1
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Li JH, Shi ZJ, Li Y, Pan B, Yuan SY, Shi LL, Hao Y, Cao FJ, Feng SQ. Bioinformatic identification of key candidate genes and pathways in axon regeneration after spinal cord injury in zebrafish. Neural Regen Res 2020; 15:103-111. [PMID: 31535658 PMCID: PMC6862403 DOI: 10.4103/1673-5374.264460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zebrafish and human genomes are highly homologous; however, despite this genomic similarity, adult zebrafish can achieve neuronal proliferation, regeneration and functional restoration within 6–8 weeks after spinal cord injury, whereas humans cannot. To analyze differentially expressed zebrafish genes between axon-regenerated neurons and axon-non-regenerated neurons after spinal cord injury, and to explore the key genes and pathways of axonal regeneration after spinal cord injury, microarray GSE56842 was analyzed using the online tool, GEO2R, in the Gene Expression Omnibus database. Gene ontology and protein-protein interaction networks were used to analyze the identified differentially expressed genes. Finally, we screened for genes and pathways that may play a role in spinal cord injury repair in zebrafish and mammals. A total of 636 differentially expressed genes were obtained, including 255 up-regulated and 381 down-regulated differentially expressed genes in axon-regenerated neurons. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment results were also obtained. A protein-protein interaction network contained 480 node genes and 1976 node connections. We also obtained the 10 hub genes with the highest correlation and the two modules with the highest score. The results showed that spectrin may promote axonal regeneration after spinal cord injury in zebrafish. Transforming growth factor beta signaling may inhibit repair after spinal cord injury in zebrafish. Focal adhesion or tight junctions may play an important role in the migration and proliferation of some cells, such as Schwann cells or neural progenitor cells, after spinal cord injury in zebrafish. Bioinformatic analysis identified key candidate genes and pathways in axonal regeneration after spinal cord injury in zebrafish, providing targets for treatment of spinal cord injury in mammals.
Collapse
Affiliation(s)
- Jia-He Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong-Ju Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Pan
- Department of Orthopedics, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Shi-Yang Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin-Lin Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Jiang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital; Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
3
|
Geiseler SJ, Morland C. The Janus Face of VEGF in Stroke. Int J Mol Sci 2018; 19:ijms19051362. [PMID: 29734653 PMCID: PMC5983623 DOI: 10.3390/ijms19051362] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) are known for their regulation of vascularization. In the brain, VEGFs are important regulators of angiogenesis, neuroprotection and neurogenesis. Dysregulation of VEGFs is involved in a large number of neurodegenerative diseases and acute neurological insults, including stroke. Stroke is the main cause of acquired disabilities, and normally results from an occlusion of a cerebral artery or a hemorrhage, both leading to focal ischemia. Neurons in the ischemic core rapidly undergo necrosis. Cells in the penumbra are exposed to ischemia, but may be rescued if adequate perfusion is restored in time. The neuroprotective and angiogenic effects of VEGFs would theoretically make VEGFs ideal candidates for drug therapy in stroke. However, contradictory to what one might expect, endogenously upregulated levels of VEGF as well as the administration of exogenous VEGF is detrimental in acute stroke. This is probably due to VEGF-mediated blood–brain-barrier breakdown and vascular leakage, leading to edema and increased intracranial pressure as well as neuroinflammation. The key to understanding this Janus face of VEGF function in stroke may lie in the timing; the harmful effect of VEGFs on vessel integrity is transient, as both VEGF preconditioning and increased VEGF after the acute phase has a neuroprotective effect. The present review discusses the multifaceted action of VEGFs in stroke prevention and therapy.
Collapse
Affiliation(s)
- Samuel J Geiseler
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
| | - Cecilie Morland
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0371 Oslo, Norway.
