1
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
2
|
Starks AO, Owen J, Isaacs J. Evaluation of the Induced Membrane for Neurotrophic Factors. J Hand Surg Am 2022; 47:130-136. [PMID: 34865951 DOI: 10.1016/j.jhsa.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/09/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Despite gaining popularity as a bridge for small and moderate nerve gaps, an acellular nerve allograft (ANA) lacks many of the neurotrophic characteristics of a nerve autograft. Pseudomembranes induced to form around temporary skeletal spacers are rich in growth factors. Induced membranes may have beneficial neurotrophic factors which could support ANA. METHODS Twenty-two male Sprague-Dawley rats underwent resection of 2 cm of the sciatic nerve. A silicone rod was inset in the defect of 11 experimental rats, and marking sutures only were placed in the nerve stumps of the remaining 11 control rats. After allowing 4 weeks for tissue maturation, tissue samples harvested from the induced membrane (experimental group) and the tissue bed (control group) were analyzed using Luminex multiplex assay to quantify differences in detectable levels of the following neurotrophic factors: nerve growth factor, glial-derived nerve factor, vascular endothelial growth factor, and transforming growth factor ß (TGF-ß) 1, 2, and 3, interleukin-1ß, and monocyte chemoattractant protein 1. RESULTS No difference was detected between the control and experimental groups in levels of vascular endothelial growth factor. Higher levels of TGF-ß1, TGF-ß2, TGF-ß3, glial-derived nerve factor, nerve growth factor, monocyte chemoattractant protein 1, and interleukin-1ß were detected in the experimental group. CONCLUSIONS In the setting of peripheral nerve injury, an induced membrane has higher levels of several neurotrophic factors that may support nerve regeneration compared to wound bed cicatrix. CLINICAL RELEVANCE This investigation provides impetus for further study examining the utility of using a staged induced membrane technique in conjunction with delayed nerve grafting in reconstruction of some peripheral nerve defects.
Collapse
Affiliation(s)
- Alexandria O Starks
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA.
| | - John Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - Jonathan Isaacs
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
3
|
Liu X, Sun Y, Li H, Li Y, Li M, Yuan Y, Cui S, Yao D. Effect of Spp1 on nerve degeneration and regeneration after rat sciatic nerve injury. BMC Neurosci 2017; 18:30. [PMID: 28270094 PMCID: PMC5341472 DOI: 10.1186/s12868-017-0348-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wallerian degeneration (WD) in injured peripheral nerves is associated with a large number of up- or down-regulated genes, but the effects of these changes are poorly understood. In our previous studies, we reported some key factors that are differentially expressed to activate nerve degeneration and regeneration during WD. Here, we determined the effects of secreted phosphoprotein 1 (Spp1) on WD after rat sciatic nerve injury. RESULTS Spp1 was upregulated from 6 h to 14 days after sciatic nerve injury. Altered expression of Spp1 in Schwann cells (SC) resulted in altered mRNA and protein expression levels for cytokines, c-Fos, PKCα and phospho-ERK/ERK and affected SC apoptosis in vitro. Silencing of Spp1 expression in SCs using siRNA technology reduced proliferation and promoted migration of SCs in vitro. By contrast, overexpression of Spp1 promoted proliferation and reduced migration in SCs in vitro. Differential expression of Spp1 after sciatic nerve injury in vivo altered the expression of cytokines, c-Fos, PKCα, and the p-ERK/ERK pathway. CONCLUSIONS Spp1 is a key regulatory factor that affects nerve degeneration and regeneration through c-Fos, PKCα and p-ERK/ERK pathways after rat sciatic nerve injury. These results shed new light on the role of Spp1 in nerve degeneration and regeneration during WD.
