1
|
Montanari M, Korkeamäki JT, Campodoni E, Mohamed-Ahmed S, Mustafa K, Sandri M, Rashad A. Effects of Magnesium-Doped Hydroxyapatite Nanoparticles on Bioink Formulation for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2025. [PMID: 39778105 DOI: 10.1021/acsabm.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg2+-doped nHA (N-HA) and a more amorphous, rounded Mg2+- and CO32--doped nHA (R-HA). To investigate the effects of the different compositions and morphologies of these nanoparticles on the bioprinting of human bone marrow stromal cells (hBMSCs), gelatin and gelatin methacryloyl (GelMA) were selected as the bioink backbone. The addition of 1% (w/w) of these bioceramic nanoparticles significantly improved the printability of GelMA in terms of extrudability, buildability, and filament spreading. The biological potential of the bioinks was evaluated by examining the hBMSC viability, metabolic activity, and osteogenic differentiation over 21 days. Both nHAs showed high cell viability, with N-HA showing a significant increase in metabolic activity under nonosteogenic conditions and R-HA showing a notable increase with osteogenic stimulation. These results suggest that the two nHAs interact differently with their environment, highlighting the importance of both the chemistry and morphology in bioink performance. In addition, osteogenic differentiation further highlighted how the physicochemical properties of nHAs influence osteogenic markers at both the RNA and protein levels. Clearly, tailoring the physicochemical properties of hydroxyapatite nanoparticles is critical to developing more biomimetic bioinks with great potential for advancing bone bioprinting applications.
Collapse
Affiliation(s)
- Margherita Montanari
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC)─National Research Council (CNR), 48018 Faenza, Ravenna, Italy
| | - Jannika T Korkeamäki
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
| | - Elisabetta Campodoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC)─National Research Council (CNR), 48018 Faenza, Ravenna, Italy
| | - Samih Mohamed-Ahmed
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
| | - Monica Sandri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC)─National Research Council (CNR), 48018 Faenza, Ravenna, Italy
| | - Ahmad Rashad
- Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway
- Bioengineering Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Pragnere S, Essayan L, El-Kholti N, Petiot E, Pailler-Mattei C. In vitrobioprinted 3D model enhancing osteoblast-to-osteocyte differentiation. Biofabrication 2024; 17:015021. [PMID: 39533747 DOI: 10.1088/1758-5090/ad8ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In vitrobone models are pivotal for understanding tissue behavior and cellular responses, particularly in unravelling certain pathologies' mechanisms and assessing the impact of new therapeutic interventions. A desirablein vitrobone model should incorporate primary human cells within a 3D environment that mimics the mechanical properties characteristics of osteoid and faithfully replicate all stages of osteogenic differentiation from osteoblasts to osteocytes. However, to date, no bio-printed model using primary osteoblasts has demonstrated the expression of osteocytic protein markers. This study aimed to develop bio-printedin vitromodel that accurately captures the differentiation process of human primary osteoblasts into osteocytes. Given the considerable impact of hydrogel stiffness and relaxation behavior on osteoblast activity, we employed three distinct cross-linking solutions to fabricate hydrogels. These hydrogels were designed to exhibit either similar elastic behavior with different elastic moduli, or similar elastic moduli with varying relaxation behavior. These hydrogels, composed of gelatin (5% w/v), alginate (1%w/v) and fibrinogen (2%w/v), were designed to be compatible with micro-extrusion bioprinting and proliferative. The modulation of their biomechanical properties, including stiffness and viscoelastic behavior, was achieved by applying various concentrations of cross-linkers targeting both gelatin covalent bonding (transglutaminase) and alginate chains' ionic cross-linking (calcium). Among the conditions tested, the hydrogel with a low elastic modulus of 8 kPa and a viscoelastic behavior over time exhibited promising outcomes regarding osteoblast-to-osteocyte differentiation. The cessation of cell proliferation coincided with a significant increase in alkaline phosphatase activity, the development of dendrites, and the expression of the osteocyte marker PHEX. Within this hydrogel, cells actively influenced their environment, as evidenced by hydrogel contraction and the secretion of collagen I. This bio-printed model, demonstrating primary human osteoblasts expressing an osteocyte-specific protein, marks a significant achievement. We envision its substantial utility in advancing research on bone pathologies, including osteoporosis and bone tumors.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
| | - Lucie Essayan
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Naima El-Kholti
- Tissue Biology and Therapeutic Engineering 7 Passage du Vercors UMR 5305 University of Lyon, CNRS, 69367 Lyon, France, Lyon, Auvergne-Rhône-Alpes FR 69367, France
| | - Emma Petiot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
- ISPB-Faculté de Pharmacie de Lyon, Université Claude Bernard Lyon 1-University of Lyon, Lyon 69008, France
| |
Collapse
|
3
|
Wu E, Huang L, Shen Y, Wei Z, Li Y, Wang J, Chen Z. Application of gelatin-based composites in bone tissue engineering. Heliyon 2024; 10:e36258. [PMID: 39224337 PMCID: PMC11367464 DOI: 10.1016/j.heliyon.2024.e36258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Natural bone tissue has the certain function of self-regeneration and repair, but it is difficult to repair large bone damage. Recently, although autologous bone grafting is the "gold standard" for improving bone repair, it has high cost, few donor sources. Besides, allogeneic bone grafting causes greater immune reactions, which hardly meet clinical needs. The bone tissue engineering (BTE) has been developed to promote bone repair. Gelatin, due to its biocompatibility, receives a great deal of attention in the BTE research field. However, the disadvantages of natural gelatin are poor mechanical properties and single structural property. With the development of BTE, gelatin is often used in combination with a range of natural, synthetic polymers, and inorganic materials to achieve synergistic effects for the complex physiological process of bone repair. The review delves into the fundamental structure and unique properties of gelatin, as well as the excellent properties necessary for bone scaffold materials. Then this review explores the application of modified gelatin three-dimensional (3D) scaffolds with various structures in bone repair, including 3D fiber scaffolds, hydrogels, and nanoparticles. In addition, the review focuses on the excellent efficacy of composite bone tissue scaffolds consisting of modified gelatin, various natural or synthetic polymeric materials, as well as bioactive ceramics and inorganic metallic/non-metallic materials in the repair of bone defects. The combination of these gelatin-based composite scaffolds provides new ideas for the design of scaffold materials for bone repair with good biosafety.
