1
|
Wang R, Li J, Bi Q, Yang B, He T, Lin K, Zhu X, Zhang K, Jin R, Huang C, Nie Y, Zhang X. Crystallographic plane-induced selective mineralization of nanohydroxyapatite on fibrous-grained titanium promotes osteointegration and biocorrosion resistance. Biomaterials 2025; 313:122800. [PMID: 39241551 DOI: 10.1016/j.biomaterials.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.
Collapse
Affiliation(s)
- Ruohan Wang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Juan Li
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qunjie Bi
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Ting He
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaifeng Lin
- Department of Orthodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiangdong Zhu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China; School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Guo M, Liu XY, Li T, Duan Q, Dong XZ, Liu J, Jin F, Zheng ML. Cross-Scale Topography Achieved by MOPL with Positive Photoresist to Regulate the Cell Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303572. [PMID: 37592111 DOI: 10.1002/smll.202303572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Cross-scale micro-nano structures play an important role in semiconductors, MEMS, chemistry, and cell biology. Positive photoresist is widely used in lithography due to the advantages of high resolution and environmental friendliness. However, cross-scale micro-nano structures of positive photoresist are difficult to flexibly pattern, and the feature resolution is limited by the optical diffraction. Here, cross-scale patterned micro-nano structures are achieved using the positive photoresist based on the femtosecond laser maskless optical projection lithography (MOPL) technique. The dependence between exposure dose and groove width is comprehensively analyzed, and a feature size of 112 nm is obtained at 110 µW. Furthermore, large-area topography considering cell size is efficiently fabricated by the MOPL technique, which enables the regulation of cell behavior. The proposed protocol of achieving cross-scale structures with the exact size by MOPL of positive photoresist would provide new avenues for potential applications in nanoelectronics and tissue engineering.
Collapse
Affiliation(s)
- Min Guo
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Xiang-Yang Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Teng Li
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Qi Duan
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Yanqihu Campus, Beijing, 101407, P. R. China
| | - Xian-Zi Dong
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Jie Liu
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Feng Jin
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| | - Mei-Ling Zheng
- Laboratory of Organic NanoPhotonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Adhikari J, Roy A, Chanda A, D A G, Thomas S, Ghosh M, Kim J, Saha P. Effects of surface patterning and topography on the cellular functions of tissue engineered scaffolds with special reference to 3D bioprinting. Biomater Sci 2023; 11:1236-1269. [PMID: 36644788 DOI: 10.1039/d2bm01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) of the tissue organ exhibits a topography from the nano to micrometer range, and the design of scaffolds has been inspired by the host environment. Modern bioprinting aims to replicate the host tissue environment to mimic the native physiological functions. A detailed discussion on the topographical features controlling cell attachment, proliferation, migration, differentiation, and the effect of geometrical design on the wettability and mechanical properties of the scaffold are presented in this review. Moreover, geometrical pattern-mediated stiffness and pore arrangement variations for guiding cell functions have also been discussed. This review also covers the application of designed patterns, gradients, or topographic modulation on 3D bioprinted structures in fabricating the anisotropic features. Finally, this review accounts for the tissue-specific requirements that can be adopted for topography-motivated enhancement of cellular functions during the fabrication process with a special thrust on bioprinting.
Collapse
Affiliation(s)
- Jaideep Adhikari
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Avinava Roy
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Amit Chanda
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Gouripriya D A
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| | - Sabu Thomas
- School of Chemical Sciences, MG University, Kottayam 686560, Kerala, India
| | - Manojit Ghosh
- Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Jinku Kim
- Department of Bio and Chemical Engineering, Hongik University, Sejong, 30016, South Korea.
| | - Prosenjit Saha
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies and Research (JISIASR) Kolkata, JIS University, GP Block, Salt Lake, Sector-5, West Bengal 700091, India.
| |
Collapse
|
6
|
Matejčić M, Trepat X. Mechanobiological approaches to synthetic morphogenesis: learning by building. Trends Cell Biol 2023; 33:95-111. [PMID: 35879149 DOI: 10.1016/j.tcb.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.