Collapse
Affiliation(s)
- Xingyu Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun, 130033, Jilin, People's Republic of China
| | - Yuhua Sun
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Huaiqin Li
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Yuting Li
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Meiyuan Li
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Ying Yuan
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China.,Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shusen Cui
- China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun, 130033, Jilin, People's Republic of China.
| | - Dengbing Yao
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Celik M, Kose A, Kose D, Karakus E, Akpinar E, Calik M, Dostbil A, Calikoglu C, Aksoy M, Ozel L. The double-edged sword: effects of pregabalin on experimentally induced sciatic nerve transection and crush injury in rats. Int J Neurosci 2014; 125:845-54. [PMID: 25340254 DOI: 10.3109/00207454.2014.978976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study was to research the effects of pregabalin on experimentally induced peripheral nerve crush injuries in rats. MATERIAL AND METHOD Forty-two adult female Wistar albino rats were divided into seven groups: 1st group: healthy; 2nd group: axonotmesis control; 3rd group: anastomosis control; 4th group: axonotmesis+30 mg/kg of pregabalin; 5th group: axonotmesis+60 mg/kg of pregabalin; 6th group: anastomosis+30 mg/kg of pregabalin; 7th group: anastomosis+60 mg/kg of pregabalin. Evaluation of the sciatic functional index (SFI) was performed one day before and on days 7, 14, 21, and 28 following surgery. The right sciatic nerves of all animals were examined histopathologically and molecularly. RESULTS After 28 days post-injury, the histopathological regeneration in peripheral nerve injuries for pregabalin 30 mg/kg treated groups was significantly better than that of the control groups. Also the SFI increases and TGF-β gene expression up-regulation were significantly better in pregabalin 30 mg/kg treated groups. CONCLUSION The histopathological, functional and molecular data suggest that pregabalin 30 mg/kg treatment in axonotmesis and anostomosis groups improves nerve regeneration and increases SFI in peripheral nerve injuries by activating antiinflammatory cytokine TGF-β1.
Collapse
Affiliation(s)
- Mine Celik
- a Ataturk University, Faculty of Medicine, Department of Anesthesiology and Reanimation , Erzurum , Turkey
| | - Ahmet Kose
- b Department of Orthophedics and Traumatology, Horasan Public Hospital , Erzurum , Turkey
| | - Duygu Kose
- c Ataturk University, Faculty of Medicine, Department of Pharmacology , Erzurum , Turkey
| | - Emre Karakus
- d Ataturk University, Faculty of Veterinary, Department of Pharmacology and Toxicology , Erzurum , Turkey
| | - Erol Akpinar
- c Ataturk University, Faculty of Medicine, Department of Pharmacology , Erzurum , Turkey
| | - Muhammed Calik
- e Ataturk University, Faculty of Medicine, Department of Pathology , Erzurum , Turkey
| | - Aysenur Dostbil
- a Ataturk University, Faculty of Medicine, Department of Anesthesiology and Reanimation , Erzurum , Turkey
| | - Cagatay Calikoglu
- f Ataturk University, Faculty of Medicine, Department of Brain Surgery , Erzurum , Turkey
| | - Mehmet Aksoy
- a Ataturk University, Faculty of Medicine, Department of Anesthesiology and Reanimation , Erzurum , Turkey
| | - Lutfu Ozel
- g Ataturk University, Faculty of Medicine, Department of Neurology , Erzurum , Turkey
| |
Collapse
|
5
|
TGF-β1 is critical for Wallerian degeneration after rat sciatic nerve injury. Neuroscience 2014; 284:759-767. [PMID: 25451291 DOI: 10.1016/j.neuroscience.2014.10.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/16/2022]
Abstract
Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF-β1) on WD after rat sciatic nerve injury. The data showed that TGF-β1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF-β1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration.
