1
|
Determination and Analysis of Trace Elements in Five Kinds of Traditional Chinese Medicine in High Blood Pressure Medicinal Food by ICP-AES. J CHEM-NY 2020. [DOI: 10.1155/2020/6126517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. To establish a method for analysis of microelements in five kinds of traditional Chinese medicine in high blood pressure medicinal food, mainly including manganese, cobalt, selenium, iron, magnesium, and other 15 elements. Methods. The samples were digested using a microwave digestion instrument through NHO3-H2O2 solution, and then, the elements were synthesized by inductively coupled plasma atomic emission spectrometry (ICP-AES). Results. The content of cobalt, manganese, zinc, copper, and nickel in the high blood pressure diet foods is higher, the RSD is between 0.005% and 4.82%, and the recovery rate ranges from 93.40% to 106.5%. The precision and recovery of the detection method are higher. Conclusion. The experiment result is better. Medicinal foods curing high blood pressure contain a number of micronutrients that are beneficial to the human body. This experiment provides some meaningful basis for the prevention and treatment of cardiovascular diseases such as hypertension.
Collapse
|
2
|
Falconer D, Papageorgiou N, Antoniades C, Tousoulis D. Gene Therapy. Coron Artery Dis 2018. [DOI: 10.1016/b978-0-12-811908-2.00015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Baumgartner C, Brandl J, Münch G, Ungerer M. Rabbit models to study atherosclerosis and its complications – Transgenic vascular protein expression in vivo. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:131-41. [DOI: 10.1016/j.pbiomolbio.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/01/2016] [Indexed: 12/30/2022]
|
4
|
Liu Z, Gou Y, Zhang H, Zuo H, Zhang H, Liu Z, Yao D. Estradiol improves cardiovascular function through up-regulation of SOD2 on vascular wall. Redox Biol 2014; 3:88-99. [PMID: 25462070 PMCID: PMC4297935 DOI: 10.1016/j.redox.2014.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/09/2014] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies have shown that estrogens have protective effects in cardiovascular diseases, even though the results from human clinical trials remain controversial, while most of the animal experiments confirmed this effect, but the detailed mechanism remains unclear. In this study, we found that estradiol (E2) treatment significantly increases the expression of mitochondrial superoxide dismutase (SOD2) in mice and in vitro in human aorta endothelial cells. Further investigation shows that E2 up-regulates SOD2 through tethering of estrogen receptor (ER) to Sp1 and the increased binding of Sp1 to GC-box on the SOD2 promoter, where ERα responses E2-mediated gene activation, and ERβ maintains basal gene expression level. The E2/ER-mediated SOD2 up-regulation results in minimized ROS generation, which highly favors healthy cardiovascular function. Gene therapy through lentivirus-carried endothelium-specific delivery to the vascular wall in high-fat diet (HFT) mice shows that the SOD2 expression in endothelial cells normalizes E2 deficiency-induced ROS generation with ameliorated mitochondrial dysfunction and vascular damage, while SOD2 knockdown worsens the problem despite the presence of E2, indicating that E2-induced SOD2 expression plays an important vasculoprotective role. To our knowledge, this is the first report for the mechanism by which E2 improves cardiovascular function through up-regulation of SOD2 in endothelial cells. In turn, this suggests a novel gene therapy through lentivirus-carried gene delivery to vascular wall for E2 deficiency-induced cardiovascular damage in postmenopausal women.
Collapse
Affiliation(s)
- Zhaoyu Liu
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yulan Gou
- Department of Neurology, Wuhan No. 1 Hospital, #215 Zhongshan Road, Wuhan 430022, PR China
| | - Hongyu Zhang
- Department of Hematology, Peking University ShenZhen Hospital, ShenZhen 518036, PR China
| | - Houjuan Zuo
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Haimou Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Zhengxiang Liu
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Dachun Yao
- Internal Medicine of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
5
|
Agostini S, Chiavacci E, Matteucci M, Torelli M, Pitto L, Lionetti V. Barley beta-glucan promotes MnSOD expression and enhances angiogenesis under oxidative microenvironment. J Cell Mol Med 2014; 19:227-38. [PMID: 25388628 PMCID: PMC4288365 DOI: 10.1111/jcmm.12442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2−) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2−, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.
