Liisberg MB, Lahtinen S, Sloth AB, Soukka T, Vosch T. Frequency Encoding of Upconversion Nanoparticle Emission for Multiplexed Imaging of Spectrally and Spatially Overlapping Lanthanide Ions.
J Am Chem Soc 2021;
143:19399-19405. [PMID:
34779614 DOI:
10.1021/jacs.1c07691]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present frequency encoded upconversion (FE-UPCON) widefield microscopy, an imaging approach that allows for multiplexed signal recovery based on frequency encoding of selected upconverted lanthanide ion emission rather than separation based on energy or time. FE-UPCON allows for the separation of luminescence from spectrally and spatially overlapping trivalent lanthanide ions (Ln3+) in upconversion nanoparticles (UCNPs). Utilizing the numerous electronic energy levels of Ln3+, one can generate a frequency encoded signal by periodic coexcitation with a secondary light source (modulated at a chosen frequency) that, for a particular wavelength, enhances the luminescence of the Ln3+ of interest. We demonstrate that it is possible to selectively image spectrally overlapping UCNPs co-doped with Yb3+/Ho3+ or Yb3+/Er3+ by FE-UPCON in cells up to 10 frames per second on a conventional widefield microscope with the simple extension of an additional secondary light source and a chopper wheel for modulation. Additionally, we show that FE-UPCON does not compromise sensitivity and that single UCNP detection is obtainable. FE-UPCON adds a new dimension (frequency space) for multiplexed imaging with UCNPs.
Collapse