Collapse
Affiliation(s)
- Enguang Wu
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Lianghui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yao Shen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yangbiao Li
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
4
|
Poudel A, Kunwar P, Aryal U, Merife AB, Soman P. CELLNET technology: Spatially organized, functional 3D networks at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603216. [PMID: 39071406 PMCID: PMC11275935 DOI: 10.1101/2024.07.12.603216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cells possess the remarkable ability to generate tissue-specific 3D interconnected networks and respond to a wide range of stimuli. Understanding the link between the spatial arrangement of individual cells and their networks' emergent properties is necessary for the discovery of both fundamental biology as well as applied therapeutics. However, current methods spanning from lithography to 3D photo-patterning to acoustofluidic devices are unable to generate interconnected and organized single cell 3D networks within native extracellular matrix (ECM). To address this challenge, we report a novel technology coined as CELLNET. This involves the generation of crosslinked collagen within multi-chambered microfluidic devices followed by femtosecond laser ablation of 3D microchannel networks and cell seeding. Using model cells, we show that cell migrate within ablated networks within hours, self-organize and form viable, interconnected, 3D networks in custom architectures such as square grid, concentric circle, parallel lines, and spiral patterns. Heterotypic CELLNETs can also be generated by seeding multiple cell types in side-chambers of the devices. The functionality of cell networks can be studied by monitoring the real-time calcium signaling response of individual cells and signal propagation within CELLNETs when subjected to flow stimulus alone or a sequential combination of flow and biochemical stimuli. Furthermore, user-defined disrupted CELLNETs can be generated by lethally injuring target cells within the 3D network and analyzing the changes in their signaling dynamics. As compared to the current self-assembly based methods that exhibit high variability and poor reproducibility, CELLNETs can generate organized 3D single-cell networks and their real-time signaling responses to a range of stimuli can be accurately captured using simple cell seeding and easy-to-handle microfluidic devices. CELLNET, a new technology agnostic of cell types, ECM formulations, 3D cell-connectivity designs, or location and timing of network disruptions, could pave the way to address a range of fundamental and applied bioscience applications. Teaser New technology to generate 3D single cell interconnected and disrupted networks within natural extracellular matrix in custom configurations.
Collapse
|
5
|
da Costa Sousa MG, de Souza Balbinot G, Subbiah R, Visalakshan RM, Tahayeri A, Verde MEL, Athirasala A, Romanowicz G, Guldberg RE, Bertassoni LE. In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale. BIOMATERIALS ADVANCES 2024; 159:213805. [PMID: 38457904 PMCID: PMC10997158 DOI: 10.1016/j.bioadv.2024.213805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.
Collapse
Affiliation(s)
- Mauricio Gonçalves da Costa Sousa
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America
| | - Gabriela de Souza Balbinot
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Department, Porto Alegre, RS, Brazil
| | - Ramesh Subbiah
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America
| | - Rahul Madathiparambil Visalakshan
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America
| | - Anthony Tahayeri
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America
| | - Maria Elisa Lima Verde
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America
| | - Avathamsa Athirasala
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America
| | - Genevieve Romanowicz
- Knight Campus for Accelerating Scientific Impact, University of Oregon, United States of America
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, United States of America
| | - Luiz E Bertassoni
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, United States of America; Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, United States of America; Department of Biomedical Engineering, School of Medicine Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America.
| |
Collapse
|
6
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
7
|
Bernero M, Zauchner D, Müller R, Qin XH. Interpenetrating network hydrogels for studying the role of matrix viscoelasticity in 3D osteocyte morphogenesis. Biomater Sci 2024; 12:919-932. [PMID: 38231154 PMCID: PMC10863643 DOI: 10.1039/d3bm01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
During bone formation, osteoblasts are embedded in a collagen-rich osteoid tissue and differentiate into an extensive 3D osteocyte network throughout the mineralizing matrix. However, how these cells dynamically remodel the matrix and undergo 3D morphogenesis remains poorly understood. Although previous reports investigated the impact of matrix stiffness in osteocyte morphogenesis, the role of matrix viscoelasticity is often overlooked. Here, we report a viscoelastic alginate-collagen interpenetrating network (IPN) hydrogel for 3D culture of murine osteocyte-like IDG-SW3 cells. The IPN hydrogels consist of an ionically crosslinked alginate network to tune stress relaxation as well as a permissive collagen network to promote cell adhesion and matrix remodeling. Two IPN hydrogels were developed with comparable stiffnesses (4.4-4.7 kPa) but varying stress relaxation times (t1/2, 1.5 s and 14.4 s). IDG-SW3 cells were pre-differentiated in 2D under osteogenic conditions for 14 days to drive osteoblast-to-osteocyte transition. Cellular mechanosensitivity to fluid shear stress (2 Pa) was confirmed by live-cell calcium imaging. After embedding in the IPN hydrogels, cells remained highly viable following 7 days of 3D culture. After 24 h, osteocytes in the fast-relaxing hydrogels showed the largest cell area and long dendritic processes. However, a significantly larger increase of some osteogenic markers (ALP, Dmp1, hydroxyapatite) as well as intercellular connections via gap junctions were observed in slow-relaxing hydrogels on day 14. Our results imply that fast-relaxing IPN hydrogels promote early cell spreading, whereas slow relaxation favors osteogenic differentiation. These findings may advance the development of 3D in vivo-like osteocyte models to better understand bone mechanobiology.
Collapse
Affiliation(s)
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Switzerland.
