1
|
Liu B, Yu HMI, Hsu W. Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation. Dev Biol 2006; 301:298-308. [PMID: 17113065 PMCID: PMC1821096 DOI: 10.1016/j.ydbio.2006.10.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/16/2006] [Accepted: 10/17/2006] [Indexed: 12/19/2022]
Abstract
Targeted disruption of Axin2 in mice induces skeletal defects, a phenotype resembling craniosynostosis in humans. Premature fusion of cranial sutures, caused by deficiency in intramembranous ossification, occurs at early postnatal stages. Axin2 negatively regulates both expansion of osteoprogenitors and maturation of osteoblasts through its modulation on Wnt/beta-catenin signaling. We investigate the dual role of beta-catenin to gain further insights into the skull morphogenetic circuitry. We show that as a transcriptional co-activator, beta-catenin promotes cell division by stimulating its target cyclin D1 in osteoprogenitors. Upon differentiation of osteoprogenitors, BMP signaling is elevated to accelerate the process in a positive feedback mechanism. This Wnt-dependent BMP signal dictates cellular distribution of beta-catenin. As an adhesion molecule, beta-catenin promotes cell-cell interaction mediated by adherens junctions in mature osteoblasts. Finally, haploid deficiency of beta-catenin alleviates the Axin2-null skeletal phenotypes. These findings support a model for disparate roles of beta-catenin in osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
| | | | - Wei Hsu
- * Corresponding author: Fax: +1 585 276 0190. E-mail address: (W. Hsu)
| |
Collapse
|
2
|
Nam EJ, Kim JW, Kim SW, Kim YT, Kim JH, Yoon BS, Cho NH, Kim S. The expressions of the Rb pathway in cervical intraepithelial neoplasia; predictive and prognostic significance. Gynecol Oncol 2006; 104:207-11. [PMID: 17046054 DOI: 10.1016/j.ygyno.2006.07.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/06/2006] [Accepted: 07/31/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of the study was to assess the expression of the Rb pathway (p16(INK4a)-cdk4-pRb) in cervical intraepithelial neoplasia as a prognostic marker by investigating the association between expression of Rb pathway and the recurrence. METHODS The study group comprised of 265 paraffin-embedded tissues of the uterine cervix collected from patients between 2001 and 2003. Patients underwent ablative or excisional treatment and were followed for 2 years. RB pathway expression was examined using immunohistochemistry applied to a tissue microarray. HPV detection and genotyping were performed with HPV DNA Chip. Statistical analysis was done by ANOVA test, Student's t test, and Pearson's correlation test. RESULTS With increasing CIN grade, p16(INK4a) and cdk4 expression rates increased, while the pRb expression rate decreased. The expression rate of p16(INK4a) was higher (33%) in CIN I with high-risk HPV infection than in CIN I without high-risk HPV infection (19%). The mean expression rates of p16(INK4a) were 29%, 39%, and 64%, respectively, in CIN I, II, and III without recurrence, but 25%, 28%, and 44% in those with recurrence. The mean expression rates of pRb were 47%, 40%, and 18% in CIN I, II, and III without recurrence, respectively, but 48%, 45%, and 34% in those with recurrence. CONCLUSION A relatively low expression rate of p16(INK4a) has prognostic significance for predicting recurrence. The clinical utility of p16(INK4a) status for stratifying patients according to their need for aggressive treatment requires further investigation.
