1
|
Pavan C, Escolano-Casado G, Bellomo C, Cananà S, Tomatis M, Leinardi R, Mino L, Turci F. Nearly free silanols drive the interaction of crystalline silica polymorphs with membranes: Implications for mineral toxicity. Front Chem 2023; 10:1092221. [PMID: 36726450 PMCID: PMC9884702 DOI: 10.3389/fchem.2022.1092221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Crystalline silica (CS) is a well-known hazardous material that causes severe diseases including silicosis, lung cancer, and autoimmune diseases. However, the hazard associated to crystalline silica is extremely variable and depends on some specific characteristics, including crystal structure and surface chemistry. The crystalline silica polymorphs share the SiO2 stoichiometry and differentiate for crystal structure. The different crystal lattices in turn expose differently ordered hydroxyl groups at the crystal surface, i.e., the silanols. The nearly free silanols (NFS), a specific population of weakly interacting silanols, have been recently advanced as the key surface feature that governs recognition mechanisms between quartz and cell membrane, initiating toxicity. We showed here that the nearly free silanols occur on the other crystalline silica polymorphs and take part in the molecular interactions with biomembranes. A set of crystalline silica polymorphs, including quartz, cristobalite, tridymite, coesite, and stishovite, was physico-chemically characterized and the membranolytic activity was assessed using red blood cells as model membranes. Infrared spectroscopy in highly controlled conditions was used to profile the surface silanol topochemistry and the occurrence of surface nearly free silanols on crystalline silica polymorphs. All crystalline silica polymorphs, but stishovite were membranolytic. Notably, pristine stishovite did not exhibited surface nearly free silanols. The topochemistry of surface silanols was modulated by thermal treatments, and we showed that the occurrence of nearly free silanols paralleled the membranolytic activity for the crystalline silica polymorphs. These results provide a comprehensive understanding of the structure-activity relationship between nearly free silanols and membranolytic activity of crystalline silica polymorphs, offering a possible clue for interpreting the molecular mechanisms associated with silica hazard and bio-minero-chemical interfacial phenomena, including prebiotic chemistry.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Turin, Turin, Italy,“G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy,Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Turin, Turin, Italy,Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Turin, Italy
| | - Chiara Bellomo
- Department of Chemistry, University of Turin, Turin, Italy,“G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Stefania Cananà
- Department of Chemistry, University of Turin, Turin, Italy,“G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Maura Tomatis
- Department of Chemistry, University of Turin, Turin, Italy,“G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy
| | - Riccardo Leinardi
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, Turin, Italy,Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Turin, Italy
| | - Francesco Turci
- Department of Chemistry, University of Turin, Turin, Italy,“G. Scansetti” Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Turin, Italy,*Correspondence: Francesco Turci,
| |
Collapse
|
2
|
Karnes JJ, Benjamin I. Mechanism and Dynamics of Molecular Exchange at the Silica/Binary Solvent Mixtures Interface. J Phys Chem A 2015; 119:12073-81. [DOI: 10.1021/acs.jpca.5b05097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- John J. Karnes
- Department
of Chemistry and
Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Ilan Benjamin
- Department
of Chemistry and
Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|