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Switzerland.
| |
Collapse
|
8
|
Avnet S, Pompo GD, Borciani G, Fischetti T, Graziani G, Baldini N. Advantages and limitations of using cell viability assays for 3D bioprinted constructs. Biomed Mater 2024; 19:025033. [PMID: 38306683 DOI: 10.1088/1748-605x/ad2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/02/2024] [Indexed: 02/04/2024]
Abstract
Bioprinting shows promise for bioengineered scaffolds and three-dimensional (3D) disease models, but assessing the viability of embedded cells is challenging. Conventional assays are limited by the technical problems that derive from using multi-layered bioink matrices dispersing cells in three dimensions. In this study, we tested bioprinted osteogenic bioinks as a model system. Alginate- or gelatin-based bioinks were loaded with/without ceramic microparticles and osteogenic cells (bone tumor cells, with or without normal bone cells). Despite demonstrating 80%-90% viability through manual counting and live/dead staining, this was time-consuming and operator-dependent. Moreover, for the alginate-bioprinted scaffold, cell spheroids could not be distinguished from single cells. The indirect assay (alamarBlue), was faster but less accurate than live/dead staining due to dependence on hydrogel permeability. Automated confocal microscope acquisition and cell counting of live/dead staining was more reproducible, reliable, faster, efficient, and avoided overestimates compared to manual cell counting by optical microscopy. Finally, for 1.2 mm thick 3D bioprints, dual-photon confocal scanning with vital staining greatly improved the precision of the evaluation of cell distribution and viability and cell-cell interactions through thez-axis. In summary, automated confocal microscopy and cell counting provided superior accuracy for the assessment of cell viability and interactions in 3D bioprinted models compared to most commonly and currently used techniques.
Collapse
Affiliation(s)
- Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | - Gemma Di Pompo
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giorgia Borciani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tiziana Fischetti
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
- Biomedical Science Technologies, and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
9
|
Gehre C, Qiu W, Klaus Jäger P, Wang X, Marques FC, Nelson BJ, Müller R, Qin XH. Guiding bone cell network formation in 3D via photosensitized two-photon ablation. Acta Biomater 2024; 174:141-152. [PMID: 38061678 DOI: 10.1016/j.actbio.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
A long-standing challenge in skeletal tissue engineering is to reconstruct a three-dimensionally (3D) interconnected bone cell network in vitro that mimics the native bone microarchitecture. While conventional hydrogels are extensively used in studying bone cell behavior in vitro, current techniques lack the precision to manipulate the complex pericellular environment found in bone. The goal of this study is to guide single bone cells to form a 3D network in vitro via photosensitized two-photon ablation of microchannels in gelatin methacryloyl (GelMA) hydrogels. A water-soluble two-photon photosensitizer (P2CK) was added to soft GelMA hydrogels to enhance the ablation efficiency. Remarkably, adding 0.5 mM P2CK reduced the energy dosage threshold five-fold compared to untreated controls, enabling more cell-compatible ablation. By employing low-energy ablation (100 J/cm2) with a grid pattern of 1 µm wide and 30 µm deep microchannels, we induced dendritic outgrowth in human mesenchymal stem cells (hMSC). After 7 days, the cells successfully utilized the microchannels and formed a 3D network. Our findings reveal that cellular viability after low-energy ablation was comparable to unablated controls, whereas high-energy ablation (500 J/cm2) resulted in 42 % cell death. Low-energy grid ablation significantly promoted network formation and >40 µm long protrusion outgrowth. While the broad-spectrum matrix metalloproteinase inhibitor (GM6001) reduced cell spreading by inhibiting matrix degradation, cells invaded the microchannel grid with long protrusions. Collectively, these results emphasize the potential of photosensitized two-photon hydrogel ablation as a high-precision tool for laser-guided biofabrication of 3D cellular networks in vitro. STATEMENT OF SIGNIFICANCE: The inaccessible nature of osteocyte networks in bones renders fundamental research on skeletal biology a major challenge. This limit is partly due to the lack of high-resolution tools that can manipulate the pericellular environment in 3D cultures in vitro. To create bone-like cellular networks, we employ a two-photon laser in combination with a two-photon sensitizer to erode microchannels with low laser dosages into GelMA hydrogels. By providing a grid of microchannels, the cells self-organized into a 3D interconnected network within days. Laser-guided formation of 3D networks from single cells at micron-scale resolution is demonstrated for the first time. In future, we envisage in vitro generation of bone cell networks with user-dictated morphologies for both fundamental and translational bone research.
Collapse
Affiliation(s)
| | - Wanwan Qiu
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | | | - Xiaopu Wang
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | | | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, Zürich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
10
|
Chen H, Xue H, Zeng H, Dai M, Tang C, Liu L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: a review. Biomater Res 2023; 27:137. [PMID: 38142273 DOI: 10.1186/s40824-023-00460-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 12/25/2023] Open
Abstract
Hyaluronic acid (HA) is widely distributed in human connective tissue, and its unique biological and physicochemical properties and ability to facilitate biological structure repair make it a promising candidate for three-dimensional (3D) bioprinting in the field of tissue regeneration and biomedical engineering. Moreover, HA is an ideal raw material for bioinks in tissue engineering because of its histocompatibility, non-immunogenicity, biodegradability, anti-inflammatory properties, anti-angiogenic properties, and modifiability. Tissue engineering is a multidisciplinary field focusing on in vitro reconstructions of mammalian tissues, such as cartilage tissue engineering, neural tissue engineering, skin tissue engineering, and other areas that require further clinical applications. In this review, we first describe the modification methods, cross-linking methods, and bioprinting strategies for HA and its derivatives as bioinks and then critically discuss the strengths, shortcomings, and feasibility of each method. Subsequently, we reviewed the practical clinical applications and outcomes of HA bioink in 3D bioprinting. Finally, we describe the challenges and opportunities in the development of HA bioink to provide further research references and insights.