Collapse
Affiliation(s)
- Marija Matejčić
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
7
|
LaMontagne E, Muotri AR, Engler AJ. Recent advancements and future requirements in vascularization of cortical organoids. Front Bioeng Biotechnol 2022; 10:1048731. [PMID: 36406234 PMCID: PMC9669755 DOI: 10.3389/fbioe.2022.1048731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
The fields of tissue engineering and disease modeling have become increasingly cognizant of the need to create complex and mature structures in vitro to adequately mimic the in vivo niche. Specifically for neural applications, human brain cortical organoids (COs) require highly stratified neurons and glial cells to generate synaptic functions, and to date, most efforts achieve only fetal functionality at best. Moreover, COs are usually avascular, inducing the development of necrotic cores, which can limit growth, development, and maturation. Recent efforts have attempted to vascularize cortical and other organoid types. In this review, we will outline the components of a fully vascularized CO as they relate to neocortical development in vivo. These components address challenges in recapitulating neurovascular tissue patterning, biomechanical properties, and functionality with the goal of mirroring the quality of organoid vascularization only achieved with an in vivo host. We will provide a comprehensive summary of the current progress made in each one of these categories, highlighting advances in vascularization technologies and areas still under investigation.
Collapse
Affiliation(s)
- Erin LaMontagne
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| |
Collapse
|
8
|
Sala F, Ficorella C, Osellame R, Käs JA, Martínez Vázquez R. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement. BIOSENSORS 2022; 12:bios12080604. [PMID: 36004998 PMCID: PMC9405557 DOI: 10.3390/bios12080604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Understanding cell migration is a key step in unraveling many physiological phenomena and predicting several pathologies, such as cancer metastasis. In particular, confinement has been proven to be a key factor in the cellular migration strategy choice. As our insight in the field improves, new tools are needed in order to empower biologists’ analysis capabilities. In this framework, microfluidic devices have been used to engineer the mechanical and spatial stimuli and to investigate cellular migration response in a more controlled way. In this work, we will review the existing technologies employed in the realization of microfluidic cellular migration assays, namely the soft lithography of PDMS and hydrogels and femtosecond laser micromachining. We will give an overview of the state of the art of these devices, focusing on the different geometrical configurations that have been exploited to study specific aspects of cellular migration. Our scope is to highlight the advantages and possibilities given by each approach and to envisage the future developments in in vitro migration studies under spatial confinement in microfluidic devices.
Collapse
Affiliation(s)
- Federico Sala
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Carlotta Ficorella
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
9
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Oh E, Meckes B, Chang J, Shin D, Mirkin CA. Controlled Glioma Cell Migration and Confinement Using Biomimetic‐Patterned Hydrogels. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- EunBi Oh
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Brian Meckes
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Jinyoung Chang
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Donghoon Shin
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University 2220 Campus Drive Evanston IL 60208 USA
| | - Chad A. Mirkin
- Department of Chemistry Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- International Institute for Nanotechnology Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University 2220 Campus Drive Evanston IL 60208 USA
| |
Collapse
|
11
|
Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero‐Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D‐Printed Scaffolds and Implications in Tissue Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Leire Iturriaga
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Kyle D. Van Gordon
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Garazi Larrañaga-Jaurrieta
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
| | - Sandra Camarero‐Espinosa
- POLYMAT University of the Basque Country UPV/EHU Avenida Tolosa 72 Donostia/San Sebastián 20018 Gipuzkoa Spain
- IKERBASQUE Basque Foundation for Science Bilbao 48009 Spain
| |
Collapse
|
12
|
Micro-scaffolds as synthetic cell niches: recent advances and challenges. Curr Opin Biotechnol 2021; 73:290-299. [PMID: 34619481 DOI: 10.1016/j.copbio.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/01/2023]
Abstract
Micro-fabrication and nano-fabrication provide useful approaches to address fundamental biological questions by mimicking the physiological microenvironment in which cells carry out their functions. In particular, 2D patterns and 3D scaffolds obtained via lithography, direct laser writing, and other techniques allow for shaping hydrogels, synthetic polymers and biologically derived materials to create structures for (single) cell culture. Applications of micro-scaffolds mimicking cell niches include stem cell self-renewal, differentiation, and lineage specification. This review moves from technological aspects of scaffold microfabrication for cell biological applications to a broad overview of advances in (stem) cell research: achievements for embryonic, induced pluripotent, mesenchymal, and neural stem cells are treated in detail, while a particular section is dedicated to micro-scaffolds used to study single cells in basic cell biology.
