1
|
Rijns L, Rutten MGTA, Vrehen AF, Aldana AA, Baker MB, Dankers PYW. Mimicking the extracellular world: from natural to fully synthetic matrices utilizing supramolecular biomaterials. NANOSCALE 2024; 16:16290-16312. [PMID: 39161293 DOI: 10.1039/d4nr02088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The extracellular matrix (ECM) has evolved around complex covalent and non-covalent interactions to create impressive function-from cellular signaling to constant remodeling. A major challenge in the biomedical field is the de novo design and control of synthetic ECMs for applications ranging from tissue engineering to neuromodulation to bioelectronics. As we move towards recreating the ECM's complexity in hydrogels, the field has taken several approaches to recapitulate the main important features of the native ECM (i.e. mechanical, bioactive and dynamic properties). In this review, we first describe the wide variety of hydrogel systems that are currently used, ranging from fully natural to completely synthetic to hybrid versions, highlighting the advantages and limitations of each class. Then, we shift towards supramolecular hydrogels that show great potential for their use as ECM mimics due to their biomimetic hierarchical structure, inherent (controllable) dynamic properties and their modular design, allowing for precise control over their mechanical and biochemical properties. In order to make the next step in the complexity of synthetic ECM-mimetic hydrogels, we must leverage the supramolecular self-assembly seen in the native ECM; we therefore propose to use supramolecular monomers to create larger, hierarchical, co-assembled hydrogels with complex and synergistic mechanical, bioactive and dynamic features.
Collapse
Affiliation(s)
- Laura Rijns
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Martin G T A Rutten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Annika F Vrehen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ana A Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Van Damme L, Blondeel P, Van Vlierberghe S. Reconstructing Curves: A Bottom-Up Approach toward Adipose Tissue Regeneration with Recombinant Biomaterials. Macromol Biosci 2024; 24:e2300466. [PMID: 38704814 DOI: 10.1002/mabi.202300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/06/2024] [Indexed: 05/07/2024]
Abstract
The potential of recombinant materials in the field of adipose tissue engineering (ATE) is investigated using a bottom-up tissue engineering (TE) approach. This study explores the synthesis of different photo-crosslinkable gelatin derivatives, including both natural and recombinant materials, with a particular emphasis on chain growth and step growth polymerization. Gelatin type B (Gel-B) and a recombinant collagen peptide (RCPhC1) are used as starting materials. The gel fraction and mass swelling properties of 2D hydrogel films are evaluated, revealing high gel fractions exceeding 94% and high mass swelling ratios >15. In vitro experiments with encapsulated adipose-derived stem cells (ASCs) indicate viable cells (>85%) throughout the experiment with the RCPhC1-based hydrogels showing a higher number of stretched ASCs. Triglyceride assays show the enhanced differentiation potential of RCPhC1 materials. Moreover, the secretome analysis reveal the production of adipose tissue-specific proteins including adiponectin, adipsin, lipocalin-2/NGAL, and PAL-1. RCPhC1-based materials exhibit higher levels of adiponectin and adipsin production, indicating successful differentiation into the adipogenic lineage. Overall, this study highlights the potential of recombinant materials for ATE applications, providing insights into their physico-chemical properties, mechanical strength, and cellular interactions.
Collapse
Affiliation(s)
- Lana Van Damme
- Ghent University, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4-Bis, Ghent, 9000, Belgium
- Ghent University, Department of Plastic & Reconstructive Surgery, Corneel Heymanslaan 10 2K12, Ghent, 9000, Belgium
- 4Tissue BV, Technologiepark-Zwijnaarde 48, Ghent, 9052, Belgium
| | - Phillip Blondeel
- Ghent University, Department of Plastic & Reconstructive Surgery, Corneel Heymanslaan 10 2K12, Ghent, 9000, Belgium
- 4Tissue BV, Technologiepark-Zwijnaarde 48, Ghent, 9052, Belgium
| | - Sandra Van Vlierberghe
- Ghent University, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Krijgslaan 281 S4-Bis, Ghent, 9000, Belgium
- 4Tissue BV, Technologiepark-Zwijnaarde 48, Ghent, 9052, Belgium
| |
Collapse
|
3
|
Szabó A, Kolouchova K, Parmentier L, Herynek V, Groborz O, Van Vlierberghe S. Digital Light Processing of 19F MRI-Traceable Gelatin-Based Biomaterial Inks towards Bone Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2996. [PMID: 38930365 PMCID: PMC11206011 DOI: 10.3390/ma17122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.
Collapse
Affiliation(s)
- Anna Szabó
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kristyna Kolouchova
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Vit Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, 120 00 Prague, Czech Republic
| | - Ondrej Groborz
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo sq. 2, 160 00 Prague, Czech Republic;
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, 120 00 Prague, Czech Republic
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
- BIO INX, Technologiepark-Zwijnaarde 66, 9052 Ghent, Belgium
- 4Tissue, Technologiepark-Zwijnaarde 48, 9052 Ghent, Belgium
| |
Collapse
|
4
|
Agrawal P, Tiwari A, Chowdhury SK, Vohra M, Gour A, Waghmare N, Bhutani U, Kamalnath S, Sangwan B, Rajput J, Raj R, Rajendran NP, Kamath AV, Haddadin R, Chandru A, Sangwan VS, Bhowmick T. Kuragel: A biomimetic hydrogel scaffold designed to promote corneal regeneration. iScience 2024; 27:109641. [PMID: 38646166 PMCID: PMC11031829 DOI: 10.1016/j.isci.2024.109641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
Cornea-related injuries are the most common cause of blindness worldwide. Transplantation remains the primary approach for addressing corneal blindness, though the demand for donor corneas outmatches the supply by millions. Tissue adhesives employed to seal corneal wounds have shown inefficient healing and incomplete vision restoration. We have developed a biodegradable hydrogel - Kuragel, with the ability to promote corneal regeneration. Functionalized gelatin and hyaluronic acid form photo-crosslinkable hydrogel with transparency and compressive modulus similar to healthy human cornea. Kuragel composition was tuned to achieve sufficient adhesive strength for sutureless integration to host tissue, with minimal swelling post-administration. Studies in the New Zealand rabbit mechanical injury model affecting corneal epithelium and stroma demonstrate that Kuragel efficiently promotes re-epithelialization within 1 month of administration, while stroma and sub-basal nerve plexus regenerate within 3 months. We propose Kuragel as a regenerative treatment for patients suffering from corneal defects including thinning, by restoration of transparency and thickness.