Collapse
Affiliation(s)
- Han Chen
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
- Xijing Hospital of Air Force Military Medical University, Xi'an, 710032, China
| | - Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
- Ningxia Medical University, Ningxia, 750004, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China.
| |
Collapse
|
11
|
Lin Y, Yuan K, Yang Y, Yang S, Huang K, Yu Z, Zhang S, Liu Y, Li H, Dong Y, Tang T. Osteosarocma progression in biomimetic matrix with different stiffness: Insights from a three-dimensional printed gelatin methacrylamide hydrogel. Int J Biol Macromol 2023; 252:126391. [PMID: 37595702 DOI: 10.1016/j.ijbiomac.2023.126391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Recent studies on osteosarcoma and matrix stiffness are still mostly performed in a 2D setting, which is distinct from in vivo conditions. Therefore, the results from the 2D models may not reflect the real effect of matrix stiffness on cell phenotype. Here, we employed a 3D bioprinted osteosarcoma model, to study the effect of matrix stiffness on osteosarcoma cells. Through density adjustment of GelMA, we constructed three osteosarcoma models with distinct matrix stiffnesses of 50, 80, and 130 kPa. In this study, we found that osteosarcoma cells proliferated faster, migrated more actively, had a more stretched morphology, and a lower drug sensitivity in a softer 3D matrix. When placed in a stiffer matrix, osteosarcoma cells secrete more MMP and VEGF, potentially to fight for survival and attract vascular invasion. Transcriptomic analysis showed that matrix stiffness could impact the signaling pathway of integrin α5-MAPK. The transplantation of 3D printed models in nude mice showed that cells encapsulated in the softer hydrogel were more likely to form subcutaneous tumors. These results suggest that matrix stiffness plays an important role in the development of osteosarcoma in a 3D environment and that inhibition of integrin α5 could block the signal transduction of matrix stiffness.
Collapse
Affiliation(s)
- Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuhong Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hanjun Li
- Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Yang Dong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Sousa MGDC, Balbinot GDS, Subbiah R, Visalakshan RM, Tahayeri A, Lima Verde ME, Athirasala A, Romanowicz G, Guldberg RE, Bertassoni LE. In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.560919. [PMID: 37873385 PMCID: PMC10592738 DOI: 10.1101/2023.10.10.560919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98% viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, indicating that mineralization effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.
Collapse
|
13
|
Yang Y, Yuan K, Liu Y, Wang Q, Lin Y, Yang S, Huang K, Kan T, Zhang Y, Xu M, Yu Z, Fan Q, Wang Y, Li H, Tang T. Constitutively activated AMPKα1 protects against skeletal aging in mice by promoting bone-derived IGF-1 secretion. Cell Prolif 2023; 56:e13476. [PMID: 37042047 PMCID: PMC10542616 DOI: 10.1111/cpr.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
Senile osteoporosis is characterized by age-related bone loss and bone microarchitecture deterioration. However, little is known to date about the mechanism that maintains bone homeostasis during aging. In this study, we identify adenosine monophosphate-activated protein kinase alpha 1 (AMPKα1) as a critical factor regulating the senescence and lineage commitment of mesenchymal stem cells (MSCs). A phospho-mutant mouse model shows that constitutive AMPKα1 activation prevents age-related bone loss and promoted MSC osteogenic commitment with increased bone-derived insulin-like growth factor 1 (IGF-1) secretion. Mechanistically, upregulation of IGF-1 signalling by AMPKα1 depends on cAMP-response element binding protein (CREB)-mediated transcriptional regulation. Furthermore, the essential role of the AMPKα1/IGF-1/CREB axis in promoting aged MSC osteogenic potential is confirmed using three-dimensional (3D) culture systems. Taken together, these results can provide mechanistic insight into the protective effect of AMPKα1 against skeletal aging by promoting bone-derived IGF-1 secretion.
Collapse
Affiliation(s)
- Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qishan Wang
- School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Mingming Xu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yugang Wang
- Department of Trauma Surgery, Department of Orthopedics, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Hanjun Li
- Clinical Stem Cell Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Gao Y, Zhang X, Zhou H. Biomimetic Hydrogel Applications and Challenges in Bone, Cartilage, and Nerve Repair. Pharmaceutics 2023; 15:2405. [PMID: 37896165 PMCID: PMC10609742 DOI: 10.3390/pharmaceutics15102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tissue engineering and regenerative medicine is a highly sought-after field for researchers aiming to compensate and repair defective tissues. However, the design and development of suitable scaffold materials with bioactivity for application in tissue repair and regeneration has been a great challenge. In recent years, biomimetic hydrogels have shown great possibilities for use in tissue engineering, where they can tune mechanical properties and biological properties through functional chemical modifications. Also, biomimetic hydrogels provide three-dimensional (3D) network spatial structures that can imitate normal tissue microenvironments and integrate cells, scaffolds, and bioactive substances for tissue repair and regeneration. Despite the growing interest in various hydrogels for biomedical use in previous decades, there are still many aspects of biomimetic hydrogels that need to be understood for biomedical and clinical trial applications. This review systematically describes the preparation of biomimetic hydrogels and their characteristics, and it details the use of biomimetic hydrogels in bone, cartilage, and nerve tissue repair. In addition, this review outlines the application of biomimetic hydrogels in bone, cartilage, and neural tissues regarding drug delivery. In particular, the advantages and shortcomings of biomimetic hydrogels in biomaterial tissue engineering are highlighted, and future research directions are proposed.
Collapse
Affiliation(s)
- Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710000, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
15
|
Lipreri MV, Di Pompo G, Boanini E, Graziani G, Sassoni E, Baldini N, Avnet S. Bone on-a-chip: a 3D dendritic network in a screening platform for osteocyte-targeted drugs. Biofabrication 2023; 15:045019. [PMID: 37552982 DOI: 10.1088/1758-5090/acee23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Age-related musculoskeletal disorders, including osteoporosis, are frequent and associated with long lasting morbidity, in turn significantly impacting on healthcare system sustainability. There is therefore a compelling need to develop reliable preclinical models of disease and drug screening to validate novel drugs possibly on a personalized basis, without the need ofin vivoassay. In the context of bone tissue, although the osteocyte (Oc) network is a well-recognized therapeutic target, currentin vitropreclinical models are unable to mimic its physiologically relevant and highly complex structure. To this purpose, several features are needed, including an osteomimetic extracellular matrix, dynamic perfusion, and mechanical cues (e.g. shear stress) combined with a three-dimensional (3D) culture of Oc. Here we describe, for the first time, a high throughput microfluidic platform based on 96-miniaturized chips for large-scale preclinical evaluation to predict drug efficacy. We bioengineered a commercial microfluidic device that allows real-time visualization and equipped with multi-chips by the development and injection of a highly stiff bone-like 3D matrix, made of a blend of collagen-enriched natural hydrogels loaded with hydroxyapatite nanocrystals. The microchannel, filled with the ostemimetic matrix and Oc, is subjected to passive perfusion and shear stress. We used scanning electron microscopy for preliminary material characterization. Confocal microscopy and fluorescent microbeads were used after material injection into the microchannels to detect volume changes and the distribution of cell-sized objects within the hydrogel. The formation of a 3D dendritic network of Oc was monitored by measuring cell viability, evaluating phenotyping markers (connexin43, integrin alpha V/CD51, sclerostin), quantification of dendrites, and responsiveness to an anabolic drug. The platform is expected to accelerate the development of new drug aimed at modulating the survival and function of osteocytes.