- Institute for Behavioral Sciences, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0166 Oslo, Norway.
| |
Collapse
|
4
|
Guo H, Zhou H, Lu J, Qu Y, Yu D, Tong Y. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury. Neural Regen Res 2016; 11:174-9. [PMID: 26981109 PMCID: PMC4774214 DOI: 10.4103/1673-5374.175067] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jie Lu
- Department of Medical Cosmetology, Chengdu Second People's Hospital, Chengdu, Sichuan Province, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Salgado IK, Torrado AI, Santiago JM, Miranda JD. Tamoxifen and Src kinase inhibitors as neuroprotective/neuroregenerative drugs after spinal cord injury. Neural Regen Res 2015; 10:385-90. [PMID: 25878585 PMCID: PMC4396099 DOI: 10.4103/1673-5374.153685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that produces significant changes in the lifestyle of patients. Many molecular and cellular events are triggered after the initial physical impact to the cord. Two major phases have been described in the field of SCI: an acute phase and late phase. Most of the therapeutic strategies are focused on the late phase because this provides an opportunity to target cellular events like apoptosis, demyelination, scar formation and axonal outgrowth. In this mini-review, we will focus on two agents (tamoxifen and a Src kinase family inhibitor known as PP2) that have been shown in our laboratory to produce neuroprotective (increase cell survival) and/or regenerative (axonal outgrowth) actions. The animal model used in our laboratory is adult female rat (~250 g) with a moderate contusion (12.5 mm) to the spinal cord at the T10 level, using the MASCIS impactor device. Tamoxifen or PP2 was administered by implantation of a 15 mg pellet (Innovative Research of America, Sarasota, FL, USA) or by intraperitoneal injections (1.5 mg/kg, every 3 days), respectively, to produce a long-term effect (28 days). Tamoxifen and the Src kinase inhibitor, PP2, are drugs that in rats with a moderate spinal cord injury promote functional locomotor recovery, increase spared white matter tissue, and stimulate axonal outgrowth. Moreover, tamoxifen reduces the formation of reactive oxygen species. Therefore, these drugs are possible therapeutic agents that have a neuroprotective/regenerative activity in vertebrates with SCI.
Collapse
Affiliation(s)
- Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Jose M Santiago
- University of Puerto Rico Carolina Campus, Department of Natural Sciences, Carolina, PR 00984, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
6
|
Rosas OR, Torrado AI, Santiago JM, Rodriguez AE, Salgado IK, Miranda JD. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue. Neural Regen Res 2015; 9:2164-73. [PMID: 25657738 PMCID: PMC4316450 DOI: 10.4103/1673-5374.147949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury.
Collapse
Affiliation(s)
- Odrick R Rosas
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Aranza I Torrado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jose M Santiago
- Department of Natural Sciences, University of Puerto Rico Carolina Campus, Carolina, PR, USA
| | - Ana E Rodriguez
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Iris K Salgado
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| | - Jorge D Miranda
- Department of Physiology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
| |
Collapse
|
7
|
Abstract
OBJECTIVES This study aimed to search for protein kinases that play a role in acute pancreatitis and analyze their potential connection with each other. METHODS Information of human protein kinases were collected in protein kinase database, and then a systematic search was performed using PubMed for studies addressing the association between these kinases and acute pancreatitis. Gene Ontology Annotations were used to build interactions network for acute pancreatitis-associated protein kinases. RESULTS A total of 570 human protein kinases were found, in which 28 kinases play a role in acute pancreatitis. Among the 28 kinases, RIPK1, JAK2, SRC, EGFR, FYN, MET, JAK1, TYK2, and MTOR were annotated in Gene Ontology database. A gene ontology interactions network was built to visualize the common biological process these kinases participated in. CONCLUSIONS This study provides observations that protein kinases participate in all the sequential events in the exocrine pancreas in acute pancreatitis and that protein kinases are potential therapeutical target for acute pancreatitis.