Collapse
Affiliation(s)
| | - Anil Tiwari
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | - Mehak Vohra
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Abha Gour
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | | | | | - S. Kamalnath
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Jyoti Rajput
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | - Ritu Raj
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | | | - Ramez Haddadin
- Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Arun Chandru
- Pandorum Technologies Pvt., Ltd, Bangalore, India
| | | | - Tuhin Bhowmick
- Pandorum Technologies Pvt., Ltd, Bangalore, India
- Pandorum International Inc, San Francisco, CA, USA
| |
Collapse
|
5
|
Parmentier L, D'Haese S, Carpentier N, Dmitriev RI, Van Vlierberghe S. Bottom-Up Extrusion-Based Biofabrication of the Osteoid Niche. Macromol Biosci 2024; 24:e2300395. [PMID: 37997022 DOI: 10.1002/mabi.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Bone regeneration remains a clinical challenge given the transplantation incidence rate and the associated economic burden. Bottom-up osteoid tissue engineering has the potential to offer an alternative approach to current clinical solutions that suffer from various drawbacks. In this paper, deposition-based bioprinting is exploited while the effect is explored of both the crosslinking mechanism (gelatin methacryloyl (GelMA) versus gelatin norbornene (DS 91) crosslinked with thiolated gelatin (GelNBSH)) and the degree of substitution (GelNBSH versus norbornene-norbornene-modified gelatin (DS 169) crosslinked with thiolated gelatin (GelNBNBSH)) on the presented biophysical cues as well as on the osteogenic differentiation. The incorporation of tris(2-carboxyethyl)phosphine (TCEP) to the step-growth inks allows the production of reproducible and biocompatible scaffolds based on thiol-ene chemistry. Dental pulp stem cell encapsulation in GelNBNBSH biofabricated constructs shows a favorable response due to the combination of its stress relaxation and substrate rigidity (bulk compressive modulus of 11-30 kPa) as reflected by a sevenfold increase in calcium production compared to the tissue engineering standard GelMA. This work is the first to exploit a controlled biocompatible and cell-interactive thiolated macromolecular crosslinker (GelSH + TCEP) allowing the extrusion-based biofabrication of low concentration (5 w/v%) modified osteogenic gelatin-based inks (GelNBNBSH + TCEP).
Collapse
Affiliation(s)
- Laurens Parmentier
- Polymer Chemistry and Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4-Bis, Ghent, 9000, Belgium
| | - Sophie D'Haese
- Polymer Chemistry and Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4-Bis, Ghent, 9000, Belgium
| | - Nathan Carpentier
- Polymer Chemistry and Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4-Bis, Ghent, 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent university, C. Heymanslaan 10, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4-Bis, Ghent, 9000, Belgium
| |
Collapse
|
6
|
Carpentier N, Parmentier L, Van der Meeren L, Skirtach AG, Dubruel P, Van Vlierberghe S. Optimization of hybrid gelatin-polysaccharide bioinks exploiting thiol-norbornene chemistry using a reducing additive. Biomed Mater 2024; 19:025025. [PMID: 38266277 DOI: 10.1088/1748-605x/ad2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Thiol-norbornene chemistry offers great potential in the field of hydrogel development, given its step growth crosslinking mechanism. However, limitations exist with regard to deposition-based bioprinting of thiol-containing hydrogels, associated with premature crosslinking of thiolated (bio)polymers resulting from disulfide formation in the presence of oxygen. More specifically, disulfide formation can result in an increase in viscosity thereby impeding the printing process. In the present work, hydrogels constituting norbornene-modified dextran (DexNB) combined with thiolated gelatin (GelSH) are selected as case study to explore the potential of incorporating the reducing agent tris(2-carboxyethyl)phosphine (TCEP), to prevent the formation of disulfides. We observed that, in addition to preventing disulfide formation, TCEP also contributed to premature, spontaneous thiol-norbornene crosslinking without the use of UV light as evidenced via1H-NMR spectroscopy. Herein, an optimal concentration of 25 mol% TCEP with respect to the amount of thiols was found, thereby limiting auto-gelation by both minimizing disulfide formation and spontaneous thiol-norbornene reaction. This concentration results in a constant viscosity during at least 24 h, a more homogeneous network being formed as evidenced using atomic force microscopy while retaining bioink biocompatibility as evidenced by a cell viability of human foreskin fibroblasts exceeding 70% according to ISO 10993-6:2016.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Laurens Parmentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Louis Van der Meeren
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Parmentier L, D'Haese S, Duquesne J, Bray F, Van der Meeren L, Skirtach AG, Rolando C, Dmitriev RI, Van Vlierberghe S. 2D fibrillar osteoid niche mimicry through inclusion of visco-elastic and topographical cues in gelatin-based networks. Int J Biol Macromol 2024; 254:127619. [PMID: 37898251 DOI: 10.1016/j.ijbiomac.2023.127619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).
Collapse
Affiliation(s)
- Laurens Parmentier
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Sophie D'Haese
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Jessie Duquesne
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Fabrice Bray
- Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP), CNRS, Université de Lille, F-59000 Lille, France
| | - Louis Van der Meeren
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Andre G Skirtach
- Nano-biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent university, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Christian Rolando
- Miniaturisation pour la synthèse, l'analyse et la protéomique (MSAP), CNRS, Université de Lille, F-59000 Lille, France
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent university, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group (PBM), Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Buwalda S. Advanced Functional Polymers for Unmet Medical Challenges. Biomacromolecules 2023; 24:4329-4332. [PMID: 37811641 DOI: 10.1021/acs.biomac.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A significant part of medicine relies on biomaterials, which are designed to interact with biological tissues for therapeutic or diagnostic purposes. A number of major trends can be distinguished in the multidisciplinary field of biomaterials science, including the precise synthesis of biomaterial building blocks, elucidation of biomaterial processing-structure-property correlations, as well as clarification of the interactions between living tissues and biomaterials. Moreover, advances in biofabrication facilitate the development of tailored implants with improved functionality, whereas recent achievements in medical imaging allow for a detailed evaluation of the performance and spatiotemporal behavior of medical devices and nanomedicine formulations.
