1
|
Tryndyak VP, Borowa-Mazgaj B, Steward CR, Beland FA, Pogribny IP. Epigenetic effects of low-level sodium arsenite exposure on human liver HepaRG cells. Arch Toxicol 2020; 94:3993-4005. [PMID: 32844245 DOI: 10.1007/s00204-020-02872-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022]
Abstract
Chronic exposure to inorganic arsenic is associated with a variety of adverse health effects, including lung, bladder, kidney, and liver cancer. Several mechanisms have been proposed for arsenic-induced tumorigenesis; however, insufficient knowledge and many unanswered questions remain to explain the integrated molecular pathogenesis of arsenic carcinogenicity. In the present study, using non-tumorigenic human liver HepaRG cells, we investigated epigenetic alterations upon prolonged exposure to a noncytotoxic concentration of sodium arsenite (NaAsO2). We demonstrate that continuous exposure of HepaRG cells to 1 µM sodium arsenite (NaAsO2) for 14 days resulted in substantial cytosine DNA demethylation and hypermethylation across the genome, among which the claudin 14 (CLDN14) gene was hypermethylated and the most down-regulated gene. Another important finding was a profound loss of histone H3 lysine 36 (H3K36) trimethylation, which was accompanied by increased damage to genomic DNA and an elevated de novo mutation frequency. These results demonstrate that continuous exposure of HepaRG cells to a noncytotoxic concentration of NaAsO2 results in substantial epigenetic abnormalities accompanied by several carcinogenesis-related events, including induction of epithelial-to-mesenchymal transition, damage to DNA, inhibition of DNA repair genes, and induction of de novo mutations. Importantly, this study highlights the intimate mechanistic link and interplay between two fundamental cancer-associated events, epigenetic and genetic alterations, in arsenic-associated carcinogenesis.
Collapse
Affiliation(s)
- Volodymyr P Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Colleen R Steward
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, AR, USA.
| |
Collapse
|
2
|
Svobodová J, Procházková J, Kabátková M, Krkoška M, Šmerdová L, Líbalová H, Topinka J, Kléma J, Kozubík A, Machala M, Vondráček J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Disrupts Control of Cell Proliferation and Apoptosis in a Human Model of Adult Liver Progenitors. Toxicol Sci 2020; 172:368-384. [PMID: 31536130 DOI: 10.1093/toxsci/kfz202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) activation has been shown to alter proliferation, apoptosis, or differentiation of adult rat liver progenitors. Here, we investigated the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated AhR activation on a human model of bipotent liver progenitors, undifferentiated HepaRG cells. We used both intact undifferentiated HepaRG cells, and the cells with silenced Hippo pathway effectors, yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), which play key role(s) in tissue-specific progenitor cell self-renewal and expansion, such as in liver, cardiac, or respiratory progenitors. TCDD induced cell proliferation in confluent undifferentiated HepaRG cells; however, following YAP, and, in particular, double YAP/TAZ knockdown, TCDD promoted induction of apoptosis. These results suggested that, unlike in mature hepatocytes, or hepatocyte-like cells, activation of the AhR may sensitize undifferentiated HepaRG cells to apoptotic stimuli. Induction of apoptosis in cells with silenced YAP/TAZ was associated with upregulation of death ligand TRAIL, and seemed to involve both extrinsic and mitochondrial apoptosis pathways. Global gene expression analysis further suggested that TCDD significantly altered expression of constituents and/or transcriptional targets of signaling pathways participating in control of expansion or differentiation of liver progenitors, including EGFR, Wnt/β-catenin, or tumor growth factor-β signaling pathways. TCDD significantly upregulated cytosolic proapoptotic protein BMF (Bcl-2 modifying factor) in HepaRG cells, which could be linked with an enhanced sensitivity of TCDD-treated cells to apoptosis. Our results suggest that, in addition to promotion of cell proliferation and alteration of signaling pathways controlling expansion of human adult liver progenitors, AhR ligands may also sensitize human liver progenitor cells to apoptosis.