Collapse
|
8
|
Kundi S, Bicknell R, Ahmed Z. The role of angiogenic and wound-healing factors after spinal cord injury in mammals. Neurosci Res 2013; 76:1-9. [PMID: 23562792 DOI: 10.1016/j.neures.2013.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Patients with spinal cord injury (SCI) are permanently paralysed and anaesthetic below the lesion. This morbidity is attributed to the deposition of a dense scar at the injury site, the cellular components of which secrete axon growth inhibitory ligands that prevent severed axons reconnecting with denervated targets. Another complication of SCI is wound cavitation where a fluid filled cyst forms in the peri-lesion neuropil, enlarging over the first few months after injury and causes secondary axonal damage. Wound healing after SCI is accompanied by angiogenesis, which is regulated by angiogenic proteins, produced in response to oxygen deprivation. Necrosis in and about the SCI lesion sites may be suppressed by promoting angiogenesis and the resulting neuropil protection will enhance recovery after SCI. This review addresses the use of angiogenic/wound-healing related proteins including vascular endothelial growth factor, fibroblast growth factor, angiopoietin-1, angiopoietin-2 and transforming growth factor-β to moderate necrosis and axon sparing after SCI, providing a conducive environment for growth essential to functional recovery.
Collapse
Affiliation(s)
- Sarina Kundi
- Neurotrauma and Neurodegeneration, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
9
|
Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors. Bioorg Med Chem Lett 2011; 21:4490-7. [DOI: 10.1016/j.bmcl.2011.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/25/2011] [Accepted: 06/01/2011] [Indexed: 11/23/2022]
|
10
|
Chang CF, Chen SF, Lee TS, Lee HF, Chen SF, Shyue SK. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1749-61. [PMID: 21435456 DOI: 10.1016/j.ajpath.2010.12.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 11/26/2010] [Accepted: 12/23/2010] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high rates of morbidity and mortality. Caveolin-1 (Cav-1) is the main structural protein of caveolae and is involved in regulating signal transduction and cholesterol trafficking in cells. Although a recent study suggests a protective role of Cav-1 in cerebral ischemia, its function in ICH remains unknown. In this study, we examined the role of Cav-1 and in a model of collagenase-induced ICH and in neuronal cultures. Our results indicate that Cav-1 was up-regulated in the perihematomal area predominantly in endothelial cells. Cav-1 knockout mice had smaller injury volumes, milder neurologic deficits, less brain edema, and neuronal death 1 day after ICH than wild-type mice. The protective mechanism in Cav-1 knockout mice was associated with marked reduction in leukocyte infiltration, decreased expression of inflammatory mediators, including macrophage inflammatory protein (MIP)-2 and cyclooxygenase (COX)-2, and reduced matrix metalloproteinase-9 activity. Deletion of Cav-1 also suppressed heme oxygenase-1 expression and attenuated reactive oxygen species production after ICH. Moreover, deletion or knockdown of Cav-1 decreased neuronal vulnerability to hemin-induced toxicity and reduced heme oxygenase (HO)-1 induction in vitro. These data suggest that Cav-1 plays a deleterious role in early brain injury after ICH. Inhibition of Cav-1 may provide a novel therapeutic approach for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Che-Feng Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
11
|
Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int 2011; 58:872-9. [PMID: 21334414 DOI: 10.1016/j.neuint.2011.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/22/2011] [Accepted: 02/13/2011] [Indexed: 11/22/2022]
Abstract
A better understanding of the underlying mechanisms of angiogenesis and vascular permeability is necessary for the development of therapeutic strategies for ischemic injury. The purpose of this study was to examine the spatial and temporal expression of Src and Src-suppressed C kinase substrate (SSeCKS) in brain after middle cerebral artery occlusion (MCAO) and elucidate the relationships among Src, SSeCKS, and the key angiogenic factors present after stroke. Rats were subjected to either MCAO or sham operation. Reverse transcriptase-polymerase chain reaction and Western blotting results revealed that Src gradually increased starting as early as 2 h after MCAO and remained high for 1 day. In contrast, SSeCKS decreased after MCAO. Src expression correlated positively with that of vascular endothelial growth factor and angiopoietin-2, and negatively with that of SSeCKS, angiopoietin-1, and zonula occludens-1. However, SSeCKS had the reverse correlations. Changes in the expression of these factors correlated with the progress of angiogenesis and cerebral edema. Dynamic temporal changes in Src and SSeCKS expression may modulate angiogenesis and cerebral edema formation after focal cerebral ischemia.