Collapse
Affiliation(s)
| | - Gemma Di Pompo
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Bologna, Italy
| | - Gabriela Graziani
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Biomedical Science, Technologies, and Nanobiotecnologiy Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Zhu Y, Wang W, Chen Q, Ren T, Yang J, Li G, Qi Y, Yuan C, Wang P. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo. Clin Oral Investig 2023; 27:5153-5170. [PMID: 37428274 DOI: 10.1007/s00784-023-05135-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES We aimed to explore the osteogenic potential of periodontal ligament stem cells (PDLSCs) in bioprinted methacrylate gelatine (GelMA) hydrogels in vitro and in vivo. MATERIALS AND METHODS PDLSCs in GelMA hydrogels at various concentrations (3%, 5%, and 10%) were bioprinted. The mechanical properties (stiffness, nanostructure, swelling, and degradation properties) of bioprinted constructs and the biological properties (cell viability, proliferation, spreading, osteogenic differentiation, and cell survival in vivo) of PDLSCs in bioprinted constructs were evaluated. Then, the effect of bioprinted constructs on bone regeneration was investigated using a mouse cranial defect model. RESULTS Ten percent GelMA printed constructs had a higher compression modulus, smaller porosity, lower swelling rate, and lower degradation rate than 3% GelMA. PDLSCs in bioprinted 10% GelMA bioprinted constructs showed lower cell viability, less cell spreading, upregulated osteogenic differentiation in vitro, and lower cell survival in vivo. Moreover, upregulated expression of ephrinB2 and EphB4 protein and their phosphorylated forms were found in PDLSCs in 10% GelMA bioprinted constructs, and inhibition of eprhinB2/EphB4 signalling reversed the enhanced osteogenic differentiation of PDLSCs in 10% GelMA. The in vivo experiment showed that 10% GelMA bioprinted constructs with PDLSCs contributed to more new bone formation than 10% GelMA constructs without PDLSCs and constructs with lower GelMA concentrations. CONCLUSIONS Bioprinted PDLSCs with high-concentrated GelMA hydrogels exhibited enhanced osteogenic differentiation partially through upregulated ephrinB2/EphB4 signalling in vitro and promoted bone regeneration in vivo, which might be more appropriate for future bone regeneration applications. CLINICAL RELEVANCE Bone defects are a common clinical oral problem. Our results provide a promising strategy for bone regeneration through bioprinting PDLSCs in GelMA hydrogels.
Collapse
Affiliation(s)
- Yaru Zhu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen Wang
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Qiyu Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tianshui Ren
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jianguang Yang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Gan Li
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Yanbin Qi
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Changyong Yuan
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| | - Penglai Wang
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
17
|
Lu W, Zeng M, Liu W, Ma T, Fan X, Li H, Wang Y, Wang H, Hu Y, Xie J. Human urine-derived stem cell exosomes delivered via injectable GelMA templated hydrogel accelerate bone regeneration. Mater Today Bio 2023; 19:100569. [PMID: 36846309 PMCID: PMC9945756 DOI: 10.1016/j.mtbio.2023.100569] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The key to critical bone regeneration in tissue engineering relies on an ideal bio-scaffold coated with a controlled release of growth factors. Gelatin methacrylate (GelMA) and Hyaluronic acid methacrylate (HAMA) have been a novel topic of interest in bone regeneration while introducing appropriate nano-hydroxyapatite (nHAP) to improve its mechanical properties. And the exosomes derived from human urine-derived stem cells (human USCEXOs) have also been reported to promote osteogenesis in tissue engineering. The present study aimed to design a new GelMA-HAMA/nHAP composite hydrogel as a drug delivery system. The USCEXOs were encapsulated and slow-released in the hydrogel for better osteogenesis. The characterization of the GelMA-based hydrogel showed excellent controlled release performance and appropriate mechanical properties. The in vitro studies showed that the USCEXOs/GelMA-HAMA/nHAP composite hydrogel could promote the osteogenesis of bone marrow mesenchymal stem cells (BMSCs) and the angiogenesis of endothelial progenitor cells (EPCs), respectively. Meanwhile, the in vivo results confirmed that this composite hydrogel could significantly promote the defect repair of cranial bone in the rat model. In addition, we also found that USCEXOs/GelMA-HAMA/nHAP composite hydrogel can promote the formation of H-type vessels in the bone regeneration area, enhancing the therapeutic effect. In conclusion, our findings suggested that this controllable and biocompatible USCEXOs/GelMA-HAMA/nHAP composite hydrogel may effectively promote bone regeneration by coupling osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Wei Lu
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Min Zeng
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Tianliang Ma
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Xiaolei Fan
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hui Li
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Yinan Wang
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Haoyi Wang
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jie Xie
- Department of Orthopedic Surgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Salehi S, Tavakoli M, Mirhaj M, Varshosaz J, Labbaf S, Karbasi S, Jafarpour F, Kazemi N, Salehi S, Mehrjoo M, Emami E. A 3D printed polylactic acid-Baghdadite nanocomposite scaffold coated with microporous chitosan-VEGF for bone regeneration applications. Carbohydr Polym 2023; 312:120787. [PMID: 37059527 DOI: 10.1016/j.carbpol.2023.120787] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Three-dimensional (3D) printing technology has become an advanced approach for fabricating patient-specific scaffolds with complex geometric shapes to replace damaged or diseased tissue. Herein, polylactic acid (PLA)-Baghdadite (Bgh) scaffold were made through the fused deposition modeling (FDM) 3D printing method and subjected to alkaline treatment. Following fabrication, the scaffolds were coated with either chitosan (Cs)-vascular endothelial growth factor (VEGF) or lyophilized Cs-VEGF known as PLA-Bgh/Cs-VEGF and PLA-Bgh/L.(Cs-VEGF), respectively. Based on the results, it was found that the coated scaffolds had higher porosity, compressive strength and elastic modulus than PLA and PLA-Bgh samples. Also, the osteogenic differentiation potential of scaffolds following culture with rat bone marrow-derived mesenchymal stem cells (rMSCs) was evaluated through crystal violet and Alizarin-red staining, alkaline phosphatase (ALP) activity and calcium content assays, osteocalcin measurements, and gene expression analysis. The release of VEGF from the coated scaffolds was assessed and also the angiogenic potential of scaffolds was evaluated. The sum of results presented in the current study strongly suggests that the PLA-Bgh/L.(Cs-VEGF) scaffold can be a proper candidate for bone healing applications.