Collapse
Affiliation(s)
- Sytze Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France
| |
Collapse
|
9
|
Carpentier N, Van der Meeren L, Skirtach AG, Devisscher L, Van Vlierberghe H, Dubruel P, Van Vlierberghe S. Gelatin-Based Hybrid Hydrogel Scaffolds: Toward Physicochemical Liver Mimicry. Biomacromolecules 2023; 24:4333-4347. [PMID: 35914189 DOI: 10.1021/acs.biomac.2c00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There exists a clear need to develop novel materials that could serve liver tissue engineering purposes. Those materials need to be researched for the development of bioengineered liver tissue as an alternative to donor livers, as well as for materials that could be applied for scaffolds to develop an in vitro model for drug-induced liver injury (DILI) detection . In this paper, the hydrogels oxidized dextran-gelatin (Dexox-Gel) and norbornene-modified dextran-thiolated gelatin (DexNB-GelSH) were developed, and their feasibility toward processing via indirect 3D-printing was investigated with the aim to develop hydrogel scaffolds that physicochemically mimic native liver tissue. Furthermore, their in vitro biocompatibility was assessed using preliminary biological tests using HepG2 cells. Both materials were thoroughly physicochemically characterized and benchmarked to the methacrylated gelatin (GelMA) reference material. Due to inferior properties, Dexox-gel was not further processed into 3D-hydrogel scaffolds. This research revealed that DexNB-GelSH exhibited physicochemical properties that were in excellent agreement with the properties of natural liver tissue in contrast to GelMA. In combination with an equally good biological evaluation of DexNB-GelSH in comparison with GelMA based on an MTS proliferation assay and an albumin quantification assay, DexNB-GelSH can be considered promising in the field of liver tissue engineering.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Louis Van der Meeren
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences; Liver Research Center Ghent, Ghent University, Ghent 9000, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Dpt Internal Medicine and Pediatrics; Liver Research Center Ghent, Ghent University, Ghent 9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
10
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
11
|
Falandt M, Bernal PN, Dudaryeva O, Florczak S, Gröfibacher G, Schweiger M, Longoni A, Greant C, Assunção M, Nijssen O, van Vlierberghe S, Malda J, Vermonden T, Levato R. Spatial-Selective Volumetric 4D Printing and Single-Photon Grafting of Biomolecules within Centimeter-Scale Hydrogels via Tomographic Manufacturing. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:admt.202300026. [PMID: 37811162 PMCID: PMC7615165 DOI: 10.1002/admt.202300026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 10/10/2023]
Abstract
Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 μm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 μm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.
Collapse
Affiliation(s)
- Marc Falandt
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Oksana Dudaryeva
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Gabriel Gröfibacher
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Matthias Schweiger
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Alessia Longoni
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Coralie Greant
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Marisa Assunção
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Olaf Nijssen
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Sandra van Vlierberghe
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Jos Malda
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht 3584CG, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| |
Collapse
|
12
|
De Grave L, Di Meo C, Gréant C, Van Durme B, Gérard M, La Gatta A, Schiraldi C, Thorrez L, Bernaerts KV, Van Vlierberghe S. Photo-crosslinkable Poly(aspartic acid) for Light-based additive Manufacturing: Chain-growth versus Step-growth crosslinking. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
14
|
Rizwan A, Gulfam M, Jo SH, Seo JW, Ali I, Thang Vu T, Joo SB, Park SH, Taek Lim K. Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
15
|
Rizzo R, Petelinšek N, Bonato A, Zenobi‐Wong M. From Free-Radical to Radical-Free: A Paradigm Shift in Light-Mediated Biofabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205302. [PMID: 36698304 PMCID: PMC10015869 DOI: 10.1002/advs.202205302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the development of novel photocrosslinking strategies and photoactivatable materials has stimulated widespread use of light-mediated biofabrication techniques. However, despite great progress toward more efficient and biocompatible photochemical strategies, current photoresins still rely on photoinitiators (PIs) producing radical-initiating species to trigger the so-called free-radical crosslinking/polymerization. In the context of bioprinting, where cells are encapsulated in the bioink, the presence of radicals raises concerns of potential cytotoxicity. In this work, a universal, radical-free (RF) photocrosslinking strategy to be used for light-based technologies is presented. Leveraging RF uncaging mechanisms and Michael addition, cell-laden constructs are photocrosslinked by means of one- and two-photon excitation with high biocompatibility. A hydrophilic coumarin-based group is used to cage a universal RF photocrosslinker based on 4-arm-PEG-thiol (PEG4SH). Upon light exposure, thiols are uncaged and react with an alkene counterpart to form a hydrogel. RF photocrosslinker is shown to be highly stable, enabling potential for off-the-shelf products. While PI-based systems cause a strong upregulation of reactive oxygen species (ROS)-associated genes, ROS are not detected in RF photoresins. Finally, optimized RF photoresin is successfully exploited for high resolution two-photon stereolithography (2P-SL) using remarkably low polymer concentration (<1.5%), paving the way for a shift toward radical-free light-based bioprinting.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Nika Petelinšek
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Angela Bonato
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences & TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
16
|
Zandrini T, Florczak S, Levato R, Ovsianikov A. Breaking the resolution limits of 3D bioprinting: future opportunities and present challenges. Trends Biotechnol 2022; 41:604-614. [PMID: 36513545 DOI: 10.1016/j.tibtech.2022.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
Bioprinting aims to produce 3D structures from which embedded cells can receive mechanical and chemical stimuli that influence their behavior, direct their organization and migration, and promote differentiation, in a similar way to what happens within the native extracellular matrix. However, limited spatial resolution has been a bottleneck for conventional 3D bioprinting approaches. Reproducing fine features at the cellular scale, while maintaining a reasonable printing volume, is necessary to enable the biofabrication of more complex and functional tissue and organ models. In this opinion article we recount the emergence of, and discuss the most promising, high-definition (HD) bioprinting techniques to achieve this goal, discussing which obstacles remain to be overcome, and which applications are envisioned in the tissue engineering field.