Collapse
|
12
|
Tamizhselvi R, Koh YH, Sun J, Zhang H, Bhatia M. Hydrogen sulfide induces ICAM-1 expression and neutrophil adhesion to caerulein-treated pancreatic acinar cells through NF-κB and Src-family kinases pathway. Exp Cell Res 2010; 316:1625-36. [DOI: 10.1016/j.yexcr.2010.02.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/02/2010] [Accepted: 02/28/2010] [Indexed: 11/16/2022]
|
13
|
Benton RL, Maddie MA, Gruenthal MJ, Hagg T, Whittemore SR. Neutralizing endogenous VEGF following traumatic spinal cord injury modulates microvascular plasticity but not tissue sparing or functional recovery. Curr Neurovasc Res 2009; 6:124-31. [PMID: 19442162 DOI: 10.2174/156720209788185678] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute loss of spinal cord vascularity followed by an endogenous adaptive angiogenic response with concomitant microvascular dysfunction is a hallmark of traumatic spinal cord injury (SCI). Recently, the potent vasoactive factor vascular endothelial growth factor (VEGF) has received much attention as a putative therapeutic for the treatment of various neurodegenerative disorders, including SCI. Exogenous VEGF exerts both protective and destabilizing effects on microvascular elements and tissue following SCI but the role of endogenous VEGF is unclear. In the present study, we systemically applied a potent and well characterized soluble VEGF antagonist to adult C57Bl/6 mice post-SCI to elucidate the relative contribution of VEGF on the acute evolving microvascular response and its impact on functional recovery. While the VEGF Trap did not alter vascular density in the injury epicenter or penumbra, an overall increase in the number of Griffonia simplicifolia isolectin-B4 bound microvessels was observed, suggesting a VEGF-dependency to more subtle aspects of endothelial plasticity post-SCI. Neutralizing endogenous VEGF neither attenuated nor exacerbated chronic histopathology or functional recovery. These results support the idea that overall, endogenous VEGF is not neuroprotective or detrimental following traumatic SCI. Furthermore, they suggest that angiogenesis in traumatically injured spinal tissue is regulated by multiple effectors and is not limited by endogenous VEGF activation of affected spinal microvessels.
Collapse
Affiliation(s)
- Richard L Benton
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
14
|
Ramnath RD, Sun J, Bhatia M. Involvement of SRC family kinases in substance P-induced chemokine production in mouse pancreatic acinar cells and its significance in acute pancreatitis. J Pharmacol Exp Ther 2009; 329:418-28. [PMID: 19211920 DOI: 10.1124/jpet.108.148684] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Substance P is known to play a key role in the pathogenesis of acute pancreatitis. Src family kinases (SFKs) are known to be involved in cytokine signaling. However, the involvement of SFKs in substance P-induced chemokine production and its role in acute pancreatitis have not been investigated yet. To that end, we have used primary preparations of mouse pancreatic acinar cells as our model to show that substance P/neurokinin 1 receptor (NK1R) induced activation of SFKs. SFKs mediated the activation of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK)], transcription factors [signal transducer and activator of transcription (STAT) 3, nuclear factor (NF) kappaB, activator protein-1 (AP-1)], and production of chemokines in pancreatic acinar cells. We further tested the significance of the SFK signaling pathway in acute pancreatitis. Our results show, for the first time, that treatment of mice with the potent and selective SFK inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-D] pyrimidine], but not its negative inhibitor PP3 (4-amino-7-phenylpyrazol [3,4-D] pyrimidine), reduced the severity of pancreatitis. This was proven by significant attenuation of hyperamylasemia, pancreatic myeloperoxidase activity, chemokines, and water content. Histological evidence of diminished pancreatic injury also confirmed the protective effect of the inhibition of SFKs. Moreover, treatment with the substance P receptor antagonist CP96345 [(2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine] attenuated acute pancreatitis-induced activation of SFKs, ERK, JNK, STAT3, NFkappaB, and AP-1. The proposed signaling pathway through which substance P mediates acute pancreatitis is through substance P/NK1R-SFKs-(ERK, JNK)-(STAT3, NFkappaB, AP-1) chemokines. In light of our study, we propose that drugs targeting the substance P-mediated signaling pathways could prove beneficial in improving treatment efficacy in acute pancreatitis.