Collapse
Affiliation(s)
- Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Sepideh Salehi
- Department of Medicine, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Eshagh Emami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Ostrovidov S, Ramalingam M, Bae H, Orive G, Fujie T, Shi X, Kaji H. Bioprinting and biomaterials for dental alveolar tissue regeneration. Front Bioeng Biotechnol 2023; 11:991821. [PMID: 37122863 PMCID: PMC10140526 DOI: 10.3389/fbioe.2023.991821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- School of Basic Medical Science, Chengdu University, Chengdu, China
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, Republic of Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, Ankara, Türkiye
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Hwayang-dong, Seoul, Republic of Korea
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Toshinori Fujie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Living System Materialogy (LiSM) Reseach Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, Yokohama, Japan
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Hirokazu Kaji,
| |
Collapse
|
20
|
Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma. Bioact Mater 2022; 18:459-470. [PMID: 35415297 PMCID: PMC8971536 DOI: 10.1016/j.bioactmat.2022.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models and tumour spheroids, our 3DBPO model showed significant changes in cell cycle, metabolism, adherens junctions, and other pathways associated with epigenetic regulation. The 3DBPO model was more sensitive to therapies targeted to the autophagy pathway. We showed that simulating ECM yielded different osteosarcoma cell metabolic characteristics and drug sensitivity in the 3DBPO model compared with classical models. We suggest 3D printed osteosarcoma models can be used in osteosarcoma fundamental and translational research, which may contribute to novel therapeutic strategy discovery. 3DBPO model behaved better than traditional 2D and CSC models in simulating in vivo osteosarcoma microenvironment. 3DBPO model showed significant changes in many signaling pathways associated with epigenetic regulation. 3DBPO model was particularly sensitive to autophagy-related drugs.
Collapse
|
21
|
Pan RL, Martyniak K, Karimzadeh M, Gelikman DG, DeVries J, Sutter K, Coathup M, Razavi M, Sawh-Martinez R, Kean TJ. Systematic review on the application of 3D-bioprinting technology in orthoregeneration: current achievements and open challenges. J Exp Orthop 2022; 9:95. [PMID: 36121526 PMCID: PMC9485345 DOI: 10.1186/s40634-022-00518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Joint degeneration and large or complex bone defects are a significant source of morbidity and diminished quality of life worldwide. There is an unmet need for a functional implant with near-native biomechanical properties. The potential for their generation using 3D bioprinting (3DBP)-based tissue engineering methods was assessed. We systematically reviewed the current state of 3DBP in orthoregeneration. METHODS This review was performed using PubMed and Web of Science. Primary research articles reporting 3DBP of cartilage, bone, vasculature, and their osteochondral and vascular bone composites were considered. Full text English articles were analyzed. RESULTS Over 1300 studies were retrieved, after removing duplicates, 1046 studies remained. After inclusion and exclusion criteria were applied, 114 articles were analyzed fully. Bioink material types and combinations were tallied. Cell types and testing methods were also analyzed. Nearly all papers determined the effect of 3DBP on cell survival. Bioink material physical characterization using gelation and rheology, and construct biomechanics were performed. In vitro testing methods assessed biochemistry, markers of extracellular matrix production and/or cell differentiation into respective lineages. In vivo proof-of-concept studies included full-thickness bone and joint defects as well as subcutaneous implantation in rodents followed by histological and µCT analyses to demonstrate implant growth and integration into surrounding native tissues. CONCLUSIONS Despite its relative infancy, 3DBP is making an impact in joint and bone engineering. Several groups have demonstrated preclinical efficacy of mechanically robust constructs which integrate into articular joint defects in small animals. However, notable obstacles remain. Notably, researchers encountered pitfalls in scaling up constructs and establishing implant function and viability in long term animal models. Further, to translate from the laboratory to the clinic, standardized quality control metrics such as construct stiffness and graft integration metrics should be established with investigator consensus. While there is much work to be done, 3DBP implants have great potential to treat degenerative joint diseases and provide benefit to patients globally.