Collapse
Affiliation(s)
- Eun Ji Nam
- Women's Cancer Clinic, Department of Obstetrics and Gynecology, Korea
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bartkova J, Lukas C, Sørensen CS, Rajpert-De Meyts E, Skakkebaek NE, Lukas J, Bartek J. Deregulation of the RB pathway in human testicular germ cell tumours. J Pathol 2003; 200:149-56. [PMID: 12754735 DOI: 10.1002/path.1353] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Deregulation of the RB pathway is shared by most human malignancies. Components upstream of the retinoblastoma tumour suppressor (pRB), namely the INK4 family of cyclin-dependent kinase (CDK) inhibitors, the D-type cyclins, their partner kinases CDK4/CDK6, and pRB as their critical substrate, are differentially targeted in diverse types of cancer. An 'unorthodox' spectrum of defects within this cascade occurs in testicular germ cell tumours (TGCTs), including silencing of pRB transcription, overexpression of cyclin D2, and loss of p18INK4c. To improve understanding of the role of this pathway in spermatogenesis, and its subversion in TGCTs, we examined immunohistochemical expression patterns of CDK4, p16INK4a, p15INK4b, and pRB, and established an in situ assay for cyclin D-mediated phosphorylation of serine795, a phosphorylation event critical for neutralization of pRB's growth-restraining ability. pRB was expressed throughout adult spermatogenesis and was detectable in teratomas, but was absent or grossly reduced in carcinoma in situ (CIS) and most seminomas and embryonal carcinomas. Unexpectedly, we also found that pRB was absent from fetal human gonocytes, the candidate target cell for all types of TGCTs. Thus, rather than a tumorigenesis-promoting loss of pRB, the lack of pRB in TGCTs likely reflects its developmental control. Widespread expression of p15INK4b, found in normal testes, was preserved in TGCTs. In contrast, p16INK4a was lost or reduced in large subsets of TGCTs. CDK4 was expressed in normal spermatogonia, CIS, and invasive TGCTs, as was serine795-phosphorylated pRB. Our data on expression of pRB support the plausible origin of TGCTs from fetal gonocytes, and the serine795 phosphorylation demonstrates that the cyclin D-dependent kinases are active, and neutralize pRB in spermatogonia and in those TGCTs that express pRB. We hope that this study will inspire further immunohistochemical applications of phosphospecific antibodies in pathology, and examination of the RB pathway defects in relation to curability of TGCTs.
Collapse
Affiliation(s)
- Jirina Bartkova
- Department of Cell Cycle and Cancer, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Proper healing of mucosal wounds requires careful orchestration of epithelial cell migration and proliferation. To elucidate the molecular basis of the lack of cellular proliferation in the migrating 'epithelial tongue' during the re-epithelialization of oral mucosal wounds, the expression of cell-cycle regulators critical for G(1)-phase progression and S-phase entry was here analysed immunohistochemically. Compared to normal human mucosa, epithelia migrating to cover 2- or 3-day-old wounds made either in vivo or in an organotypic cell culture all showed loss of the proliferation marker Ki67 and cyclins D(1) and A, and reduced expression of cyclins D(3) and E, the cyclin D-dependent kinase 4 (CDK4), the MCM7 component of DNA replication origin complexes and the retinoblastoma protein pRb. Among the CDK inhibitors (CKIs), p16ink4a and p21Cip1 were moderately increased and decreased, respectively, whereas the abundance of most of the CKIs, including p27Kip1, p57Kip2, p15ink4b and p18ink4c, was relatively maintained in the migrating epithelial tongue. These data indicate that downmodulation of several G(1)/S-phase cyclins and a relative excess of CKIs may cooperate to ensure the quiescent state of migrating keratinocytes during wound healing.