Collapse
|
15
|
Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 2008; 32:200-19. [PMID: 18790057 DOI: 10.1016/j.nbd.2008.08.005] [Citation(s) in RCA: 745] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/29/2008] [Accepted: 08/10/2008] [Indexed: 01/01/2023] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells of cerebral microvessels, providing a dynamic interface between the peripheral circulation and the central nervous system. The tight junctions (TJs) between the endothelial cells serve to restrict blood-borne substances from entering the brain. Under ischemic stroke conditions decreased BBB TJ integrity results in increased paracellular permeability, directly contributing to cerebral vasogenic edema, hemorrhagic transformation, and increased mortality. This loss of TJ integrity occurs in a phasic manner, which is contingent on several interdependent mechanisms (ionic dysregulation, inflammation, oxidative and nitrosative stress, enzymatic activity, and angiogenesis). Understanding the inter-relation of these mechanisms is critical for the development of new therapies. This review focuses on those aspects of ischemic stroke impacting BBB TJ integrity and the principle regulatory pathways, respective to the phases of paracellular permeability.
Collapse
Affiliation(s)
- Karin E Sandoval
- Department of Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
| | | |
Collapse
|
16
|
Lee HS, Moon C, Lee HW, Park EM, Cho MS, Kang JL. Src tyrosine kinases mediate activations of NF-kappaB and integrin signal during lipopolysaccharide-induced acute lung injury. THE JOURNAL OF IMMUNOLOGY 2007; 179:7001-11. [PMID: 17982091 DOI: 10.4049/jimmunol.179.10.7001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Src tyrosine kinases (TKs) are signaling proteins involved in cell signaling pathways toward cytoskeletal, membrane and nuclear targets. In the present study, using a selective Src TK inhibitor, PP1, we investigated the roles of Src TKs in the key pulmonary responses, NF-kappaB activation, and integrin signaling during acute lung injury in BALB/C mice intratracheally treated with LPS. LPS resulted in c-Src phosphorylation in lung tissue and the phospho-c-Src was predominantly localized in recruited neutrophils and alveolar macrophages. PP1 inhibited LPS-induced increases in total protein content in bronchoalveolar lavage fluid, neutrophil recruitment, and increases in the production or activity of TNF-alpha and matrix metalloproteinase-9. PP1 also blocked LPS-induced NF-kappaB activation, and phosphorylation and degradation of IkappaB-alpha. The inhibition of NF-kappaB activation by PP1 correlated with a depression of LPS-induced integrin signaling, which included increases in the phosphorylations of integrin beta(3), and of the focal adhesion kinase (FAK) family members, FAK and Pyk2, in lung tissue, and reductions in the fibrinogen-binding activity of alveolar macrophages. Moreover, treatment with anti-alpha(v), anti-beta(3), or Arg-Gly-Asp-Ser (RGDS), inhibited LPS-induced NF-kappaB activation. Taken together, our findings suggest that Src TKs play a critical role in LPS-induced activations of NF-kappaB and integrin (alpha(v)beta(3)) signaling during acute lung injury. Therefore, Src TK inhibition may provide a potential means of ameliorating inflammatory cascade-associated lung injury.