Collapse
|
6
|
Tutolo M, Briganti A, Suardi N, Gallina A, Abdollah F, Capitanio U, Bianchi M, Passoni N, Nini A, Fossati N, Rigatti P, Montorsi F. Optimizing postoperative sexual function after radical prostatectomy. Ther Adv Urol 2012; 4:347-65. [PMID: 23205061 PMCID: PMC3491757 DOI: 10.1177/1756287212450063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Erectile dysfunction (ED) is one of the complications associated with pelvic surgery. The significance of ED as a complication following pelvic surgery, especially radical prostatectomy (RP), lies in the negative impact that it has on patients' sexual and overall life. In the literature, rates of ED following RP range from 25% to 100%. Such variety is associated with pelvic dissection and conservation of neurovascular structures. Another important factor impacting on postoperative ED is the preoperative erectile function of the patient. Advances in the knowledge of pelvic anatomy and pathological mechanisms led to a refinement of pelvic surgical techniques, with attention to the main structures that if damaged compromise erectile function. These improvements resulted in lower postoperative ED rates and better erectile recovery, especially in patients undergoing RP. Furthermore, surgery alone is not sufficient to prevent this complication, and thus, several medical strategies have been tested with the aim of maximizing erectile function recovery. Indeed it seems that prevention of postoperative ED must be addressed by a multimodal approach. The aim of this review is to give a picture of recent knowledge, novel techniques and therapeutic approaches in order to reach the best combination of treatments to reduce the rate of ED after pelvic surgery.
Collapse
Affiliation(s)
- Manuela Tutolo
- Department of Urology, Vita Salute University, Urological Research Institute, San Raffaele Hospital, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ngeow W, Atkins S, Morgan C, Metcalfe A, Boissonade F, Loescher A, Robinson P. A comparison between the effects of three potential scar-reducing agents applied at a site of sciatic nerve repair. Neuroscience 2011; 181:271-7. [DOI: 10.1016/j.neuroscience.2011.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
|
8
|
Albersen M, Fandel TM, Zhang H, Banie L, Lin G, De Ridder D, Lin CS, Lue TF. Pentoxifylline promotes recovery of erectile function in a rat model of postprostatectomy erectile dysfunction. Eur Urol 2010; 59:286-96. [PMID: 21036464 DOI: 10.1016/j.eururo.2010.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/15/2010] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cavernous nerve (CN) injury during radical prostatectomy (RP) causes CN degeneration and secondary penile fibrosis and smooth muscle cell (SMC) apoptosis. Pentoxifylline (PTX) is a phosphodiesterase inhibitor that further inhibits multiple cytokine pathways involved in nerve degeneration, apoptosis, and fibrosis. OBJECTIVES To evaluate whether PTX enhances erectile function in a rat model of CN injury. DESIGN, SETTING AND INTERVENTIONS: Forty male Sprague-Dawley rats underwent CN crush injury and were randomized to oral gavage feeding of phosphate-buffered saline (vehicle) or PTX 25, PTX 50, or PTX 100 mg/kg per day. Ten animals underwent sham surgery and received vehicle treatment. Treatment continued for 28 d, followed by a wash-out period of 72 h. An additional eight rats underwent resection of the major pelvic ganglion (MPG) for tissue culture and examination of direct effects of PTX on neurite sprouting. MEASUREMENTS Intracavernous pressure recording on CN electrostimulation, immunohistologic examination of the penis and the CN distal to the injury site, and length of neurite sprouts in MPG culture. RESULTS Daily oral gavage feeding of PTX resulted in significant improvement of erectile function compared to vehicle treatment in all treated groups. After treatment with PTX 50 and PTX 100 mg/kg per day, the expression of neuronal nitric oxide synthase in the dorsal penile nerve was significantly higher than in vehicle-treated rats. Furthermore, PTX treatment prevented collagen deposition and SMC loss in the corpus cavernosum. In the CN, signs of Wallerian degeneration were ameliorated by PTX treatment. MPG culture in medium containing PTX resulted in a significant increase of neurite length. CONCLUSIONS PTX treatment following CN injury in rats improved erectile recovery, enhanced nerve regeneration, and preserved the corpus cavernosum microarchitecture. The clinical availability of this compound merits application in penile rehabilitation studies following RP in the near future.
