13
|
Soffe R, Mach AJ, Onal S, Nock V, Lee LP, Nevill JT. Art-on-a-Chip: Preserving Microfluidic Chips for Visualization and Permanent Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002035. [PMID: 32700460 DOI: 10.1002/smll.202002035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/03/2020] [Indexed: 06/11/2023]
Abstract
"After a certain high level of technical skill is achieved, science and art tend to coalesce in aesthetics, plasticity, and form. The greatest scientists are always artists as well." said Albert Einstein. Currently, photographic images bridge the gap between microfluidic/lab-on-a-chip devices and art. However, the microfluidic chip itself should be a form of art. Here, novel vibrant epoxy dyes are presented in combination with a simple process to fill and preserve microfluidic chips, to produce microfluidic art or art-on-a-chip. In addition, this process can be used to produce epoxy dye patterned substrates that preserve the geometry of the microfluidic channels-height within 10% of the mold master. This simple approach for preserving microfluidic chips with vibrant, colorful, and long-lasting epoxy dyes creates microfluidic chips that can easily be visualized and photographed repeatedly, for at least 11 years, and hence enabling researchers to showcase their microfluidic chips to potential graduate students, investors, and collaborators.
Collapse
Affiliation(s)
- Rebecca Soffe
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Albert J Mach
- BD Biosciences, 2222 Qume Drive, San Jose, CA, 95131, USA
| | - Sevgi Onal
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, 8041, New Zealand
| | - Luke P Lee
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Centre, University of California Berkeley, Berkeley, CA, 94720, USA
- Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720, USA
| | - J Tanner Nevill
- Berkeley Lights, 5858 Horton St, Suite 320, Emeryville, CA, 94608, USA
| |
Collapse
|
14
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
15
|
Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced Bottom-Up Engineering of Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903975. [PMID: 31823448 DOI: 10.1002/adma.201903975] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/30/2019] [Indexed: 05/08/2023]
Abstract
Bottom-up tissue engineering is a promising approach for designing modular biomimetic structures that aim to recapitulate the intricate hierarchy and biofunctionality of native human tissues. In recent years, this field has seen exciting progress driven by an increasing knowledge of biological systems and their rational deconstruction into key core components. Relevant advances in the bottom-up assembly of unitary living blocks toward the creation of higher order bioarchitectures based on multicellular-rich structures or multicomponent cell-biomaterial synergies are described. An up-to-date critical overview of long-term existing and rapidly emerging technologies for integrative bottom-up tissue engineering is provided, including discussion of their practical challenges and required advances. It is envisioned that a combination of cell-biomaterial constructs with bioadaptable features and biospecific 3D designs will contribute to the development of more robust and functional humanized tissues for therapies and disease models, as well as tools for fundamental biological studies.
Collapse
Affiliation(s)
- Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Borges
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
16
|
Gantumur E, Kimura M, Taya M, Horie M, Nakamura M, Sakai S. Inkjet micropatterning through horseradish peroxidase-mediated hydrogelation for controlled cell immobilization and microtissue fabrication. Biofabrication 2019; 12:011001. [PMID: 31412324 DOI: 10.1088/1758-5090/ab3b3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A simple fabrication method for cell micropatterns on hydrogel substrates was developed using an inkjet printing system that induced hydrogel micropatterns. The hydrogel micropatterns were created from inks resulting in cell-adhesive and non-cell-adhesive printed regions by horseradish peroxidase-catalyzed reaction onto non-cell-adhesive and cell-adhesive hydrogel substrates, respectively, to obtain the cell micropatterns. Cell-adhesive and non-cell-adhesive regions were obtained from gelatin and alginate derivatives, respectively. The cells on the cell-adhesive regions were successfully aligned, resulting in recognizable patterns. Furthermore, the proposed system permits the patterning of multiple cell types by switching the non-cell-adhesive region to the cell-adhesive region in the presence of growing cells. Also, we could fabricate disc- and filament-shaped small tissues by degrading the non-cell-adhesive substrates having dot- and line-shaped cell-adhesive micropatterns using alginate-lyase. These results indicate that our system is useful for fabrication of tailor-made cell patterns and microtissues with the shape defined by the micropattern, and will be conducive to a diverse range of biological applications.
Collapse
Affiliation(s)
- Enkhtuul Gantumur
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Shakeri A, Imani SM, Chen E, Yousefi H, Shabbir R, Didar TF. Plasma-induced covalent immobilization and patterning of bioactive species in microfluidic devices. LAB ON A CHIP 2019; 19:3104-3115. [PMID: 31429455 DOI: 10.1039/c9lc00364a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we present a straightforward technique to create bio-functional microfluidic channels using CO2 plasma to induce both carboxylic and hydroxyl groups onto the channel surface. Consequently, not only does the surface allow for irreversible covalent bonding to an oxygen plasma treated PDMS for microfluidic device fabrication, but it also provides functionality for biomolecular immobilization. Furthermore, we demonstrate integration of this technique with microcontact printing to covalently micropattern functional biomolecules inside microfluidic channels. The bio-functionality and efficacy of the microcontact printed antibodies is demonstrated for both bioassays as well as patterning and culturing different cell lines. Results show that the introduced method can be an excellent candidate for cell culture studies in microfluidics. With the new printing method, full cell confluency (∼400 cells per mm2) was achieved after incubation for only 1 day, which is significantly greater than other conventional cell culture techniques inside microfluidic devices. As a proof of concept, we demonstrated the endothelial cells functionality by stimulating von Willebrand Factor secretion under shear stress. This is done via perfusion of histamine through the channel and performing immunofluorescence labeling to observe the inflammatory response of the cells. The developed method eliminates the need for wet chemistry and significantly simplifies producing bio-functional chips which can be used for biosensing, organs-on-chips and tissue engineering applications.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada.