Collapse
Affiliation(s)
- Hui S Lee
- Department of Physiology, Ewha Medical Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Shin T. Increases in the phosphorylated form of caveolin-1 in the spinal cord of rats with clip compression injury. Brain Res 2007; 1141:228-34. [PMID: 17275798 DOI: 10.1016/j.brainres.2007.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Revised: 01/02/2007] [Accepted: 01/03/2007] [Indexed: 11/22/2022]
Abstract
The phosphorylation of caveolin-1, a lipid raft protein, alters cell shape, which is an important finding in the activation and migration of inflammatory cells. We studied the level of the phosphorylated form of caveolin-1 (p-caveolin-1) in the spinal cord of rats with a clip compression injury to determine whether the phosphorylation of caveolin-1 is involved in the pathogenesis of spinal cord injury. Spinal cords, sampled on days 0, 1, 4, 7, and 14 post-injury, were analyzed by Western blot and immunohistochemistry. Western blot analysis showed that the level of p-caveolin-1 significantly increased in the spinal cord at day 4 post-injury compared to the sham-operated control (p<0.05), and its increased level remained in the elevated condition until day 14 post-injury. Immunohistochemistry showed that p-caveolin-1 was mainly localized in the macrophages/activated microglia in the injured spinal cords, even though caveolin-1 was immunodetected in neurons and reactive astrocytes as well as in inflammatory macrophages. Considering these findings, we postulated that the increased level of p-caveolin-1 is involved in intracellular signaling in affected cells, particularly macrophages/activated microglia, in the course of rat spinal cord injury.
Collapse
Affiliation(s)
- Taekyun Shin
- Department of Veterinary Medicine, Cheju National University, Jeju 690-756, South Korea.
| |
Collapse
|
18
|
Zheng R, Pan G, Thobe BM, Choudhry MA, Matsutani T, Samy TSA, Kang SC, Bland KI, Chaudry IH. MyD88 and Src are differentially regulated in Kupffer cells of males and proestrus females following hypoxia. Mol Med 2006; 12:65-73. [PMID: 16953563 PMCID: PMC1578767 DOI: 10.2119/2006-00030.zheng] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/19/2006] [Indexed: 12/13/2022] Open
Abstract
Hypoxia produces sex dimorphic immune responses in males and proestrus females. Because Kupffer cells are the major source of proinflammatory cytokines, studies were conducted to discern IL-6 production in mouse Kupffer cells following hypoxia. Hypoxia enhances TLR4 expression in Kupffer cells irrespective of sex. However, MyD88 and Src expression in Kupffer cells decreased significantly after hypoxia in proestrus females, whereas Src protein expression and phosphorylation increased in males in concurrence with differences in IL-6 production. 17beta-estradiol administration elevated MyD88 and Src expression in males to levels in normoxic proestrus females. Administration of Src inhibitor in hypoxic males prevented increased IL-6 production. Thus, differential regulation of MyD88 and Src in males and females plays an important role in sex-specific immune response following hypoxia.
Collapse
Affiliation(s)
- Rui Zheng
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George Pan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjoern M Thobe
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mashkoor A Choudhry
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Takeshi Matsutani
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - TS Anantha Samy
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shih-Ching Kang
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kirby I Bland
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Irshad H Chaudry
- Center for Surgical Research and Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Address correspondence and reprint requests to Irshad H. Chaudry, Center for Surgical Research, The University of Alabama at Birmingham, Volker Hall G094, 1670 University Blvd, Birmingham, AL 35294-0019. Phone: (205) 975-2195; fax: (205) 975-9719; e-mail:
| |
Collapse
|
19
|
Dickerson J, Sharp FR. Atypical antipsychotics and a Src kinase inhibitor (PP1) prevent cortical injury produced by the psychomimetic, noncompetitive NMDA receptor antagonist MK-801. Neuropsychopharmacology 2006; 31:1420-30. [PMID: 16123741 DOI: 10.1038/sj.npp.1300878] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists such as phencyclidine, ketamine, and MK-801 produce schizophrenia-like psychosis in humans. The same NMDA antagonists injure retrosplenial cortical neurons in adult rats. We examined the effects of atypical antipsychotics and an inhibitor of nonreceptor tyrosine kinase pp60 (Src) on the cortical injury produced by MK-801. An atypical antipsychotic (either clozapine, ziprasidone, olanzapine, quetiapine, or risperidone) or vehicle was administered to adult female Sprague-Dawley rats. PP1 (Src inhibitor), PP3 (nonfunctional analog of PP1) or vehicle (DMSO) was administered to another group of animals. After pretreatment, animals were injected with MK-801, killed 24 h after the MK-801, and injury to retrosplenial cortex assessed by neuronal Hsp70 protein expression. All atypical antipsychotics examined significantly attenuated MK-801-induced cortical damage. PP1 protected compared to vehicle, whereas PP3 did not protect. The ED50s (decrease injury by 50%) were as follows: PP1 <0.1 mg/kg; olanzapine 0.8 mg/kg; risperdal 1 mg/kg; clozapine 3 mg/kg; ziprasidone 32 mg/kg; and quetiapine 45 mg/kg. The data show that the atypical antipsychotics tested as well as a Src kinase inhibitor prevent the injury produced by the psychomimetic MK-801, and the potency of the atypical antipsychotics for preventing cortical injury was roughly similar to the potency of these drugs for treating psychosis in patients.