Collapse
Affiliation(s)
- Jana Svobodová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Martin Krkoška
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 61137, Czech Republic
| | - Lenka Šmerdová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University, Prague 12135, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno 62100, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno 61265, Czech Republic
| |
Collapse
|
3
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
4
|
Pasqua M, Pereira U, Messina A, de Lartigue C, Vigneron P, Dubart-Kupperschmitt A, Legallais C. HepaRG Self-Assembled Spheroids in Alginate Beads Meet the Clinical Needs for Bioartificial Liver. Tissue Eng Part A 2020; 26:613-622. [PMID: 31914890 DOI: 10.1089/ten.tea.2019.0262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In liver tissue engineering, cell culture in spheroids is now well recognized to promote the maintenance of hepatic functions. However, the process leading to spheroids formation is time consuming, costly, and not easy to scale-up for further use in human bioartificial liver (BAL) applications. In this study, we encapsulated HepaRG cells (precursors of hepatocyte-like cells) in 1.5% alginate beads without preforming spheroids. Starting from a given hepatic biomass, we analyzed cell differentiation and metabolic performance for further use in a fluidized-bed BAL. We observed that cells self-rearranged as aggregates within the beads and adequately differentiated over time, in the absence of any differentiating factors classically used. On day 14 postencapsulation, cells displayed a wide range of hepatic features necessary for the treatment of a patient in acute liver failure. These activities include albumin synthesis, ammonia and lactate detoxification, and the efficacy of the enzymes involved in the xenobiotic metabolism (such as CYP1A1/2). Impact statement It has been recognized that culturing cells in spheroids (SPHs) is advantageous as they better reproduce the three-dimensional physiological microenvironment. This approach can be exploited in bioartificial liver applications, where obtaining a functional hepatic biomass is the major challenge. Our study describes an original method for culturing hepatic cells in alginate beads that makes possible the autonomous formation of SPHs after 3 days of culture. In turn, the cells differentiate adequately and display a wide range of hepatic features. They are also capable of treating a pathological plasma model. Finally, this setup can easily be scaled-up to treat acute liver failure.
Collapse
Affiliation(s)
- Mattia Pasqua
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Ulysse Pereira
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Antonietta Messina
- DHU Hépatinov, Villejuif, France.,UMR_S1193 Inserm/Paris-Saclay University, Villejuif, France
| | - Claire de Lartigue
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | - Pascale Vigneron
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | | | - Cecile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France.,DHU Hépatinov, Villejuif, France
| |
Collapse
|
5
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
6
|
Dreval K, Tryndyak V, Kindrat I, Twaddle NC, Orisakwe OE, Mudalige TK, Beland FA, Doerge DR, Pogribny IP. Cellular and Molecular Effects of Prolonged Low-Level Sodium Arsenite Exposure on Human Hepatic HepaRG Cells. Toxicol Sci 2019; 162:676-687. [PMID: 29301061 DOI: 10.1093/toxsci/kfx290] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic arsenic is a human carcinogen associated with several types of cancers, including liver cancer. Inorganic arsenic has been postulated to target stem cells, causing their oncogenic transformation. This is proposed to be one of the key events in arsenic-associated carcinogenesis; however, the underlying mechanisms for this process remain largely unknown. To address this question, human hepatic HepaRG cells, at progenitor and differentiated states, were continuously treated with a noncytotoxic concentration of 1 μM sodium arsenite (NaAsO2). The HepaRG cells demonstrated active intracellular arsenite metabolism that shared important characteristic with primary human hepatocytes. Treatment of proliferating progenitor-like HepaRG cells with NaAsO2 inhibited their differentiation into mature hepatocyte-like cells, up-regulated genes involved in cell growth, proliferation, and survival, and down-regulated genes involved in cell death. In contrast, treatment of differentiated hepatocyte-like HepaRG cells with NaAsO2 resulted in enhanced cell death of mature hepatocyte-like cells, overexpression of cell death-related genes, and down-regulation of genes in the cell proliferation pathway, while biliary-like cells remained largely unaffected. Mechanistically, the cytotoxic effect of arsenic on mature hepatocyte-like HepaRG cells may be attributed to arsenic-induced dysregulation of cellular iron metabolism. The inhibitory effect of NaAsO2 on the differentiation of progenitor cells, the resistance of biliary-like cells to cell death, and the enhanced cell death of functional hepatocyte-like cells resulted in stem-cell activation. These effects favored the proliferation of liver progenitor cells that can serve as a source of initiation and driving force of arsenic-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Iryna Kindrat
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,Department of Biological and Medical Chemistry, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Nathan C Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Orish Ebere Orisakwe