Collapse
Affiliation(s)
- Maarten Albersen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-0738, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nerve regeneration after local administration of the inhibitor peptide of the TGF-ß1 (P144®). EUROPEAN JOURNAL OF PLASTIC SURGERY 2010. [DOI: 10.1007/s00238-010-0406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Atkins S, Loescher AR, Boissonade FM, Smith KG, Occleston N, O'Kane S, Ferguson MWJ, Robinson PP. Interleukin-10 reduces scarring and enhances regeneration at a site of sciatic nerve repair. J Peripher Nerv Syst 2008; 12:269-76. [PMID: 18042137 DOI: 10.1111/j.1529-8027.2007.00148.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Axonal regeneration at a site of peripheral nerve repair can be impeded by the formation of scar tissue, which creates a mechanical barrier and initiates the development of multiple branched axonal sprouts that form a neuroma. We have investigated the hypothesis that the application of a scar-reducing agent to the nerve repair site would permit better axonal regeneration. In anaesthetised C57 Black-6 mice, the left sciatic nerve was sectioned and immediately re-approximated using four epineurial sutures. In five groups of eight mice, we injected transforming growth factor-beta3 (50 or 500 ng), interleukin-10 (IL-10) (125 or 500 ng), or saline into and around the repair site, both before and after the nerve section. Another group of eight animals acted as sham-operated controls. After 6 weeks, the outcome was assessed by recording compound action potentials (CAPs), measuring collagen levels using picrosirius red staining, and counting the number of myelinated axons proximal and distal to the repair. CAPs evoked by electrical stimulation distal to the repair were significantly smaller in all repair groups except for the low-dose IL-10 group, where they were not significantly different from that in controls. The area of staining for collagen had significantly increased in all repair groups except for the low-dose IL-10 group, which was not significantly different from that in controls. The myelinated fibre counts were always higher distal to the repair site, but there were no significant differences between groups. We conclude that administration of a low-dose of IL-10 to a site of sciatic nerve repair reduces scar formation and permits better regeneration of the damaged axons.
Collapse
Affiliation(s)
- Simon Atkins
- Department of Oral & Maxillofacial Medicine and Surgery, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Atkins S, Smith KG, Loescher AR, Boissonade FM, Ferguson MWJ, Robinson PP. The effect of antibodies to TGF-beta1 and TGF-beta2 at a site of sciatic nerve repair. J Peripher Nerv Syst 2007; 11:286-93. [PMID: 17117936 DOI: 10.1111/j.1529-8027.2006.00100.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Scar formation at a site of nerve injury can cause a mechanical barrier to axonal regeneration and lead to the development of multiple axonal sprouts to form a neuroma. We have investigated the hypothesis that the application of a scar-preventing agent to a nerve repair site would enhance regeneration of the nerve and reduce neuroma formation. The left sciatic nerve was exposed under general anaesthesia in 18 adult Sprague-Dawley rats. In 12 animals, the nerve was sectioned and immediately re-approximated using four epineurial sutures, and in 6 of these animals neutralising antibodies to transforming growth factor (TGF)-beta1 and TGF-beta2 were injected into and around the repair site. The six other animals acted as controls. After 7 weeks, the outcome was assessed by recording compound action potential (CAP) ratios, measuring collagen levels using picrosirius red staining, and counting the number of myelinated axons proximal and distal to the repair. After repair alone, the mean percentage of area of staining (PAS) for collagen within the nerve had significantly increased. However, after repair with the administration of antibodies, the PAS was not significantly different from that in the sham controls. After administration of antibodies, the CAP ratios were significantly smaller than in controls but not after repair alone. In both nerve injury groups, the myelinated fibre counts were significantly increased distal to the injury site, but there was no difference between these two groups. We conclude that administration of antibodies to TGF-beta1 and TGF-beta2 reduced scar formation at the repair site but did not enhance regeneration of the nerve or reduce the development of multiple axonal sprouts.