Collapse
Affiliation(s)
- Tommaso Zandrini
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria; Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at)
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Regenerative Medicine Center Utrecht and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Aleksandr Ovsianikov
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria; Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at).
| |
Collapse
|
17
|
Ortiz-Cárdenas JE, Zatorski JM, Arneja A, Montalbine AN, Munson JM, Luckey CJ, Pompano RR. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device. ORGANS-ON-A-CHIP 2022; 4:100018. [PMID: 35535262 PMCID: PMC9078144 DOI: 10.1016/j.ooc.2022.100018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Micropatterning techniques for 3D cell cultures enable the recreation of tissue-level structures, but the combination of patterned hydrogels with organs-on-chip to generate organized 3D cultures under microfluidic perfusion remains challenging. To address this technological gap, we developed a user-friendly in-situ micropatterning protocol that integrates photolithography of crosslinkable, cell-laden hydrogels with a simple microfluidic housing, and tested the impact of crosslinking chemistry on stability and spatial resolution. Working with gelatin functionalized with photo-crosslinkable moieties, we found that inclusion of cells at high densities (≥ 107/mL) did not impede thiol-norbornene gelation, but decreased the storage moduli of methacryloyl hydrogels. Hydrogel composition and light dose were selected to match the storage moduli of soft tissues. To generate the desired pattern on-chip, the cell-laden precursor solution was flowed into a microfluidic chamber and exposed to 405 nm light through a photomask. The on-chip 3D cultures were self-standing and the designs were interchangeable by simply swapping out the photomask. Thiol-ene hydrogels yielded highly accurate feature sizes from 100 - 900 μm in diameter, whereas methacryloyl hydrogels yielded slightly enlarged features. Furthermore, only thiol-ene hydrogels were mechanically stable under perfusion overnight. Repeated patterning readily generated multi-region cultures, either separately or adjacent, including non-linear boundaries that are challenging to obtain on-chip. As a proof-of-principle, primary human T cells were patterned on-chip with high regional specificity. Viability remained high (> 85%) after 12-hr culture with constant perfusion. We envision that this technology will enable researchers to pattern 3D co-cultures to mimic organ-like structures that were previously difficult to obtain.
Collapse
Affiliation(s)
| | - Jonathan M. Zatorski
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA, USA 22904
| | - Alyssa N. Montalbine
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA, USA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
- Department of Chemistry, Carter Immunology Center, University of Virginia, PO BOX 400319, Charlottesville, VA, USA 22904
| |
Collapse
|
18
|
Fu H, Yu B, Wang H, Tong H, Jiang L, Zhang Y, Meng G, Sun M, Lin J. Knowledge domain and hotspots concerning photosensitive hydrogels for tissue engineering applications: A bibliometric and visualized analysis (1996-2022). Front Bioeng Biotechnol 2022; 10:1067111. [PMID: 36466359 PMCID: PMC9709615 DOI: 10.3389/fbioe.2022.1067111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 10/31/2024] Open
Abstract
Objective: The aim of tissue engineering (TE) is to replace the damaged tissues or failed organs, or restore their missing functions. The important means to achieve this aim is to integrate biomaterials and life elements. Hydrogels are very attractive biomaterials in the field of TE. In particular, engineering extracellular matrices (ECMs) formed by photosensitive hydrogels have captivated much attention, because photopolymerization has many advantages over traditional polymerization approaches, such as rapidity of reaction, spatiotemporal controllability of polymerization process, and operability at physiological temperature, especially it can realize the fabrications of engineering ECMs in the presence of living cells. There have been many excellent reviews on the applications of photosensitive hydrogels in TE in recent years, however, it is inevitable that researchers may have left out many important facts due to exploring the literature from one or a few aspects. It is also a great challenge for researchers to explore the internal relationships among countries, institutions, authors, and references from a large number of literatures in related fields. Therefore, bibliometrics may be a powerful tool to solve the above problems. A bibliometric and visualized analysis of publications concerning the photosensitive hydrogels for TE applications was performed, and the knowledge domain, research hotspots and frontiers in this topic were identified according to the analysis results. Methods: We identified and retrieved the publications regarding the photosensitive hydrogels for TE applications between 1996 and 2022 from Web of Science Core Collection (WoSCC). Bibliometric and visualized analysis employing CiteSpace software and R-language package Bibliometrix were performed in this study. Results: 778 publications meeting the eligibility criteria were identified and retrieved from WoSCC. Among those, 2844 authors worldwide participated in the studies in this field, accompanied by an average annual article growth rate of 15.35%. The articles were co-authored by 800 institutions from 46 countries/regions, and the United States published the most, followed by China and South Korea. As the two countries that published the most papers, the United States and China could further strengthen cooperation in this field. Univ Colorado published the most articles (n = 150), accounting for 19.28% of the total. The articles were distributed in 112 journals, among which Biomaterials (n = 66) published the most articles, followed by Acta Biomaterialia (n = 54) and Journal of Biomedical Materials Research Part A (n = 42). The top 10 journals published 47.8% of the 778 articles. The most prolific author was Anseth K (n = 33), followed by Khademhosseini A (n = 29) and Bryant S (n = 22). A total of 1443 keywords were extracted from the 778 articles and the keyword with the highest centrality was "extracellular matrix" (centrality: 0.12). The keywords appeared recently with strong citation bursts were "gelatin", "3d printing" and "3d bioprinting", representing the current research hotspots in this field. "Gelma", "3d printing" and "thiol-ene" were the research frontiers in recent years. Conclusion: This bibliometric and visualized study offered a comprehensive understanding of publications regarding the photosensitive hydrogels for TE applications from 1996 to 2022, including the knowledge domain, research hotspots and frontiers in this filed. The outcome of this study would provide insights for scholars in the related research filed.