Collapse
|
13
|
Chang YY, Jiang BC, Chen PY, Chiang YY. An affordable and tunable continuous wrinkle micropattern for cell physical guidance study. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
15
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. From the Matrix to the Nucleus and Back: Mechanobiology in the Light of Health, Pathologies, and Regeneration of Oral Periodontal Tissues. Biomolecules 2021; 11:824. [PMID: 34073044 PMCID: PMC8228498 DOI: 10.3390/biom11060824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Among oral tissues, the periodontium is permanently subjected to mechanical forces resulting from chewing, mastication, or orthodontic appliances. Molecularly, these movements induce a series of subsequent signaling processes, which are embedded in the biological concept of cellular mechanotransduction (MT). Cell and tissue structures, ranging from the extracellular matrix (ECM) to the plasma membrane, the cytosol and the nucleus, are involved in MT. Dysregulation of the diverse, fine-tuned interaction of molecular players responsible for transmitting biophysical environmental information into the cell's inner milieu can lead to and promote serious diseases, such as periodontitis or oral squamous cell carcinoma (OSCC). Therefore, periodontal integrity and regeneration is highly dependent on the proper integration and regulation of mechanobiological signals in the context of cell behavior. Recent experimental findings have increased the understanding of classical cellular mechanosensing mechanisms by both integrating exogenic factors such as bacterial gingipain proteases and newly discovered cell-inherent functions of mechanoresponsive co-transcriptional regulators such as the Yes-associated protein 1 (YAP1) or the nuclear cytoskeleton. Regarding periodontal MT research, this review offers insights into the current trends and open aspects. Concerning oral regenerative medicine or weakening of periodontal tissue diseases, perspectives on future applications of mechanobiological principles are discussed.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
- Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110 Freiburg, Germany
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (M.P.D.); (X.W.); (I.R.); (P.T.)
| |
Collapse
|
16
|
Recent Advances on Surface-modified Biomaterials Promoting Selective Adhesion and Directional Migration of Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2564-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Abstract
The corneal endothelium is the innermost layer of the cornea that selectively pumps ions and metabolites and regulates the hydration level of the cornea, ensuring its transparency. Trauma or disease affecting human corneal endothelial cells (hCECs) can result in major imbalances of such transport activity with consequent deterioration or loss of vision. Since tissue transplantation from deceased donors is only available to a fraction of patients worldwide, alternative solutions are urgently needed. Cell therapy approaches, in particular by attempting to expand primary culture of hCECs in vitro, aim to tackle this issue. However, existing cell culture protocols result in limited expansion of this cell type. Recent studies in this field have shown that topographical features with specific dimensions and shapes could improve the efficacy of hCEC expansion. Therefore, potential solutions to overcome the limitation of the conventional culture of hCECs may include recreating nanometer scale topographies (nanotopographies) that mimic essential biophysical cues present in their native environment. In this review, we summarize the current knowledge and understanding of the effect of substrate topographies on the response of hCECs. Moreover, we also review the latest developments for the nanofabrication of such bio-instructive cell substrates.
Collapse
|
18
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
19
|
Thenard T, Catapano A, Mesnard M, Allena R. A Cellular Potts energy-based approach to analyse the influence of the surface topography on single cell motility. J Theor Biol 2020; 509:110487. [PMID: 32949589 DOI: 10.1016/j.jtbi.2020.110487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/23/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
The surface shape is an important aspect to take into account to ensure the success of an implant. At the cellular scale level, the cell behaviour, especially its migration, is affected by the specificities of the surface of the substrate, such as the stiffness of the surface and its roughness topography. The latter has been shown to have a great impact on various cell mechanisms, such as the cell adhesion, migration, or proliferation. In fact, the mere presence of micro roughness leads to an improvement of those mechanisms, with a better integration of the implants. However, the phenomena behind those improvements are still not clear. In this paper, we propose a three-dimensional (3D) model of a single cell migration using a Cellular Potts (CP) model to study the influence of the surface topography on cell motility. To do so, various configurations were tested, such as: (i) a substrate with a random roughness, (ii) a substrate with a rectangular groove pattern (parallel and perpendicular to the direction of motion), (ii) a substrate with a sinusoidal groove pattern. To evaluate the influence of the surface topography on cell motility, for each configuration, the cell speed and shape as well as the contact surface between the cell and the substrate have been quantified. Our numerical results demonstrate that, in agreement with the experimental observations of the literature, the substrate topography has an influence on the cell efficiency (i.e. cell speed), orientation and shape. Besides, we also show that the increase of the contact surface alone in presence of roughness is not enough to explain the improvement of cell migration on the various rough surfaces. Finally, we highlight the importance of the roughness dimension on cell motility. This could be a critical aspect to consider for further analyses and applications, such as surface treatments for medical applications.