Collapse
Affiliation(s)
- Simon Atkins
- Department of Oral and Maxillofacial Surgery, University of Sheffield; and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
12
|
Komori N, Takemori N, Kim HK, Singh A, Hwang SH, Foreman RD, Chung K, Chung JM, Matsumoto H. Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiol Genomics 2007; 29:215-30. [PMID: 17213366 DOI: 10.1152/physiolgenomics.00255.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Peripheral nerve injury is often followed by the development of severe neuropathic pain. Nerve degeneration accompanied by inflammatory mediators is thought to play a role in generation of neuropathic pain. Neuronal cell death follows axonal degeneration, devastating a vast number of molecules in injured neurons and the neighboring cells. Because we have little understanding of the cellular and molecular mechanisms underlying neuronal cell death triggered by nerve injury, we conducted a proteomics study of rat 4th and 5th lumbar (L4 and L5) dorsal root ganglion (DRG) after L5 spinal nerve ligation. DRG proteins were displayed on two-dimensional gels and analyzed through quantitative densitometry, statistical validation of the quantitative data, and peptide mass fingerprinting for protein identification. Among approximately 1,300 protein spots detected on each gel, we discovered 67 proteins that were tightly regulated by nerve ligation. We find that the injury to primary sensory neurons turned on multiple cellular mechanisms critical for the structural and functional integrity of neurons and for the defense against oxidative damage. Our data indicate that the regulation of metabolic enzymes was carefully orchestrated to meet the altered energy requirement of the DRG cells. Our data also demonstrate that ligation of the L5 spinal nerve led to the upregulation in the L4 DRG of the proteins that are highly expressed in embryonic sensory neurons. To understand the molecular mechanisms underlying neuropathic pain, we need to comprehend such dynamic aspect of protein modulations that follow nerve injury.
Collapse
Affiliation(s)
- Naoka Komori
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ciesielska A, Joniec I, Kurkowska-Jastrzebska I, Przybyłkowski A, Gromadzka G, Członkowska A, Członkowski A. Influence of age and gender on cytokine expression in a murine model of Parkinson's disease. Neuroimmunomodulation 2007; 14:255-65. [PMID: 18196934 DOI: 10.1159/000113432] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 10/10/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The neuroinflammatory reaction has been linked with Parkinson's disease. One of the hypotheses to explain the significance of age and gender (male predominance) effects on neurodegeneration in Parkinson's disease may result from a link between these risk factors and the inflammatory processes. Here, we investigated the expression of inflammatory mediators in relation to 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine (MPTP)-induced neurodegenerative processes in nigrostriatal pathway in young and aged male and female mice. METHODS AND RESULTS We simultaneously assessed striatal tyrosine hydroxylase (TH) protein concentrations (Western blotting) and cytokine (TNFalpha, IFNgamma, IL-1beta, IL-6 and TGFbeta(1)) mRNA levels (RT-PCR) in young and aged (2- and 12-month-old) C57BL/6 male and female mice after 6 h, 1, 3, 7, 14, 21 days after MPTP intoxication. Western blotting analysis showed that at the early time points, males showed a greater reduction in striatal TH versus females. Additionally, in contrast to the aged mice, in young males and females the TH concentration gradually increased between the 7th and the 21st day after intoxication. The increases in TNFalpha, IL-1beta and IFNgamma after intoxication were faster in both young and aged males than females. In males (both ages), we observed an increase in TGFbeta(1) at the early time points. In contrast, in females (both ages) TGFbeta(1) was elevated at later time points. MPTP caused an increase in IL-6 in males and females, but this increase was significantly higher in females. CONCLUSIONS A gender and age skewing of the cytokine gene expression in the striatum after intoxication may be related to the greater susceptibility in males as well as older animals to the detrimental effects of MPTP.