Collapse
Affiliation(s)
- Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| | - Hao Wang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Lin Jiang
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yupeng Zhang
- Affiliated Hospital of Beihua University, Jilin, China
| | - Guixian Meng
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Jieqiong Lin
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, Jilin Province, School of Mechatronic Engineering, Changchun University of Technology, Changchun, China
| |
Collapse
|
19
|
Yang X, Niu YF, Wei MX, Zhang JN, Liu KL, Du X, Gu ZZ. Generating Microstructures with Highly Variable Mechanical Performance using Two-Photon Lithography and Thiol-ene Photopolymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Jing X, Fu H, Yu B, Sun M, Wang L. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates. Front Bioeng Biotechnol 2022; 10:994355. [PMID: 36072288 PMCID: PMC9441635 DOI: 10.3389/fbioe.2022.994355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023] Open
Abstract
The needs for high-resolution, well-defined and complex 3D microstructures in diverse fields call for the rapid development of novel 3D microfabrication techniques. Among those, two-photon polymerization (TPP) attracted extensive attention owing to its unique and useful characteristics. As an approach to implementing additive manufacturing, TPP has truly 3D writing ability to fabricate artificially designed constructs with arbitrary geometry. The spatial resolution of the manufactured structures via TPP can exceed the diffraction limit. The 3D structures fabricated by TPP could properly mimic the microenvironment of natural extracellular matrix, providing powerful tools for the study of cell behavior. TPP can meet the requirements of manufacturing technique for 3D scaffolds (engineering cell culture matrices) used in cytobiology, tissue engineering and regenerative medicine. In this review, we demonstrated the development in 3D microfabrication techniques and we presented an overview of the applications of TPP as an advanced manufacturing technique in complex 3D biomedical scaffolds fabrication. Given this multidisciplinary field, we discussed the perspectives of physics, materials science, chemistry, biomedicine and mechanical engineering. Additionally, we dived into the principles of tow-photon absorption (TPA) and TPP, requirements of 3D biomedical scaffolders, developed-to-date materials and chemical approaches used by TPP and manufacturing strategies based on mechanical engineering. In the end, we draw out the limitations of TPP on 3D manufacturing for now along with some prospects of its future outlook towards the fabrication of 3D biomedical scaffolds.
Collapse
Affiliation(s)
- Xian Jing
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Hongxun Fu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Baojun Yu
- Key Laboratory of Micro/Nano and Ultra-precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin, China
| | - Meiyan Sun
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Liye Wang
- College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
21
|
Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. MICROMACHINES 2022; 13:mi13071038. [PMID: 35888855 PMCID: PMC9318225 DOI: 10.3390/mi13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
An osteochondral defect is a common and frequent disease in orthopedics and treatment effects are not good, which can be harmful to patients. Hydrogels have been applied in the repair of cartilage defects. Many studies have reported that hydrogels can effectively repair osteochondral defects through loaded cells or non-loaded cells. As a new type of hydrogel, photo-crosslinked hydrogel has been widely applied in more and more fields. Meanwhile, 3D bioprinting serves as an attractive platform to fabricate customized tissue-engineered substitutes from biomaterials and cells for the repair or replacement of injured tissues and organs. Although photo-crosslinkable hydrogel-based 3D bioprinting has some advantages for repairing bone cartilage defects, it also has some disadvantages. Our aim of this paper is to review the current status and prospect of photo-crosslinkable hydrogel-based 3D bioprinting for repairing osteochondral defects.
Collapse
|
22
|
Sayer S, Zandrini T, Markovic M, Van Hoorick J, Van Vlierberghe S, Baudis S, Holnthoner W, Ovsianikov A. Guiding cell migration in 3D with high-resolution photografting. Sci Rep 2022; 12:8626. [PMID: 35606455 PMCID: PMC9126875 DOI: 10.1038/s41598-022-11612-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Multi-photon lithography (MPL) has proven to be a suitable tool to precisely control the microenvironment of cells in terms of the biochemical and biophysical properties of the hydrogel matrix. In this work, we present a novel method, based on multi-photon photografting of 4,4′-diazido-2,2′-stilbenedisulfonic acid (DSSA), and its capabilities to induce cell alignment, directional cell migration and endothelial sprouting in a gelatin-based hydrogel matrix. DSSA-photografting allows for the fabrication of complex patterns at a high-resolution and is a biocompatible, universally applicable and straightforward process that is comparably fast. We have demonstrated the preferential orientation of human adipose-derived stem cells (hASCs) in response to a photografted pattern. Co-culture spheroids of hASCs and human umbilical vein endothelial cells (HUVECs) have been utilized to study the directional migration of hASCs into the modified regions. Subsequently, we have highlighted the dependence of endothelial sprouting on the presence of hASCs and demonstrated the potential of photografting to control the direction of the sprouts. MPL-induced DSSA-photografting has been established as a promising method to selectively alter the microenvironment of cells.
Collapse
Affiliation(s)
- Simon Sayer
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria
| | - Tommaso Zandrini
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria
| | - Marica Markovic
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria.,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria
| | - Jasper Van Hoorick
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria.,Polymer Chemistry and Technology Group, Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria.,Ludwig-Boltzmann-Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Vienna, Austria.
| |
Collapse
|
23
|
Zhou K, Feng M, Mao H, Gu Z. Photoclick Polysaccharide-Based Bioink with Extended Biofabrication Window for 3D Embedded Bioprinting. Biomater Sci 2022; 10:4479-4491. [DOI: 10.1039/d2bm00632d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although significant breakthroughs have been achieved in constructing complex tissue/organ models in vitro, the progress of 3D bioprinting has long been subjected to trade-offs between printability and biocompatibility of bioinks....
Collapse
|
24
|
Illy N, Mongkhoun E. Thiolactone chemistry, a versatile platform for macromolecular engineering. Polym Chem 2022. [DOI: 10.1039/d2py00731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the extensive use of γ-thiolactone chemistry as a versatile and powerful tool for macromolecular engineering and the preparation of various polymer architectures, such as functional, alternating, or sequence-controlled (co)polymers.