Collapse
Affiliation(s)
- Jon Dickerson
- Neurosciences Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
20
|
Okutani D, Lodyga M, Han B, Liu M. Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol 2006; 291:L129-41. [PMID: 16581827 DOI: 10.1152/ajplung.00261.2005] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute inflammatory responses are one of the major underlying mechanisms for tissue damage of multiple diseases, such as ischemia-reperfusion injury, sepsis, and acute lung injury. By use of cellular and molecular approaches and transgenic animals, Src protein tyrosine kinase (PTK) family members have been identified to be essential for the recruitment and activation of monocytes, macrophages, neutrophils, and other immune cells. Src PTKs also play a critical role in the regulation of vascular permeability and inflammatory responses in tissue cells. Importantly, animal studies have demonstrated that small chemical inhibitors for Src PTKs attenuate tissue injury and improve survival from a variety of pathological conditions related to acute inflammatory responses. Further investigation may lead to the clinical application of these inhibitors as drugs for ischemia-reperfusion injury (such as stroke and myocardial infarction), sepsis, acute lung injury, and multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Daisuke Okutani
- Thoracic Surgery Research Laboratory, University Health Network Toronto General, Ontario, Canada
| | | | | | | |
Collapse
|
21
|
Thobe BM, Frink M, Choudhry MA, Schwacha MG, Bland KI, Chaudry IH. Src family kinases regulate p38 MAPK-mediated IL-6 production in Kupffer cells following hypoxia. Am J Physiol Cell Physiol 2006; 291:C476-82. [PMID: 16571868 DOI: 10.1152/ajpcell.00076.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue hypoxia is a common sequel of trauma-hemorrhage but can occur even without blood loss under hypoxic conditions. Although hypoxia is known to upregulate Kupffer cells (KC) to release cytokines, the precise mechanism of release remains unknown. We hypothesized that Src family kinases play a role in mediating KC mitogen-activated protein kinase (MAPK) signaling and their cytokine production after hypoxia. Male C3H/HeN mice received either Src inhibitor PP1 (1.5 mg/kg body wt) or vehicle 1 h before hypoxia. KCs were isolated 1 h after hypoxia, lysed, and immunoblotted with antibodies to Src, p38, ERK1/2, or JNK proteins. In addition, KCs were cultured to measure interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production. Hypoxia produced a significant increase in KC Src and MAPK (p38, ERK, JNK) activity compared with normoxic controls. This was associated with an increase in IL-6 and MCP-1 production. Treatment with PP1 abolished the increase in KC Src activation as well as p38 activity. However, PP1 did not prevent the increase in KC ERK1/2 or JNK phosphorylation. Furthermore, administration of PP1 prevented the hypoxia-induced increase in IL-6 but not MCP-1 release by KC. Additional in vitro results suggest that p38 but not ERK1/2 or JNK are critical for KC IL-6 production. In contrast, the production of MCP-1 by KC was found to be independent of MAPK. Thus hypoxia increases KC IL-6 production by p38 MAPK activation via Src-dependent pathway. Src kinases may therefore be a novel therapeutic target for preventing immune dysfunction following low-flow conditions in trauma patients.
Collapse
Affiliation(s)
- Björn M Thobe
- Center for Surgical Research, The University of Alabama at Birmingham, Volker Hall G094, 1670 University Boulevard, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | |
Collapse
|