| | | | | | | | | | | |
Collapse
|
18
|
Mi S, Du Z, Xu Y, Sun W. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips. J Mater Chem B 2018; 6:6191-6206. [PMID: 32254609 DOI: 10.1039/c8tb01661e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Organ-on-chips were designed to simulate the real tissue or organ microenvironment by precise control of the cells, the extracellular matrix and other micro-environmental factors to clarify physiological or pathological mechanisms. The organ chip is mainly based on the poly(dimethylsiloxane) (PDMS) microfluidic devices, whereas the conventional soft lithography requires a cumbersome manufacturing process, and the complex on-chip tissue or organ chip also depends on the complicated loading process of the cells and biomaterials. 3D printing can efficiently design and automatically print micrometre-scale devices, while bio-printing can also precisely manipulate cells and biomaterials to create complex organ or tissue structures. In recent years, the popularization of 3D printing has provided more possibilities for its application to 3D printed organ-on-chips. The combination of 3D printing and microfluidic technology in organ-on-chips provides a more efficient choice for building complex flow channels or chambers, as well as the ability to create biological structures with a 3D cell distribution, heterogeneity and tissue-specific function. The fabrication of complex, heterogeneous 3D printable biomaterials based on microfluidics also provides new assistance for building complex organ-on-chips. Here, we discuss the recent advances and potential applications of 3D printing in combination with microfluidics to organ-on-chips and provide outlooks on the integration of the two technologies in building efficient, automated, modularly integrated, and customizable organ-on-chips.
Collapse
Affiliation(s)
- Shengli Mi
- Biomanufacturing Engineering Laboratory, Advanced Manufacturing Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, P. R. China.
| | | | | | | |
Collapse
|
19
|
In Situ Organ-Specific Vascularization in Tissue Engineering. Trends Biotechnol 2018; 36:834-849. [PMID: 29555346 DOI: 10.1016/j.tibtech.2018.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Other than a few avascular tissues, almost all human tissues are connected to the systemic circulation via blood vessels that promote metabolism and function. Accordingly, engineered vascularization is a vital goal in tissue engineering for regenerative medicine. Endothelial cells (ECs) play a central role in vascularization with two significant specificities: physical interfaces between vascular stroma and blood, and phenotypic organ-specificity. Biomaterial scaffolding technologies that address these unique properties of ECs have been developed to promote the vascularization of various engineered tissues, and these have advanced from mimicking vascular architectures ex situ towards promoting spontaneous angiogenic remodeling in situ. Simultaneously, endothelial progenitor cells (EPCs) and organ-specific ECs are attracting more and more attention with the increasing awareness of the diversity of ECs in different organs.
Collapse
|
20
|
He P, Zhao J, Zhang J, Li B, Gou Z, Gou M, Li X. Bioprinting of skin constructs for wound healing. BURNS & TRAUMA 2018; 6:5. [PMID: 29404374 PMCID: PMC5778803 DOI: 10.1186/s41038-017-0104-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/12/2017] [Indexed: 02/05/2023]
Abstract
Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivalents for wound healing therapy. Here, we summarize strategies of bioprinting and review current advances of bioprinting of skin constructs. There will be challenges on the way of 3D bioprinting for skin regeneration, but we still believe bioprinting will be potential skills for wounds healing in the foreseeable future.
Collapse
Affiliation(s)
- Peng He
- The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People’s Republic of China
| | - Junning Zhao
- Sichuan Academy of Chinese Medical Sciences, Sichuan Translational Medicine Center of Chinese Medicine, Ren Min Nan Lu Road, Chengdu, 610041 People’s Republic of China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Bo Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
- Collaborative Innovation Center for Biotherapy, Chengdu, 610041 People’s Republic of China
| | - Xiaolu Li
- The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People’s Republic of China
- Sichuan Academy of Chinese Medical Sciences, Sichuan Translational Medicine Center of Chinese Medicine, Ren Min Nan Lu Road, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
21
|
Martinez-Rivas A, González-Quijano GK, Proa-Coronado S, Séverac C, Dague E. Methods of Micropatterning and Manipulation of Cells for Biomedical Applications. MICROMACHINES 2017; 8:E347. [PMID: 30400538 PMCID: PMC6187909 DOI: 10.3390/mi8120347] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS), point-of-care (POC) devices, or organs-on-chips (OOC), which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.
Collapse
Affiliation(s)
- Adrian Martinez-Rivas
- CIC, Instituto Politécnico Nacional (IPN), Av. Juan de Dios Bátiz S/N, Nueva Industrial Vallejo, 07738 Mexico City, Mexico.
| | - Génesis K González-Quijano
- CONACYT-CNMN, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, 07738 Mexico City, Mexico.
| | - Sergio Proa-Coronado
- ENCB, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu, Unidad Adolfo López Mateos, 07738 Mexico City, Mexico.
| | | | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|