Collapse
Affiliation(s)
- Thomas Thenard
- Arts et Metiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, F-75013 Paris, France; Bordeaux INP, Université de Bordeaux, Arts et Métiers Institute of Technology, CNRS, INRA, HESAM Université, I2M UMR 5295, F-33405 Talence, France.
| | - Anita Catapano
- Bordeaux INP, Université de Bordeaux, Arts et Métiers Institute of Technology, CNRS, INRA, HESAM Université, I2M UMR 5295, F-33405 Talence, France
| | - Michel Mesnard
- Arts et Métiers Institute of Technology, Université de Bordeaux, CNRS, INRA, Bordeaux INP, HESAM Université, I2M UMR 5295, F-33405 Talence, France
| | - Rachele Allena
- Arts et Metiers Institute of Technology, Université Paris 13, Sorbonne Paris Cité, IBHGC, HESAM Université, F-75013 Paris, France
| |
Collapse
|
20
|
Topographical curvature is sufficient to control epithelium elongation. Sci Rep 2020; 10:14784. [PMID: 32901063 PMCID: PMC7479112 DOI: 10.1038/s41598-020-70907-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
How biophysical cues can control tissue morphogenesis is a central question in biology and for the development of efficient tissue engineering strategies. Recent data suggest that specific topographies such as grooves and ridges can trigger anisotropic tissue growth. However, the specific contribution of biologically relevant topographical features such as cell-scale curvature is still unclear. Here we engineer a series of grooves and ridges model topographies exhibiting specific curvature at the ridge/groove junctions and monitored the growth of epithelial colonies on these surfaces. We observe a striking proportionality between the maximum convex curvature of the ridges and the elongation of the epithelium. This is accompanied by the anisotropic distribution of F-actin and nuclei with partial exclusion of both in convex regions as well as the curvature-dependent reorientation of pluricellular protrusions and mitotic spindles. This demonstrates that curvature itself is sufficient to trigger and modulate the oriented growth of epithelia through the formation of convex “topographical barriers” and establishes curvature as a powerful tuning parameter for tissue engineering and biomimetic biomaterial design.
Collapse
|
21
|
Grottkau BE, Hui Z, Ye C, Pang Y. 3D-printed insert-array and 3D-coculture-array for high-throughput screening of cell migration and application to study molecular and cellular influences. ACTA ACUST UNITED AC 2020; 15:055028. [PMID: 32485682 DOI: 10.1088/1748-605x/ab98e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Collective cell migration refers to the movement of groups of cells and collective cell behavior and relies on cell-cell communication and cell-environment interactions. Collective cell migration plays a fundamental role in many aspects of cell biology and pathology. Current protocols for studying collective cell migration either use destructive methods or are not convenient for liquid handling. Here we present a novel 3D-printed insert-array and a 3D-coculture-array for collective cell migration study in high-throughput. The fabricated insert-array is comprised of 96 cylinder shaped inserts which can be placed in each well of a 96-well plate generating watertight contact with the bottom of each well. The insert-array has high manufacturing tolerance, and the coefficient of variations of the insert diameter and circularity are 0.67% and 0.03%, respectively. Each insert generates a circular cell-free area within the well without cell damage and provides convenient access for both manual and robotic liquid handling. Using the 3D-printed insert-array, we studied the migration of human umbilical vein endothelial cells (HUVECs) under the molecular influences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) and under the cellular influences of human mesenchymal stem cells (hMSCs) using the 3D-coculture-array. Our results show that the migration of HUVECs was dose-dependent on the VEGF and bFGF with different correlation patterns. They also generated a synergic pro-migration effect. When cocultured with hMSCs, the migration rate increased significantly while dependent on the number of hMSCs. The effects were partially blocked by VEGF inhibitor which suggests that VEGF secreted from hMSCs plays an important role in cell-to-cell communication during cell migration. The 3D-coculture-array can be manufactured at very low cost and shows higher biomolecule transport efficiency than the commercially available transwell. The calculated Z-factor is 0.66, which classifies our system as a perfect high-throughput assay. In summary, our newly developed insert-array and 3D-coculture-array provide a versatile platform to study collective cell migration in high-throughput as well as the molecular and cellular influences upon it.