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079.,Department of Experimental Pharmacology and Toxicology, University of Port-Harcourt, Rivers State, Nigeria
| | - Thilak K Mudalige
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration, Jefferson, Arkansas 72079
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
7
|
Tryndyak V, Kindrat I, Dreval K, Churchwell MI, Beland FA, Pogribny IP. Effect of aflatoxin B 1, benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol 2018; 121:214-223. [PMID: 30157460 DOI: 10.1016/j.fct.2018.08.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/15/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
The increasing number of man-made chemicals in the environment that may pose a carcinogenic risk highlights the need for developing reliable time- and cost-effective approaches for carcinogen detection and identification. To address this issue, we investigated the utility of high-throughput microarray gene expression and next-generation genome-wide DNA methylation sequencing for the in vitro identification of genotoxic and non-genotoxic carcinogens. Terminally differentiated and metabolically competent human liver HepaRG cells were treated at minimally cytotoxic concentrations of (i) the genotoxic human liver carcinogen aflatoxin B1 (AFB1) and its structural non-carcinogenic analog aflatoxin B2 (AFB2); (ii) the genotoxic human lung carcinogen benzo[a]pyrene (B[a]P) and its non-carcinogenic isomer benzo[e]pyrene (B[e]P); and (iii) the non-genotoxic liver carcinogen methapyrilene for 72 h and transcriptomic and DNA methylation profiles were examined. Treatment of HepaRG cells with the liver carcinogens AFB1 and methapyrilene generated distinct gene-expression profiles, whereas B[a]P had only a slight effect on gene expression. In contrast to transcriptomic alterations, treatment of HepaRG cells with the carcinogenic and non-carcinogenic chemicals resulted in profound changes in the DNA methylation footprint; however, the correlation between gene-specific DNA methylation and gene expression changes was minimal. Among the carcinogen-altered genes, transferrin (TF) emerged as sensitive marker for an initial screening of chemicals for their potential liver carcinogenicity. Potential liver carcinogens (i.e., chemicals causing altered TF gene expression) could then be subjected to gene-expression analyses to differentiate genotoxic from non-genotoxic liver carcinogens. This approach may substantially enhance the identification and assessment of potential liver carcinogens.
Collapse
Affiliation(s)
- Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Iryna Kindrat
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR, 72079, USA; Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
8
|
Adam AAA, van Wenum M, van der Mark VA, Jongejan A, Moerland PD, Houtkooper RH, Wanders RJA, Oude Elferink RP, Chamuleau RAFM, Hoekstra R. AMC-Bio-Artificial Liver culturing enhances mitochondrial biogenesis in human liver cell lines: The role of oxygen, medium perfusion and 3D configuration. Mitochondrion 2017; 39:30-42. [PMID: 28844938 DOI: 10.1016/j.mito.2017.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/15/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Human liver cell lines, like HepaRG and C3A, acquire higher functionality when cultured in the AMC-Bio-Artificial Liver (AMC-BAL). The three main differences between BAL and monolayer culture are the oxygenation (40% vs 20%O2), dynamic vs absent medium perfusion and 3D vs 2D configuration. Here, we investigated the background of the differences between BAL-cultures and monolayers. METHODS We performed whole-genome microarray analysis on HepaRG monolayer and BAL-cultures. Next, mitochondrial biogenesis was studied in monolayer and BAL-cultures of HepaRG and C3A. The driving forces for mitochondrial biogenesis by BAL-culturing were investigated in representative culture models differing in oxygenation level, medium flow or 2D vs 3D configuration. RESULTS Gene-sets related to mitochondrial energy metabolism were most prominently up-regulated in HepaRG-BAL vs monolayer cultures. This was confirmed by a 2.4-fold higher mitochondrial abundance with increased expression of mitochondrial OxPhos complexes. Moreover, the transcript levels of mitochondria-encoded genes were up to 3.6-fold induced and mitochondrial membrane potential activity was 8.3-fold increased in BAL vs monolayers. Culturing with 40% O2, dynamic medium flow and/or in 3D increased the mitochondrial abundance and expression of mitochondrial complexes vs standard monolayer culturing. The stimulatory effect of the BAL culture on mitochondrial biogenesis was confirmed in C3A cells in which mitochondrial abundance increased 2.2-fold with induction of mitochondria-encoded genes. CONCLUSIONS AND GENERAL SIGNIFICANCE The increased functionality of liver cell lines upon AMC-BAL culturing is associated with increased mitochondrial biogenesis. High oxygenation, medium perfusion and 3D configuration contribute to the up-regulation of the mitochondrial biogenesis.
Collapse
Affiliation(s)
- Aziza A A Adam
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Martien van Wenum
- Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands; Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic and Metabolic Diseases, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic and Metabolic Diseases, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ronald P Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Robert A F M Chamuleau
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands; Surgical Laboratory, Academic Medical Center (AMC), University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands.
| |
Collapse
|