Collapse
Affiliation(s)
- Silvia Agostini
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Miller MW, Knaub LA, Olivera-Fragoso LF, Keller AC, Balasubramaniam V, Watson PA, Reusch JEB. Nitric oxide regulates vascular adaptive mitochondrial dynamics. Am J Physiol Heart Circ Physiol 2013; 304:H1624-33. [PMID: 23585138 PMCID: PMC3680775 DOI: 10.1152/ajpheart.00987.2012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/11/2013] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover.
Collapse
Affiliation(s)
- Matthew W Miller
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 2010; 459:793-806. [PMID: 20012875 DOI: 10.1007/s00424-009-0767-7] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 01/08/2023]
Abstract
Endothelial cells situated at the interface between blood and the vessel wall play a crucial role in controlling vascular tone and homeostasis, particularly in determining the expression of pro- and anti-atherosclerotic genes. Many of these effects are mediated by changes in the generation and release of the vasodilator nitric oxide (NO) in response to hemodynamic stimuli exerted on the luminal surface of endothelial cells by the streaming blood (shear stress) and the cyclic strain of the vascular wall. The endothelial NO synthase (eNOS) is activated in response to fluid shear stress and numerous agonists via cellular events such as; increased intracellular Ca(2+), interaction with substrate and co-factors, as well as adaptor and regulatory proteins, protein phosphorylation, and through shuttling between distinct sub-cellular domains. Dysregulation of these processes leads to attenuated eNOS activity and reduced NO output which is a characteristic feature of numerous patho-physiological disorders such as diabetes and atherosclerosis. This review summarizes some of the recent findings relating to the molecular events regulating eNOS activity.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Johann Wolfgang Goethe University, Theodor Stern Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Vascular dysfunction in cerebrovascular disease: mechanisms and therapeutic intervention. Clin Sci (Lond) 2010; 119:1-17. [PMID: 20370718 DOI: 10.1042/cs20090649] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelium plays a crucial role in the control of vascular homoeostasis through maintaining the synthesis of the vasoprotective molecule NO* (nitric oxide). Endothelial dysfunction of cerebral blood vessels, manifested as diminished NO* bioavailability, is a common feature of several vascular-related diseases, including hypertension, hypercholesterolaemia, stroke, subarachnoid haemorrhage and Alzheimer's disease. Over the past several years an enormous amount of research has been devoted to understanding the mechanisms underlying endothelial dysfunction. As such, it has become apparent that, although the diseases associated with impaired NO* function are diverse, the underlying causes are similar. For example, compelling evidence indicates that oxidative stress might be an important mechanism of diminished NO* signalling in diverse models of cardiovascular 'high-risk' states and cerebrovascular disease. Although there are several sources of vascular ROS (reactive oxygen species), the enzyme NADPH oxidase is emerging as a strong candidate for the excessive ROS production that is thought to lead to vascular oxidative stress. The purpose of the present review is to outline some of the mechanisms thought to contribute to endothelial dysfunction in the cerebral vasculature during disease. More specifically, we will highlight current evidence for the involvement of ROS, inflammation, the RhoA/Rho-kinase pathway and amyloid beta-peptides. In addition, we will discuss currently available therapies for improving endothelial function and highlight future therapeutic strategies.