Collapse
Affiliation(s)
- Nicolas Illy
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| | - Emma Mongkhoun
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
25
|
Rizzo R, Ruetsche D, Liu H, Zenobi‐Wong M. Optimized Photoclick (Bio)Resins for Fast Volumetric Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102900. [PMID: 34611928 PMCID: PMC11468798 DOI: 10.1002/adma.202102900] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Volumetric printing (VP) is a light-mediated technique enabling printing of complex, low-defect 3D objects within seconds, overcoming major drawbacks of layer-by-layer additive manufacturing. An optimized photoresin is presented for VP in the presence of cells (volumetric bioprinting) based on fast thiol-ene step-growth photoclick crosslinking. Gelatin-norbornene (Gel-NB) photoresin shows superior performance, both in physicochemical and biocompatibility aspects, compared to (meth-)acryloyl resins. The extremely efficient thiol-norbornene reaction produces the fastest VP reported to date (≈10 s), with significantly lower polymer content, degree of substitution (DS), and radical species, making it more suitable for cell encapsulation. This approach enables the generation of cellular free-form constructs with excellent cell viability (≈100%) and tissue maturation potential, demonstrated by development of contractile myotubes. Varying the DS, polymer content, thiol-ene ratio, and thiolated crosslinker allows fine-tuning of mechanical properties over a broad stiffness range (≈40 Pa to ≈15 kPa). These properties are achieved through fast and scalable methods for producing Gel-NB with inexpensive, off-the-shelf reagents that can help establish it as the gold standard for light-mediated biofabrication techniques. With potential applications from high-throughput bioprinting of tissue models to soft robotics and regenerative medicine, this work paves the way for exploitation of VPs unprecedented capabilities.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Dominic Ruetsche
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Hao Liu
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| | - Marcy Zenobi‐Wong
- Tissue Engineering + Biofabrication LaboratoryDepartment of Health Sciences and TechnologyETH ZürichOtto‐Stern‐Weg 7Zürich8093Switzerland
| |
Collapse
|
26
|
Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels 2021; 7:gels7040199. [PMID: 34842679 PMCID: PMC8628702 DOI: 10.3390/gels7040199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has suggested the significant potential of chemically modified hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different materials, structures and loading cargoes, the desires from clinical applications have not been fully validated. Multiple biological behaviors are orchestrated precisely during the bone regeneration process, including bone marrow mesenchymal stem cells (BMSCs) recruitment, osteogenic differentiation, matrix calcification and well-organized remodeling. Since matrix metalloproteinases play critical roles in such bone metabolism processes as BMSC commitment, osteoblast survival, osteoclast activation matrix calcification and microstructure remodeling, matrix metalloproteinase (MMP) cleavable peptides-based hydrogels could respond to various MMP levels and, thus, accelerate bone regeneration. In this review, we focused on the MMP-cleavable peptides, polymers, functional modification and crosslinked reactions. Applications, perspectives and limitations of MMP-cleavable peptides-based hydrogels for bone regeneration were then discussed.
Collapse
|
27
|
Stubbe B, Mignon A, Van Damme L, Claes K, Hoeksema H, Monstrey S, Van Vlierberghe S, Dubruel P. Photo-Crosslinked Gelatin-Based Hydrogel Films to Support Wound Healing. Macromol Biosci 2021; 21:e2100246. [PMID: 34555246 DOI: 10.1002/mabi.202100246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Indexed: 11/11/2022]
Abstract
Gelatin is used widely in the biomedical field, among other for wound healing. Given its upper critical solution temperature, crosslinking is required. To this end, gelatin is chemically modified with different photo-crosslinkable moieties with low (32-34%) and high (63-65%) degree of substitution (DS): gelatin-methacrylamide (gel-MA) and gelatin-acrylamide (gel-AA) and gelatin-pentenamide (gel-PE). Next to the more researched gel-MA, it is especially interesting and novel to compare with other gelatin-derived compounds for the application of wound healing. An additional comparison is made with commercial dressings. The DS is directly proportional to the mechanical characteristics and inversely proportional to the swelling capacity. Gel-PE shows weaker mechanical properties (G' < 15 kPa) than gel-AA and gel-MA (G' < 39 and 45 kPa, respectively). All derivatives are predominantly elastic (recovery indices of 89-94%). Gel-AA and gel-MA show excellent biocompatibility, whereas gel-PE shows a significantly lower initial biocompatibility, evolving positively toward day 7. Overall, gel-MA shows to have the most potential to be applied as wound dressing. Future blending with gel-AA to improve the curing kinetics can lead to dressings able to compete with current commercial dressings.