Collapse
Affiliation(s)
- Brian E Grottkau
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | |
Collapse
|
22
|
Hu X, Wang Z, Hwang DJ, Cubaud T. Forced Wetting and Dewetting of Water and Oil Droplets on Planar Microfluidic Grids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9269-9275. [PMID: 32672977 DOI: 10.1021/acs.langmuir.0c01601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We experimentally study the wetting behavior of small water and oil droplets spreading and receding from textured surfaces made using a backside laser processing technique. A dual image acquisition system enables the three-dimensional characterization of both wetted area and dynamic contact angles. In particular, we compare droplet growth on smooth surfaces and planar microfluidic grids of various surface coverages and heights and discuss contact angle characterization. The surface texture is shown to trap liquid in microwells during the stick-and-slip motion of advancing contact lines. Receding wetting dynamics of liquid infused substrates shows similarity with forced spreading on smooth surfaces. Contact angle hysteresis is investigated as a function of surface parameters to better delineate specific wetting behaviors of water and oil on laser-processed surfaces.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhen Wang
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - David J Hwang
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Thomas Cubaud
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
23
|
Yamashita T, Nishina T, Matsushita I, Sudo R. Air-pressure-driven Separable Microdevice to Control the Anisotropic Curvature of Cell Culture Surface. ANAL SCI 2020; 36:1015-1019. [PMID: 32201406 DOI: 10.2116/analsci.20a001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report on a novel microdevice to tune the curvature of a cell-adhering surface by controlling the air-pressure and micro-slit. Human aortic smooth muscle cells were cultured on demi-cylindrical concaves formed on a microdevice. Their shape-adapting behavior could be tracked when the groove direction was changed to the orthogonal direction. This microdevice demonstrated live observation of cells responding to dynamic changes of the anisotropic curvature of the adhering surface and could serve as a new platform to pursue mechanobiology on curved surfaces.
Collapse
Affiliation(s)
| | - Takuya Nishina
- Department of System Design Engineering, Keio University
| | | | - Ryo Sudo
- Department of System Design Engineering, Keio University
| |
Collapse
|
24
|
Song J, Michas C, Chen CS, White AE, Grinstaff MW. From Simple to Architecturally Complex Hydrogel Scaffolds for Cell and Tissue Engineering Applications: Opportunities Presented by Two-Photon Polymerization. Adv Healthc Mater 2020; 9:e1901217. [PMID: 31746140 DOI: 10.1002/adhm.201901217] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/14/2019] [Indexed: 01/16/2023]
Abstract
Direct laser writing via two-photon polymerization (2PP) is an emerging micro- and nanofabrication technique to prepare predetermined and architecturally precise hydrogel scaffolds with high resolution and spatial complexity. As such, these scaffolds are increasingly being evaluated for cell and tissue engineering applications. This article first discusses the basic principles and photoresists employed in 2PP fabrication of hydrogels, followed by an in-depth introduction of various mechanical and biological characterization techniques used to assess the fabricated structures. The design requirements for cell and tissue related applications are then described to guide the engineering, physicochemical, and biological efforts. Three case studies in bone, cancer, and cardiac tissues are presented that illustrate the need for structured materials in the next generation of clinical applications. This paper concludes by summarizing the progress to date, identifying additional opportunities for 2PP hydrogel scaffolds, and discussing future directions for 2PP research.
Collapse
Affiliation(s)
- Jiaxi Song
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | - Christos Michas
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
| | | | - Alice E. White
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Department of Mechanical Engineering Boston University Boston MA 02215 USA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Department of Chemistry Boston University Boston MA 02215 USA
- Department of Medicine Boston University Boston MA 02215 USA
| |
Collapse
|
25
|
Carlotti M, Mattoli V. Functional Materials for Two-Photon Polymerization in Microfabrication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902687. [PMID: 31402578 DOI: 10.1002/smll.201902687] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/23/2019] [Indexed: 05/23/2023]
Abstract
Direct laser writing methods based on two-photon polymerization (2PP) are powerful tools for the on-demand printing of precise and complex 3D architectures at the micro and nanometer scale. While much progress was made to increase the resolution and the feature size throughout the years, by carefully designing a material, one can confer specific functional properties to the printed structures thus making them appealing for peculiar and novel applications. This Review summarizes the state-of-the-art of functional resins and photoresists used in 2PP, discussing both the range of material functions available and the methods used to prepare them, highlighting advantages and disadvantages of different classes of materials in achieving certain properties.
Collapse
Affiliation(s)
- Marco Carlotti
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| |
Collapse
|