Collapse
Affiliation(s)
- Agnieszka Ciesielska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Turgut M, Oktem G, Uysal A, Yurtseven ME. Immunohistochemical profile of transforming growth factor-β1 and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats. J Clin Neurosci 2006; 13:753-8. [PMID: 16831553 DOI: 10.1016/j.jocn.2005.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 07/14/2005] [Indexed: 11/15/2022]
Abstract
Collagen scar formation at the cut end of a peripheral nerve, an important problem in clinical practice for neurosurgeons, obstructs sprouting of axons into appropriate distal fascicles, and thereby limits the regeneration process. Researchers have attempted to control collagen accumulation and neuroma formation with various physical and chemical methods, but with limited functional success. Recently, it has been demonstrated that transforming growth factor (TGF)-beta and basic fibroblast growth factor (bFGF) play an important role in collagen production by fibroblasts and in Schwann cell activity. In our study, rats were divided into a control group, a melatonin-treated group, a surgical pinealectomy group, and a group treated with melatonin following pinealectomy. They then underwent a surgical sciatic nerve transection and primary suture anastomosis. At 2 months after anastomosis, the animals were sacrificed and unilateral sciatic nerve specimens, including the anastomotic region, were removed and processed for immunohistochemical study from two animals in each group. For each antibody, immunoreactivity was assessed using a semiquantitative scoring system. Strong TGF-beta1 and/or bFGF expression was observed in the epineurium of animals that underwent pinealectomy, but no or weak staining was observed in animals in the control and melatonin treatment groups. Based on these data, we suggest that both TGF-beta1 and bFGF have important roles in control of collagen accumulation and neuroma formation at the anastomotic site, and that the pineal neurohormone melatonin has a beneficial effect on nerve regeneration.
Collapse
Affiliation(s)
- Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydin, Turkey.
| | | | | | | |
Collapse
|
15
|
Ruohonen S, Khademi M, Jagodic M, Taskinen HS, Olsson T, Röyttä M. Cytokine responses during chronic denervation. J Neuroinflammation 2005; 2:26. [PMID: 16287511 PMCID: PMC1310517 DOI: 10.1186/1742-2094-2-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022] Open
Abstract
Background The aim of the present study was to examine inflammatory responses during Wallerian degeneration in rat peripheral nerve when the regrowth of axons was prevented by suturing. Methods Transected rat sciatic nerve was sutured and ligated to prevent reinnervation. The samples were collected from the left sciatic nerve distally and proximally from the point of transection. The endoneurium was separated from the surrounding epi- and perineurium to examine the expression of cytokines in both of these compartments. Macrophage invasion into endoneurium was investigated and Schwann cell proliferation was followed as well as the expression of cytokines IL-1β, IL-10, IFN-γ and TNF-α mRNA. The samples were collected from 1 day up to 5 weeks after the primary operation. Results At days 1 to 3 after injury in the epi-/perineurium of the proximal and distal stump, a marked expression of the pro-inflammatory cytokines TNF-α and IL-1β and of the anti-inflammatory cytokine IL-10 was observed. Concurrently, numerous macrophages started to gather into the epineurium of both proximal and distal stumps. At day 7 the number of macrophages decreased in the perineurium and increased markedly in the endoneurium of both stumps. At this time point marked expression of TNF-α and IFN-γ mRNA was observed in the endo- and epi-/perineurium of the proximal stump. At day 14 a marked increase in the expression of IL-1β could be noted in the proximal stump epi-/perineurium and in the distal stump endoneurium. At that time point many macrophages were observed in the longitudinally sectioned epineurium of the proximal 2 area as well as in the cross-section slides from the distal stump. At day 35 TNF-α, IL-1β and IL-10 mRNA appeared abundantly in the proximal epi-/perineurium together with macrophages. Conclusion The present studies show that even during chronic denervation there is a cyclic expression pattern for the studied cytokines. Contrary to the previous findings on reinnervating nerves the studied cytokines show increased expression up to 35 days. The high expressions of pro-inflammatory and anti-inflammatory cytokines in the proximal epi-/perineurial area at day 35 may be involved in the formation of fibrosis due to irreversible nerve injury and thus may have relevance to the formation of traumatic neuroma.
Collapse
Affiliation(s)
- Saku Ruohonen
- Department of Pathology, University of Turku, Kiinanmyllynkatu 10, 20520 Turku, Finland
| | - Mohsen Khademi
- Department of Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Maja Jagodic
- Department of Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Hanna-Stiina Taskinen
- Department of Handsurgery, Turku University hospital, Kiinanmyllynkatu 10, 20520, Turku, Finland
| | - Tomas Olsson
- Department of Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Matias Röyttä
- Department of Pathology, University of Turku, Kiinanmyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|