Collapse
|
9
|
Won JC, Park JY, Kim YM, Koh EH, Seol S, Jeon BH, Han J, Kim JR, Park TS, Choi CS, Lee WJ, Kim MS, Lee IK, Youn JH, Lee KU. Peroxisome proliferator-activated receptor-gamma coactivator 1-alpha overexpression prevents endothelial apoptosis by increasing ATP/ADP translocase activity. Arterioscler Thromb Vasc Biol 2009; 30:290-7. [PMID: 19965780 DOI: 10.1161/atvbaha.109.198721] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Fatty acids increase reactive oxygen species generation and cell apoptosis in endothelial cells. The peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1alpha) is a transcriptional coactivator that increases mitochondrial biogenesis and fatty acid oxidation in various cells. This study was undertaken to investigate the possible preventive effect of PGC-1alpha on endothelial apoptosis and its molecular mechanism. METHODS AND RESULTS Treatment with linoleic acid in cultured human aortic endothelial cells increased reactive oxygen species generation and cell apoptosis. These effects appeared to be mediated by increases in cytosolic fat metabolites, ie, fatty acyl CoA, diacylglycerol, and ceramide, and consequent decreases in ATP/ADP translocase activity of adenine nucleotide translocator. Adenoviral overexpression of PGC-1alpha prevented linoleic acid-induced increases in reactive oxygen species generation and cell apoptosis in human aortic endothelial cells by increasing fatty acid oxidation, decreasing diacylglycerol and ceramide, and increasing ATP/ADP translocase activity. In isolated aorta, PGC-1alpha overexpression prevented linoleic acid-induced decrease in endothelium-dependent vasorelaxation, and this effect was abolished by adenine nucleotide translocator1 shRNA. CONCLUSIONS PGC-1alpha regulates reactive oxygen species generation and apoptosis in endothelial cells by increasing fatty acid oxidation and enhancing ATP/ADP translocase activity. Measures to increase PGC-1alpha expression or ATP/ADP translocase activity in vascular cells may aid in the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jong Chul Won
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Loot AE, Schreiber JG, Fisslthaler B, Fleming I. Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. ACTA ACUST UNITED AC 2009; 206:2889-96. [PMID: 19934023 PMCID: PMC2806451 DOI: 10.1084/jem.20090449] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Proline-rich tyrosine kinase 2 (PYK2) can be activated by angiotensin II (Ang II) and reactive oxygen species. We report that in endothelial cells, Ang II enhances the tyrosine phosphorylation of endothelial NO synthase (eNOS) in an AT1-, H2O2-, and PYK2-dependent manner. Low concentrations (1–100 µmol/liter) of H2O2 stimulated the phosphorylation of eNOS Tyr657 without affecting that of Ser1177, and attenuated basal and agonist-induced NO production. In isolated mouse aortae, 30 µmol/liter H2O2 induced phosphorylation of eNOS on Tyr657 and impaired acetylcholine-induced relaxation. Endothelial overexpression of a dominant-negative PYK2 mutant protected against H2O2-induced endothelial dysfunction. Correspondingly, carotid arteries from eNOS−/− mice overexpressing the nonphosphorylatable eNOS Y657F mutant were also protected against H2O2. In vivo, 3 wk of treatment with Ang II considerably increased levels of Tyr657-phosphorylated eNOS in the aortae of wild-type but not Nox2y/− mice, and this was again associated with a clear impairment in endothelium-dependent vasodilatation in the wild-type but not in the Nox2y/− mice. Collectively, endothelial PYK2 activation by Ang II and H2O2 causes the phosphorylation of eNOS on Tyr657, attenuating NO production and endothelium-dependent vasodilatation. This mechanism may contribute to the endothelial dysfunction observed in cardiovascular diseases associated with increased activity of the renin–angiotensin system and elevated redox stress.
Collapse
Affiliation(s)
- Annemarieke E Loot
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
11
|
Levonen AL, Vähäkangas E, Koponen JK, Ylä-Herttuala S. Antioxidant gene therapy for cardiovascular disease: current status and future perspectives. Circulation 2008; 117:2142-50. [PMID: 18427144 DOI: 10.1161/circulationaha.107.718585] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Excessive production of reactive oxygen species has been implicated to play an important role in a number of cardiovascular pathologies, including hypertension, atherosclerosis, myocardial infarction, ischemia/reperfusion injury, and restenosis after angioplasty or venous bypass grafting. The formation of reactive oxygen species is balanced out by antioxidant defenses, and augmenting this defense by antioxidant therapies could therefore provide a potential means to treat conditions in which the formation of reactive oxygen species exceeds the capability of natural protective mechanisms. In this review, we summarize the studies in which antioxidant gene therapy has been used successfully to treat cardiovascular diseases. We also discuss the current limitations of antioxidant gene therapy and envision future therapeutic targets and methodological approaches for an improved outcome.