Collapse
Affiliation(s)
- Rachel L Pan
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kari Martyniak
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Makan Karimzadeh
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - David G Gelikman
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jonathan DeVries
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kelly Sutter
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Mehdi Razavi
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Rajendra Sawh-Martinez
- College of Medicine, University of Central Florida, Orlando, FL, USA.,Plastic and Reconstructive Surgery, AdventHealth, Orlando, FL, USA
| | - Thomas J Kean
- Biionix Cluster, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
22
|
Wang D, Guo Y, Zhu J, Liu F, Xue Y, Huang Y, Zhu B, Wu D, Pan H, Gong T, Lu Y, Yang Y, Wang Z. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater 2022:S1742-7061(22)00375-0. [PMID: 35803504 DOI: 10.1016/j.actbio.2022.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Islet transplantation has poor long-term efficacy because of the lack of extracellular matrix support and neovascularization; this limits its wide application in diabetes research. In this study, we develop a 3D-printed islet organoid by combining a pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) as specific bioinks. The HAMA/pECM hydrogel was validated in vitro to maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, which helps improve islet function and activity. Further, in vivo experiments confirmed that the 3D-printed islet-encapsulated HAMA/pECM hydrogel increases insulin levels in diabetic mice, maintains blood glucose levels within a normal range for 90 days, and rapidly secretes insulin in response to blood glucose stimulation. In addition, the HAMA/pECM hydrogel can facilitate the attachment and growth of new blood vessels and increase the density of new vessels. Meanwhile, the designed 3D-printed structure was conducive to the formation of vascular networks and it promoted the construction of 3D-printed islet organoids. In conclusion, our experiments optimized the HAMA/pECM bioink composition and 3D-printed structure of islet organoids with promising therapeutic effects compared with the HAMA hydrogel group that can be potentially used in clinical applications to improve the effectiveness and safety of islet transplantation in vivo. STATEMENT OF SIGNIFICANCE: The extraction process of pancreatic islets can easily cause damage to the extracellular matrix and vascular system, resulting in poor islet transplantation efficiency. We developed a new tissue-specific bioink by combining pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA). The islet organoids constructed by 3D printing can mimic the microenvironment of the pancreas and maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, thereby improving islet function and activity. In addition, the 3D-printed structures we designed are favorable for the formation of new blood vessel networks, bringing hope for the long-term efficacy of islet transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Jiacheng Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Fang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Yan Xue
- Department of Internal Medicine, Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Haopeng Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
23
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
|
25
|
Jiao C, Zhao C, Ma Y, Yang W. A Versatile Strategy to Coat Individual Cell with Fully/Partially Covered Shell for Preparation of Self-Propelling Living Cells. ACS NANO 2021; 15:15920-15929. [PMID: 34591443 DOI: 10.1021/acsnano.1c03896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coating living cells with a functional shell has been regarded as an effective way to protect them against environmental stress, regulate their biological behaviors, or extend their functionalities. Here, we reported a facile method to prepare fully or partially coated shells on an individual yeast cell surface by visible light-induced graft polymerization. In this strategy, yeast cells that were surface-absorbed with polyethylenimine (PEI) were deposited on the negatively charged glass slide to form a single layer by electrostatic interaction. Then, surface-initiated graft polymerization of poly(ethylene glycol) diacrylate (PEGDA) on yeast cells under visible light irradiation was carried out to generate cross-linked shells on the cells. The process of surface modification had negligible influence on the viability of yeast cells due to the mild reaction condition. Additionally, compared to the native yeast cells, a 17.5 h of delay in division was observed when the graft polymerization was performed under 15 mW/cm2 irradiation for 30 min. Introducing artificial shell endowed yeast cells with significant resistance against lyticase, and the protection can be enhanced by increasing the thickness of shell. Moreover, the partially coated yeast cells would be prepared by simply adjusting the reaction condition such as irradiation density and time. By immobilizing urease on the functional patch, the asymmetrically modified yeast cells exhibited self-propelling capability, and the speed of directional movement reached 4 μm/s in the presence of 200 mM urea. This tunable coating individual cell strategy with varying functionality has great potential applications in fields of cell-based drug delivery, cell therapy, biocatalysis, and tissue engineering.
Collapse
Affiliation(s)
- Chong Jiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education Beijing, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
26
|
3D Printing and Bioprinting to Model Bone Cancer: The Role of Materials and Nanoscale Cues in Directing Cell Behavior. Cancers (Basel) 2021; 13:cancers13164065. [PMID: 34439218 PMCID: PMC8391202 DOI: 10.3390/cancers13164065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Bone cancer, both primary and metastatic, is characterized by a low survival rate. Currently, available models lack in mimicking the complexity of bone, of cancer, and of their microenvironment, leading to poor predictivity. Three-dimensional technologies can help address this need, by developing predictive models that can recapitulate the conditions for cancer development and progression. Among the existing tools to obtain suitable 3D models of bone cancer, 3D printing and bioprinting appear very promising, as they enable combining cells, biomolecules, and biomaterials into organized and complex structures that can reproduce the main characteristic of bone. The challenge is to recapitulate a bone-like microenvironment for analysis of stromal-cancer cell interactions and biological mechanics leading to tumor progression. In this review, existing approaches to obtain in vitro 3D-printed and -bioprinted bone models are discussed, with a focus on the role of biomaterials selection in determining the behavior of the models and its degree of customization. To obtain a reliable 3D bone model, the evaluation of different polymeric matrices and the inclusion of ceramic fillers is of paramount importance, as they help reproduce the behavior of both normal and cancer cells in the bone microenvironment. Open challenges and future perspectives are discussed to solve existing shortcomings and to pave the way for potential development strategies.
Collapse
|
27
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
28
|
Smit TH. Closing the osteon: Do osteocytes sense strain rate rather than fluid flow? Bioessays 2021; 43:e2000327. [PMID: 34111316 DOI: 10.1002/bies.202000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/05/2022]
Abstract
Osteons are cylindrical structures of bone created by matrix resorbing osteoclasts, followed by osteoblasts that deposit new bone. Osteons align with the principal loading direction and it is thought that the osteoclasts are directed by osteocytes, the mechanosensitive cells that reside inside the bone matrix. These osteocytes are presumably controlled by interstitial fluid flow, induced by the physiological loading of bones. Here I consider the stimulation of osteocytes while the osteon is closed by osteoblasts. In a conceptual finite element model, bone is considered a poro-elastic material and subjected to locomotion-induced loading conditions. It appears that the magnitude of flow is constant along the closing cone, while shear strain rate in the bone matrix diminishes linearly with the deposition of bone. This suggests that shear strain rate, rather than fluid flow, is the physical cue that controls osteocytes and bone deposition in newly formed osteons.
