1
|
Greaves MD, Novelli L, Mansour L S, Zalesky A, Razi A. Structurally informed models of directed brain connectivity. Nat Rev Neurosci 2025; 26:23-41. [PMID: 39663407 DOI: 10.1038/s41583-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Understanding how one brain region exerts influence over another in vivo is profoundly constrained by models used to infer or predict directed connectivity. Although such neural interactions rely on the anatomy of the brain, it remains unclear whether, at the macroscale, structural (or anatomical) connectivity provides useful constraints on models of directed connectivity. Here, we review the current state of research on this question, highlighting a key distinction between inference-based effective connectivity and prediction-based directed functional connectivity. We explore the methods via which structural connectivity has been integrated into directed connectivity models: through prior distributions, fixed parameters in state-space models and inputs to structure learning algorithms. Although the evidence suggests that integrating structural connectivity substantially improves directed connectivity models, assessments of reliability and out-of-sample validity are lacking. We conclude this Review with a strategy for future research that addresses current challenges and identifies opportunities for advancing the integration of structural and directed connectivity to ultimately improve understanding of the brain in health and disease.
Collapse
Affiliation(s)
- Matthew D Greaves
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Leonardo Novelli
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Sina Mansour L
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Adeel Razi
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Sun J, Niu Y, Dong Y, Zhou M, Yao R, Ma J, Wen X, Xiang J. Virtual resection evaluation based on sEEG propagation network for drug-resistant epilepsy. Sci Rep 2024; 14:25542. [PMID: 39462086 PMCID: PMC11513035 DOI: 10.1038/s41598-024-77216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Drug-resistant epilepsy with frequent seizures are considered to undergo surgery to become seizure-free, but seizure-free rates have not dramatically improved, partly due to imprecise intervention locations. To address this clinical need, we construct effective connectivity to reveal epilepsy brain dynamics. Based on the propagation path captured by the high order effective connectivity, calculate the control centrality evaluation scheme of the excised area. We used three datasets: simulation dataset, clinical dataset, and public dataset. The epileptogenic propagation network was quantified by calculating high-order effective connection to obtain accurate propagation path, based on this, combined with the outdegree index for virtual resection. By removing electrodes and recalculating control centrality, we quantify each electrode or region's control centrality to evaluate the virtual resection scheme. Three datasets obtained consistent results. We track the accurate propagation path and find the obvious inflection points occurring during the excision process. The minimum intervention targets were obtained by comparing different schemes without recurrence. The clinical data with multiple seizures found that after resection, the brain reaches a stable state and is less likely to continue spreading. By quantitative analysis of control centrality to evaluate the possible excision scheme, finally we obtain the best intervention area for epilepsy, which assist in developing surgical plans.
Collapse
Affiliation(s)
- Jie Sun
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Yanqing Dong
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Mengni Zhou
- School of Software, Taiyuan University of Technology, Taiyuan, China
| | - Rong Yao
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China
| | - Jiuhong Ma
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Wen
- School of Software, Taiyuan University of Technology, Taiyuan, China.
| | - Jie Xiang
- College of Computer Science and Technology (College of Big Data), Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
3
|
Azilinon M, Wang HE, Makhalova J, Zaaraoui W, Ranjeva JP, Bartolomei F, Guye M, Jirsa V. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Netw Neurosci 2024; 8:673-696. [PMID: 39355432 PMCID: PMC11340996 DOI: 10.1162/netn_a_00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/06/2024] [Indexed: 10/03/2024] Open
Abstract
Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the regions involved in the production of seizure activities, the so-called epileptogenic zone network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized virtual brain models derived from patient-specific anatomical and functional data are used in Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian inference. The Bayesian inference approach used in previous VEP integrates priors, based on the features of stereotactic-electroencephalography (SEEG) seizures' recordings. Here, we propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T and provided several features characterizing the sodium signal decay. The hypothesis is that the sodium features are biomarkers of neuronal excitability related to the EZN and will add additional information to VEP estimation. In this paper, we first proposed the mapping from 23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited these predictions as priors in the VEP pipeline. The statistical results demonstrated that compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.