Collapse
Affiliation(s)
- Jirina Bartkova
- Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
5
|
Rheinwald JG, Hahn WC, Ramsey MR, Wu JY, Guo Z, Tsao H, De Luca M, Catricalà C, O'Toole KM. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol Cell Biol 2002; 22:5157-72. [PMID: 12077343 PMCID: PMC139780 DOI: 10.1128/mcb.22.14.5157-5172.2002] [Citation(s) in RCA: 259] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
With increasing frequency during serial passage in culture, primary human keratinocytes express p16(INK4A) (p16) and undergo senescence arrest. Keratinocytes engineered to express hTERT maintain long telomeres but typically are not immortalized unless, by mutation or other heritable event, they avoid or greatly reduce p16 expression. We have confirmed that keratinocytes undergo p16-related senescence during growth in culture, whether in the fibroblast feeder cell system or in the specialized K-sfm medium formulation, and that this mechanism can act as a barrier to immortalization following hTERT expression. We have characterized the p16-related arrest mechanism more precisely by interfering specifically with several regulators of cell cycle control. Epidermal, oral mucosal, corneal limbal, and conjunctival keratinocytes were transduced to express a p16-insensitive mutant cdk4 (cdk4(R24C)), to abolish p16 control, and/or a dominant negative mutant p53 (p53DD), to abolish p53 function. Expression of either cdk4(R24C) or p53DD alone had little effect on life span, but expression of both permitted cells to divide 25 to 43 population doublings (PD) beyond their normal limit. Keratinocytes from a p16(+/-) individual transduced to express p53DD alone displayed a 31-PD life span extension associated with selective growth of variants that had lost the wild-type p16 allele. Cells in which both p53 and p16 were nonfunctional divided rapidly during their extended life span but experienced telomere erosion and ultimately ceased growth with very short telomeres. Expression of hTERT in these cells immortalized them. Keratinocytes engineered to express cdk4(R24C) and hTERT but not p53DD did not exhibit an extended life span. Rare immortal variants exhibiting p53 pathway defects arose from them, however, indicating that the p53-dependent component of keratinocyte senescence is telomere independent. Mutational loss of p16 and p53 has been found to be a frequent early event in the development of squamous cell carcinoma. Our results suggest that such mutations endow keratinocytes with extended replicative potential which may serve to increase the probability of neoplastic progression.
Collapse
Affiliation(s)
- James G Rheinwald
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bartkova J, Thullberg M, Slezak P, Jaramillo E, Rubio C, Thomassen LH, Bartek J. Aberrant expression of G1-phase cell cycle regulators in flat and exophytic adenomas of the human colon. Gastroenterology 2001; 120:1680-8. [PMID: 11375949 DOI: 10.1053/gast.2001.24880] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The G1/S-phase controlling mechanism known as the RB pathway is commonly deregulated in human malignancies. Here, the abundance and localization of key components of the retinoblastoma (RB) pathway were determined in exophytic and flat colorectal adenomas. METHODS Samples of normal colonic mucosa (n = 41) and flat (n = 45) and exophytic (n = 26) adenomas were examined immunohistochemically using antibodies to cyclins D1, D2, D3, cyclin-dependent kinase (CDK) 4, retinoblastoma protein (pRB), and the CDK inhibitors p16INK4a, p18INK4c, and p19INK4d. RESULTS In normal colonic epithelium, cyclin D2 was undetectable; expression of cyclin D1, CDK4, and pRB correlated with proliferation; and p16, p18, p19, and cyclin D3 were most abundant in quiescent, differentiated cells. Adenomas showed elevated expression of cyclin D1 and pRB, frequent induction of cyclin D2, and absence of p16. No obvious abnormalities were found for p18, p19, or cyclin D3. Overexpressed cyclin D2 was more common among exophytic and pRB among flat adenomas, respectively. Elevated cyclin D1, D2, and CDK4 correlated with enhanced dysplasia. CONCLUSIONS Aberrant expression of cyclins D1, D2, CDK4, p16, and pRB occur in significant subsets of exophytic and flat adenomas, particularly among cases with high-grade dysplasia. Such defects of the RB pathway may perturb cell-cycle control and thereby contribute an early step in colorectal tumorigenesis.