Collapse
Affiliation(s)
- Birgit Stubbe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Arn Mignon
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Biomaterials and Tissue Engineering, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Karel Claes
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Henk Hoeksema
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Stan Monstrey
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| |
Collapse
|
28
|
Ionescu OM, Mignon A, Minsart M, Van Hoorick J, Gardikiotis I, Caruntu ID, Giusca SE, Van Vlierberghe S, Profire L. Gelatin-Based Versus Alginate-Based Hydrogels: Providing Insight in Wound Healing Potential. Macromol Biosci 2021; 21:e2100230. [PMID: 34491617 DOI: 10.1002/mabi.202100230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/31/2021] [Indexed: 11/09/2022]
Abstract
Wound dressings under the form of films constituted of modified alginate (methacrylated alginate - AlgMA) versus a gelatine derivative containing norbornene functionalities (GelNB) are developed and evaluated for their moisturizing effects, followed by further in vivo testing to assay their wound healing potential. The gel fraction results shows that AlgMA and GelNB films displayed a high crosslinking efficiency while the swelling assay reveals a stronger water uptake capacity for AlgMA films compared to GelNB and to commercial dressing AquacelAg, used as positive control. Referring to the in vivo wound healing effect, the GelNB films not only exhibit proper healing properties, yet is higher to the AquacelAg, while the AlgMA films exhibit similar wound healing effect as the positive control. On a microscopic level, the healing phases (from inflammation to proliferation and contraction) are present for both materials, yet at a faster rate for the GelNB films, which is in line with the macroscopic findings. These results provide data which support that GelNB films outperform AlgMA films, but both can be used for wound healing applications.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Arn Mignon
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Smart Polymeric Biomaterials, Campus Group T, Surface and Interface Engineered Materials, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Manon Minsart
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Ioannis Gardikiotis
- Advanced Centre of Research and Development in Experimental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Irina-Draga Caruntu
- Department of Morphofunctional Sciences, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Simona Eliza Giusca
- Department of Morphofunctional Sciences, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16 University Street, Iasi, 700115, Romania
| |
Collapse
|
29
|
Levato R, Lim KS, Li W, Asua AU, Peña LB, Wang M, Falandt M, Bernal PN, Gawlitta D, Zhang YS, Woodfield TBF, Malda J. High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. Mater Today Bio 2021; 12:100162. [PMID: 34870141 PMCID: PMC8626672 DOI: 10.1016/j.mtbio.2021.100162] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication via light-based 3D printing offers superior resolution and ability to generate free-form architectures, compared to conventional extrusion technologies. While extensive efforts in the design of new hydrogel bioinks lead to major advances in extrusion methods, the accessibility of lithographic bioprinting is still hampered by a limited choice of cell-friendly resins. Herein, we report the development of a novel set of photoresponsive bioresins derived from ichthyic-origin gelatin, designed to print high-resolution hydrogel constructs with embedded convoluted networks of vessel-mimetic channels. Unlike mammalian gelatins, these materials display thermal stability as pre-hydrogel solutions at room temperature, ideal for bioprinting on any easily-accessible lithographic printer. Norbornene- and methacryloyl-modification of the gelatin backbone, combined with a ruthenium-based visible light photoinitiator and new coccine as a cytocompatible photoabsorber, allowed to print structures resolving single-pixel features (∼50 μm) with high shape fidelity, even when using low stiffness gels, ideal for cell encapsulation (1-2 kPa). Moreover, aqueous two-phase emulsion bioresins allowed to modulate the permeability of the printed hydrogel bulk. Bioprinted mesenchymal stromal cells displayed high functionality over a month of culture, and underwent multi-lineage differentiation while colonizing the bioresin bulk with tissue-specific neo-deposited extracellular matrix. Importantly, printed hydrogels embedding complex channels with perfusable lumen (diameter <200 μm) were obtained, replicating anatomical 3D networks with out-of-plane branches (i.e. brain vessels) that cannot otherwise be reproduced by extrusion bioprinting. This versatile bioresin platform opens new avenues for the widespread adoption of lithographic biofabrication, and for bioprinting complex channel-laden constructs with envisioned applications in regenerative medicine and hydrogel-based organ-on-a-chip devices.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, the Netherlands
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, USA
| | - Ane Urigoitia Asua
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands
| | - Laura Blanco Peña
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands
| | - Mian Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, USA
| | - Marc Falandt
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | | | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, the Netherlands
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, USA
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, the Netherlands
| | - Jos Malda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
30
|
Göckler T, Haase S, Kempter X, Pfister R, Maciel BR, Grimm A, Molitor T, Willenbacher N, Schepers U. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting. Adv Healthc Mater 2021; 10:e2100206. [PMID: 34145799 PMCID: PMC11481056 DOI: 10.1002/adhm.202100206] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Photocurable gelatin-based hydrogels have established themselves as powerful bioinks in tissue engineering due to their excellent biocompatibility, biodegradability, light responsiveness, thermosensitivity and bioprinting properties. While gelatin methacryloyl (GelMA) has been the gold standard for many years, thiol-ene hydrogel systems based on norbornene-functionalized gelatin (GelNB) and a thiolated crosslinker have recently gained increasing importance. In this paper, a highly reproducible water-based synthesis of GelNB is presented, avoiding the use of dimethyl sulfoxide (DMSO) as organic solvent and covering a broad range of degrees of functionalization (DoF: 20% to 97%). Mixing with thiolated gelatin (GelS) results in the superfast curing photoclick hydrogel GelNB/GelS. Its superior properties over GelMA, such as substantially reduced amounts of photoinitiator (0.03% (w/v)), superfast curing (1-2 s), higher network homogeneity, post-polymerization functionalization ability, minimal cross-reactivity with cellular components, and improved biocompatibility of hydrogel precursors and degradation products lead to increased survival of primary cells in 3D bioprinting. Post-printing viability analysis revealed excellent survival rates of > 84% for GelNB/GelS bioinks of varying crosslinking density, while cell survival for GelMA bioinks is strongly dependent on the DoF. Hence, the semisynthetic and easily accessible GelNB/GelS hydrogel is a highly promising bioink for future medical applications and other light-based biofabrication techniques.
Collapse
Affiliation(s)
- Tobias Göckler
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Sonja Haase
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Xenia Kempter
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Rebecca Pfister
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Bruna R. Maciel
- Karlsruhe Institute of Technology (KIT)Institute of Mechanical Process Engineering and Mechanics (MVM)Gotthard‐Franz‐Straße 3Karlsruhe76131Germany
| | - Alisa Grimm
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Tamara Molitor
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Norbert Willenbacher
- Karlsruhe Institute of Technology (KIT)Institute of Mechanical Process Engineering and Mechanics (MVM)Gotthard‐Franz‐Straße 3Karlsruhe76131Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology (KIT)Institute of Functional Interfaces (IFG)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Karlsruhe Institute of Technology (KIT)Institute of Organic Chemistry (IOC)Fritz‐Haber‐Weg 6Karlsruhe76131Germany
| |
Collapse
|
31
|
Zhao C, Wu Z, Chu H, Wang T, Qiu S, Zhou J, Zhu Q, Liu X, Quan D, Bai Y. Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin-Norbornene-Based Bioprinting. Biomacromolecules 2021; 22:2729-2739. [PMID: 34057830 DOI: 10.1021/acs.biomac.1c00421] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol-ene chemistry-based gelatin-norbornene (GelNB) hydrogels have drawn much attention as a promising substitution of gelatin methacryloyl (GelMA), owing to the fast and controllable step-growth polymerization mechanism, as well as a significant reduction in reactive oxygen species (ROS) accumulation. Herein, thiolated heparin (HepSH) was synthesized and used as a macromolecular crosslinker for GelNB-based bioprinting, so that GelNB gelation became less sensitive to the thiol/ene ratio. The mechanical stability and moduli of GelNB/HepSH hydrogels were easily manipulated by the concentration and/or degree of thiol substitution. The GelNB/HepSH hydrogel allowed little intracellular ROS for encapsulated cells but provided vascular endothelial growth factor binding affinity for potential facilitation of neovascularization. Finally, the GelNB/HepSH bioink enabled a convenient printing process for both complex-structured bioscaffolds and cell-laden constructs, and resulted in good printability and high post-crosslinking cell viability. The crosslinker HepSH may serve as a multifunctional macromolecule that enables GelNB-based bioprinting in broad applications in regenerative medicine.