Collapse
Affiliation(s)
- Mikhael Azilinon
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Huifang E Wang
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| | - Julia Makhalova
- APHM, Timone University Hospital, CEMEREM, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Wafaa Zaaraoui
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille, France
| | - Maxime Guye
- Aix Marseille University, CNRS, CRMBM, Marseille, France
- APHM, Timone University Hospital, CEMEREM, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Université, INSERM, Institut de Neurosciences des Systèmes (INS) UMR 1106, Marseille, France
| |
Collapse
|
4
|
Wang HE, Triebkorn P, Breyton M, Dollomaja B, Lemarechal JD, Petkoski S, Sorrentino P, Depannemaecker D, Hashemi M, Jirsa VK. Virtual brain twins: from basic neuroscience to clinical use. Natl Sci Rev 2024; 11:nwae079. [PMID: 38698901 PMCID: PMC11065363 DOI: 10.1093/nsr/nwae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
Virtual brain twins are personalized, generative and adaptive brain models based on data from an individual's brain for scientific and clinical use. After a description of the key elements of virtual brain twins, we present the standard model for personalized whole-brain network models. The personalization is accomplished using a subject's brain imaging data by three means: (1) assemble cortical and subcortical areas in the subject-specific brain space; (2) directly map connectivity into the brain models, which can be generalized to other parameters; and (3) estimate relevant parameters through model inversion, typically using probabilistic machine learning. We present the use of personalized whole-brain network models in healthy ageing and five clinical diseases: epilepsy, Alzheimer's disease, multiple sclerosis, Parkinson's disease and psychiatric disorders. Specifically, we introduce spatial masks for relevant parameters and demonstrate their use based on the physiological and pathophysiological hypotheses. Finally, we pinpoint the key challenges and future directions.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Paul Triebkorn
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Martin Breyton
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
- Service de Pharmacologie Clinique et Pharmacosurveillance, AP–HM, Marseille, 13005, France
| | - Borana Dollomaja
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Spase Petkoski
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Pierpaolo Sorrentino
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Damien Depannemaecker
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Meysam Hashemi
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| | - Viktor K Jirsa
- Aix Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106; Marseille 13005, France
| |
Collapse
|
5
|
Jirsa V, Wang H, Triebkorn P, Hashemi M, Jha J, Gonzalez-Martinez J, Guye M, Makhalova J, Bartolomei F. Personalised virtual brain models in epilepsy. Lancet Neurol 2023; 22:443-454. [PMID: 36972720 DOI: 10.1016/s1474-4422(23)00008-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/29/2023]
Abstract
Individuals with drug-resistant focal epilepsy are candidates for surgical treatment as a curative option. Before surgery can take place, the patient must have a presurgical evaluation to establish whether and how surgical treatment might stop their seizures without causing neurological deficits. Virtual brains are a new digital modelling technology that map the brain network of a person with epilepsy, using data derived from MRI. This technique produces a computer simulation of seizures and brain imaging signals, such as those that would be recorded with intracranial EEG. When combined with machine learning, virtual brains can be used to estimate the extent and organisation of the epileptogenic zone (ie, the brain regions related to seizure generation and the spatiotemporal dynamics during seizure onset). Virtual brains could, in the future, be used for clinical decision making, to improve precision in localisation of seizure activity, and for surgical planning, but at the moment these models have some limitations, such as low spatial resolution. As evidence accumulates in support of the predictive power of personalised virtual brain models, and as methods are tested in clinical trials, virtual brains might inform clinical practice in the near future.
Collapse
Affiliation(s)
- Viktor Jirsa
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France.
| | - Huifang Wang
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Paul Triebkorn
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Meysam Hashemi
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | - Jayant Jha
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France
| | | | - Maxime Guye
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Julia Makhalova
- Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, Aix Marseille Université, Marseille, France; Centre d'Exploration Métabolique par Résonance Magnétique, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Aix Marseille Université, Marseille, France; Epileptology and Clinical Neurophysiology Department, Assistance Publique - Hôpitaux de Marseille, La Timone University Hospital, Marseille, France
| |
Collapse
|
6
|
Wang HE, Woodman M, Triebkorn P, Lemarechal JD, Jha J, Dollomaja B, Vattikonda AN, Sip V, Medina Villalon S, Hashemi M, Guye M, Makhalova J, Bartolomei F, Jirsa V. Delineating epileptogenic networks using brain imaging data and personalized modeling in drug-resistant epilepsy. Sci Transl Med 2023; 15:eabp8982. [PMID: 36696482 DOI: 10.1126/scitranslmed.abp8982] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Precise estimates of epileptogenic zone networks (EZNs) are crucial for planning intervention strategies to treat drug-resistant focal epilepsy. Here, we present the virtual epileptic patient (VEP), a workflow that uses personalized brain models and machine learning methods to estimate EZNs and to aid surgical strategies. The structural scaffold of the patient-specific whole-brain network model is constructed from anatomical T1 and diffusion-weighted magnetic resonance imaging. Each network node is equipped with a mathematical dynamical model to simulate seizure activity. Bayesian inference methods sample and optimize key parameters of the personalized model using functional stereoelectroencephalography recordings of patients' seizures. These key parameters together with their personalized model determine a given patient's EZN. Personalized models were further used to predict the outcome of surgical intervention using virtual surgeries. We evaluated the VEP workflow retrospectively using 53 patients with drug-resistant focal epilepsy. VEPs reproduced the clinically defined EZNs with a precision of 0.6, where the physical distance between epileptogenic regions identified by VEP and the clinically defined EZNs was small. Compared with the resected brain regions of 25 patients who underwent surgery, VEP showed lower false discovery rates in seizure-free patients (mean, 0.028) than in non-seizure-free patients (mean, 0.407). VEP is now being evaluated in an ongoing clinical trial (EPINOV) with an expected 356 prospective patients with epilepsy.
Collapse
Affiliation(s)
- Huifang E Wang
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Marmaduke Woodman
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Paul Triebkorn
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Jean-Didier Lemarechal
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Centre MEG-EEG and Experimental Neurosurgery team, Paris F-75013, France
| | - Jayant Jha
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Borana Dollomaja
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Anirudh Nihalani Vattikonda
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Viktor Sip
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Samuel Medina Villalon
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France
| | - Meysam Hashemi
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Maxime Guye
- Aix-Marseille Université, CNRS, CRMBM, Marseille 13005, France.,APHM, Timone University Hospital, CEMEREM, Marseille 13005, France
| | - Julia Makhalova
- APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France.,Aix-Marseille Université, CNRS, CRMBM, Marseille 13005, France.,APHM, Timone University Hospital, CEMEREM, Marseille 13005, France
| | - Fabrice Bartolomei
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.,APHM, Epileptology and Clinical Neurophysiology Department, Timone Hospital, Marseille 13005, France
| | - Viktor Jirsa
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| |
Collapse
|