Collapse
Affiliation(s)
- J Bartkova
- Department of Cell Cycle and Cancer, Institute of Cancer Biology, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
7
|
Thullberg M, Bartek J, Lukas J. Ubiquitin/proteasome-mediated degradation of p19INK4d determines its periodic expression during the cell cycle. Oncogene 2000; 19:2870-6. [PMID: 10851091 DOI: 10.1038/sj.onc.1203579] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Assembly and activity of the proto-oncogenic cyclin D/CDK4(6) complexes, the major driving force of G1 phase progression, is negatively regulated by a family of INK4 CDK inhibitors p16INK4a, p15INK4b, p18INK4c, and p19INK4d. Expression of the INK4 family members is controlled at the transcriptional level, through differential response to environmental and intracellular signals such as cytokines, oncogenic overload, or cellular senescence. Here we show that the periodic oscillation of the p19INK4d protein during the cell cycle is determined by the ubiquitin/proteasome-dependent mechanism, allowing the protein abundance to follow the changes in its mRNA expression. Within the INK4 family, this regulatory mode appears restricted to p19INK4d whose ubiquitination was dependent on the integrity of lysine 62, and binding to CDK4. These results highlight unexpected differences among the INK4 inhibitors, and suggest how p19INK4d may help regulate the rate of cyclin D/CDK4(6) complex formation, and thereby timely progression through the mammalian cell division cycle. Oncogene (2000) 19, 2870 - 2876
Collapse
Affiliation(s)
- M Thullberg
- Danish Cancer Society, Institute of Cancer Biology, Strandboulevarden 49, DK-2100 Copenhagen O, Denmark
| | | | | |
Collapse
|
8
|
Thullberg M, Bartkova J, Khan S, Hansen K, Rönnstrand L, Lukas J, Strauss M, Bartek J. Distinct versus redundant properties among members of the INK4 family of cyclin-dependent kinase inhibitors. FEBS Lett 2000; 470:161-6. [PMID: 10734227 DOI: 10.1016/s0014-5793(00)01307-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
p16(INK4a), p15(INK4b), p18(INK4c) and p19(INK4d) comprise a family of cyclin-dependent kinase inhibitors and tumor suppressors. We report that the INK4 proteins share the ability to arrest cells in G1, and interact with CDK4 or CDK6 with similar avidity. In contrast, only p18 and particularly p19 are phosphorylated in vivo, and each of the human INK4 proteins shows unique expression patterns dependent on cell and tissue type, and differentiation stage. Thus, the INK4 proteins harbor redundant as well as non-overlapping properties, suggesting distinct regulatory modes, and diverse roles for the individual INK4 family members in cell cycle control, cellular differentiation, and multistep oncogenesis.
Collapse
Affiliation(s)
- M Thullberg
- Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Thullberg M, Welcker M, Bartkova J, Kjerulff AA, Lukas J, Högberg J, Bartek J. Monoclonal antibody probes for p21WAF1/CIP1 and the INK4 family of cyclin-dependent kinase inhibitors. Hybridoma (Larchmt) 2000; 19:63-72. [PMID: 10768842 DOI: 10.1089/027245700315806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inhibition of cyclin dependent kinases (cdk) by proteins of two families of cdk inhibitors (CKIs) represents one of the key modes of cell-cycle control. Although not fully understood at present, the functions of the individual members of the Cip/Kip and INK4 families of CKIs have been implicated in fundamental biological processes as diverse as cellular proliferation, responses to genotoxic stress, regulation of cellular differentiation, and senescence. In addition, the seven currently known CKIs qualify as either established or candidate tumor suppressors whose loss or inactivation contribute to molecular pathogenesis of a wide range of tumor types. In this study, we report the isolation and characterization of a panel of 10 mouse monoclonal antibodies (MAbs) that specifically recognize p21WAF1/CIP1 (p21) or the individual members of the INK4 family of CKIs: p15INK4b (p15), p16INK4a (p16), p18INK4c (p18), or p19INK4d (p19). These antibodies are proving to be invaluable molecular probes for analyses of protein abundance, subcellular localization, interacting cellular proteins, and ultimately the function(s) of these cell cycle regulators. Epitopes targeted by the antibodies were mapped by peptide enzyme-linked immunoadsorbent assay (ELISA), and performance of the MAbs assessed in a range of immunochemical techniques. Individual MAbs of our series recognize distinct pools of the respective CKIs, a feature reflected by their differential applicability in immunoblotting, immunoprecipitation, and immunostaining including immunohistochemistry on archival paraffin-embedded tissue sections. Together, these antibodies represent useful reagents to study CKIs in cells and tissues, a set of tools that should help elucidate the physiological roles played by the individual CKIs, and better understand the molecular mechanisms of loss or inactivation of these (candidate) tumor suppressors in human malignancies.
Collapse
Affiliation(s)
- M Thullberg
- Institute of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | | | | | | | | | |
Collapse
|