Collapse
Affiliation(s)
- Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department of Orthopaedic Surgery, Amsterdam University Medical Centers, Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Chang B, Liu X. Osteon: Structure, Turnover, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:261-278. [PMID: 33487116 DOI: 10.1089/ten.teb.2020.0322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone is composed of dense and solid cortical bone and honeycomb-like trabecular bone. Although cortical bone provides the majority of mechanical strength for a bone, there are few studies focusing on cortical bone repair or regeneration. Osteons (the Haversian system) form structural and functional units of cortical bone. In recent years, emerging evidences have shown that the osteon structure (including osteocytes, lamellae, lacunocanalicular network, and Haversian canals) plays critical roles in bone mechanics and turnover. Therefore, reconstruction of the osteon structure is crucial for cortical bone regeneration. This article provides a systematic summary of recent advances in osteons, including the structure, function, turnover, and regenerative strategies. First, the hierarchical structure of osteons is illustrated and the critical functions of osteons in bone dynamics are introduced. Next, the modeling and remodeling processes of osteons at a cellular level and the turnover of osteons in response to mechanical loading and aging are emphasized. Furthermore, several bioengineering approaches that were recently developed to recapitulate the osteon structure are highlighted. Impact statement This review provides a comprehensive summary of recent advances in osteons, especially the roles in bone formation, remodeling, and regeneration. Besides introducing the hierarchical structure and critical functions of osteons, we elucidate the modeling and remodeling of osteons at a cellular level. Specifically, we highlight the bioengineering approaches that were recently developed to mimic the hierarchical structure of osteons. We expect that this review will provide informative insights and attract increasing attentions in orthopedic community, shedding light on cortical bone regeneration in the future.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
30
|
|
31
|
Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021; 9:5385-5413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decade, 3D bioprinting technology has progressed tremendously in the field of tissue engineering in its ability to fabricate individualized biological constructs with precise geometric designability, which offers us the capability to bridge the divergence between engineered tissue constructs and natural tissues. In this work, we first review the current widely used 3D bioprinting approaches, cells, and materials. Next, the updated applications of this technique in tissue engineering, including bone tissue, cartilage tissue, vascular grafts, skin, neural tissue, heart tissue, liver tissue and lung tissue, are briefly introduced. Then, the prominent advantages of 3D bioprinting in tissue engineering are summarized in detail: rapidly prototyping the customized structure, delivering cell-laden materials with high precision in space, and engineering with a highly controllable microenvironment. The current technical deficiencies of 3D bioprinted constructs in terms of mechanical properties and cell behaviors are afterward illustrated, as well as corresponding improvements. Finally, we conclude with future perspectives about 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Shaolei Gan
- Jiangxi Borayer Biotech Co., Ltd, Nanchang 330052, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
32
|
Ning L, Gil CJ, Hwang B, Theus AS, Perez L, Tomov ML, Bauser-Heaton H, Serpooshan V. Biomechanical factors in three-dimensional tissue bioprinting. APPLIED PHYSICS REVIEWS 2020; 7:041319. [PMID: 33425087 PMCID: PMC7780402 DOI: 10.1063/5.0023206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 05/07/2023]
Abstract
3D bioprinting techniques have shown great promise in various fields of tissue engineering and regenerative medicine. Yet, creating a tissue construct that faithfully represents the tightly regulated composition, microenvironment, and function of native tissues is still challenging. Among various factors, biomechanics of bioprinting processes play fundamental roles in determining the ultimate outcome of manufactured constructs. This review provides a comprehensive and detailed overview on various biomechanical factors involved in tissue bioprinting, including those involved in pre, during, and post printing procedures. In preprinting processes, factors including viscosity, osmotic pressure, and injectability are reviewed and their influence on cell behavior during the bioink preparation is discussed, providing a basic guidance for the selection and optimization of bioinks. In during bioprinting processes, we review the key characteristics that determine the success of tissue manufacturing, including the rheological properties and surface tension of the bioink, printing flow rate control, process-induced mechanical forces, and the in situ cross-linking mechanisms. Advanced bioprinting techniques, including embedded and multi-material printing, are explored. For post printing steps, general techniques and equipment that are used for characterizing the biomechanical properties of printed tissue constructs are reviewed. Furthermore, the biomechanical interactions between printed constructs and various tissue/cell types are elaborated for both in vitro and in vivo applications. The review is concluded with an outlook regarding the significance of biomechanical processes in tissue bioprinting, presenting future directions to address some of the key challenges faced by the bioprinting community.
Collapse
Affiliation(s)
- Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Carmen J. Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Lilanni Perez
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia 30322, USA
| | - Holly Bauser-Heaton
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| | - Vahid Serpooshan
- Authors to whom correspondence should be addressed:. Telephone: 404-712-9717. Fax: 404-727-9873
| |
Collapse
|
33
|
Wang M, Li H, Yang Y, Yuan K, Zhou F, Liu H, Zhou Q, Yang S, Tang T. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection. Bioact Mater 2020; 6:1318-1329. [PMID: 33210025 PMCID: PMC7658329 DOI: 10.1016/j.bioactmat.2020.10.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Large bone defects face a high risk of pathogen exposure due to open wounds, which leads to high infection rates and delayed bone union. To promote successful repair of infectious bone defects, fabrication of a scaffold with dual functions of osteo-induction and bacterial inhibition is required. This study describes creation of an engineered progenitor cell line (C3H10T1/2) capable of doxycycline (DOX)-mediated release of bone morphogenetic protein-2 (BMP2). Three-dimensional bioprinting technology enabled creation of scaffolds, comprising polycaprolactone/mesoporous bioactive glass/DOX and bioink, containing these engineered cells. In vivo and in vitro experiments confirmed that the scaffold could actively secrete BMP2 to significantly promote osteoblast differentiation and induce ectopic bone formation. Additionally, the scaffold exhibited broad-spectrum antibacterial capacity, thereby ensuring the survival of embedded engineered cells when facing high risk of infection. These findings demonstrated the efficacy of this bioprinted scaffold to release BMP2 in a controlled manner and prevent the occurrence of infection; thus, showing its potential for repairing infectious bone defects. Genetic engineering and 3D bioprinting. Dual-functional. Suitable for infectious bone defect repair.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Hanjun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Yiqi Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Feng Zhou
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Haibei Liu
- Shanghai Graphic Design Information Co. Ltd, Shanghai, 200011, China
| | - Qinghui Zhou
- Shanghai Graphic Design Information Co. Ltd, Shanghai, 200011, China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China
| |
Collapse
|