Collapse
Affiliation(s)
- Cailing Zhao
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Zejia Wu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Hanyu Chu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Tao Wang
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China.,Guangdong Provincial Soft Tissue Biofabrication Engineering Laboratory, Guangdong, Guangzhou 510080, China
| | - Shuai Qiu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Jing Zhou
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Qingtang Zhu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China.,Guangdong Provincial Soft Tissue Biofabrication Engineering Laboratory, Guangdong, Guangzhou 510080, China
| | - Xiaolin Liu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong, Guangzhou 510080, China
| | - Daping Quan
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China
| | - Ying Bai
- Guangdong Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangdong, Guangzhou 510275, China.,Guangdong Provincial Soft Tissue Biofabrication Engineering Laboratory, Guangdong, Guangzhou 510080, China
| |
Collapse
|
32
|
Van Damme L, Van Hoorick J, Blondeel P, Van Vlierberghe S. Toward Adipose Tissue Engineering Using Thiol-Norbornene Photo-Crosslinkable Gelatin Hydrogels. Biomacromolecules 2021; 22:2408-2418. [PMID: 33950675 DOI: 10.1021/acs.biomac.1c00189] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nowadays, breast implants, lipofilling, and microsurgical free tissue transfer are the most often applied procedures to repair soft tissue defects resulting from mastectomies/lumpectomies following breast cancer. Due to the drawbacks and limitations associated with these conventional clinical practices, there is a need for alternative reconstructive strategies. The development of biomimetic materials able to promote cell proliferation and adipogenic differentiation has gained increasing attention in the context of adipose reconstructive purposes. Herein, thiol-norbornene crosslinkable gelatin-based materials were developed and benchmarked to the current commonly applied methacryloyl-modified gelatin (GelMA) with different degrees of substitutions focussing on bottom-up tissue engineering. The developed hydrogels resulted in similar gel fractions, swelling, and in vitro biodegradation properties compared to the benchmark materials. Furthermore, the thiol-ene hydrogels exhibited mechanical properties closer to those of native fatty tissue compared to GelMA. The mechanical cues of the equimolar GelNB DS55% + GelSH DS75% composition resulted not only in similar biocompatibility but also, more importantly, in superior differentiation of the encapsulated cells into the adipogenic lineage, as compared to GelMA. It can be concluded that the photo-crosslinkable thiol-ene systems offer a promising strategy toward adipose tissue engineering through cell encapsulation compared to the benchmark GelMA.
Collapse
Affiliation(s)
- Lana Van Damme
- Polymer Chemistry & Biomaterials Group-Centre of Macromolecular Chemistry (CMaC)-Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.,Department of Plastic & Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 2K12, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group-Centre of Macromolecular Chemistry (CMaC)-Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Philip Blondeel
- Department of Plastic & Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, 2K12, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group-Centre of Macromolecular Chemistry (CMaC)-Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| |
Collapse
|
33
|
Meeremans M, Van Damme L, De Spiegelaere W, Van Vlierberghe S, De Schauwer C. Equine Tenocyte Seeding on Gelatin Hydrogels Improves Elongated Morphology. Polymers (Basel) 2021; 13:747. [PMID: 33670848 PMCID: PMC7957613 DOI: 10.3390/polym13050747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Tendinopathy is a common injury in both human and equine athletes. Representative in vitro models are mandatory to facilitate translation of fundamental research into successful clinical treatments. Natural biomaterials like gelatin provide favorable cell binding characteristics and are easily modifiable. In this study, methacrylated gelatin (gel-MA) and norbornene-functionalized gelatin (gel-NB), crosslinked with 1,4-dithiotreitol (DTT) or thiolated gelatin (gel-SH) were compared. (2) Methods: The physicochemical properties (1H-NMR spectroscopy, gel fraction, swelling ratio, and storage modulus) and equine tenocyte characteristics (proliferation, viability, and morphology) of four different hydrogels (gel-MA, gel-NB85/DTT, gel-NB55/DTT, and gel-NB85/SH75) were evaluated. Cellular functionality was analyzed using fluorescence microscopy (viability assay and focal adhesion staining). (3) Results: The thiol-ene based hydrogels showed a significantly lower gel fraction/storage modulus and a higher swelling ratio compared to gel-MA. Significantly less tenocytes were observed on gel-MA discs at 14 days compared to gel-NB85/DTT, gel-NB55/DTT and gel-NB85/SH75. At 7 and 14 days, the characteristic elongated morphology of tenocytes was significantly more pronounced on gel-NB85/DTT and gel-NB55/DTT in contrast to TCP and gel-MA. (4) Conclusions: Thiol-ene crosslinked gelatins exploiting DTT as a crosslinker are the preferred biomaterials to support the culture of tenocytes. Follow-up experiments will evaluate these biomaterials in more complex models.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-Bis, B-9000 Ghent, Belgium; (L.V.D.); (S.V.V.)
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-Bis, B-9000 Ghent, Belgium; (L.V.D.); (S.V.V.)
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| |
Collapse
|