Collapse
Affiliation(s)
- Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, Finland.
| | | | | | | |
Collapse
|
12
|
Strong TD, Gebska MA, Burnett AL, Champion HC, Bivalacqua TJ. Endothelium-specific gene and stem cell-based therapy for erectile dysfunction. Asian J Androl 2008; 10:14-22. [DOI: 10.1111/j.1745-7262.2008.00362.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Ohta J, Rakugi H, Ishikawa K, Yang J, Ikushima M, Chihara Y, Maekawa Y, Oguro R, Hanasaki H, Kida I, Matsukawa N, Ogihara T. Klotho gene delivery suppresses oxidative stress in vivo. Geriatr Gerontol Int 2007. [DOI: 10.1111/j.1447-0594.2007.00406.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Gene Therapies and Stem Cell Therapies. Cardiovasc Ther 2007. [DOI: 10.1016/b978-1-4160-3358-5.50009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
|
16
|
Uno M, Kitazato KT, Suzue A, Itabe H, Hao L, Nagahiro S. Contribution of an imbalance between oxidant—antioxidant systems to plaque vulnerability in patients with carotid artery stenosis. J Neurosurg 2005; 103:518-25. [PMID: 16235685 DOI: 10.3171/jns.2005.103.3.0518] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Reactive species of oxygen and nitrogen mediate the oxidative modification of low-density lipoprotein (LDL). Oxidation of LDL is inhibited by endogenous radical scavenging enzymes such as manganese superoxide dismutase (SOD) and Cu-ZnSOD that catalyze dismutation of oxygen to H2O2. Low-molecular antioxidants such as uric acid regulate the inactivation that appears to be linked to an increase in peroxynitrite resulting in oxidized LDL (OxLDL) elevation. The authors evaluated whether a focal imbalance between pro- and antioxidant systems induces plaque vulnerability in patients with carotid artery (CA) stenosis. METHODS Carotid artery plaques obtained in 35 patients who had undergone carotid endarterectomy were classified as vulnerable or stable based on histopathological findings. In vulnerable plaques, OxLDL, measured using enzyme-linked immunosorbent assay, was significantly higher (p < 0.01) and SOD activity significantly lower than in stable plaques (p < 0.05). The plaque and plasma OxLDL levels were inversely correlated with plaque SOD activity (p < 0.01). The physiological uric acid level in all plaques was one fourth to one eighth of that in plasma and appeared to be unable to protect Cu-ZnSOD from degradation by H2O2. Immunohistochemical analysis showed increased peroxynitrite and OxLDL in vulnerable plaques. There was a significant correlation between plaque and plasma OxLDL levels (p < 0.01). CONCLUSIONS Analysis of the results suggests that a focal imbalance between pro- and antioxidant defense systems in patients with CA plaques induces an increase in plaque OxLDL levels and consequent plaque instability, contributing to high levels of plasma OxLDL.
Collapse
Affiliation(s)
- Masaaki Uno
- Department of Neurosurgery, Graduate School of Health Biosciences, University of Tokushima, Faculty of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Lee KU, Lee IK, Han J, Song DK, Kim YM, Song HS, Kim HS, Lee WJ, Koh EH, Song KH, Han SM, Kim MS, Park IS, Park JY. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 2005; 96:1200-7. [PMID: 15905464 DOI: 10.1161/01.res.0000170075.73039.5b] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased oxidative stress in vascular cells plays a key role in the development of endothelial dysfunction and atherosclerosis. Uncoupling protein 2 (UCP2) is an important regulator of intracellular reactive oxygen species (ROS) production. This study was undertaken to test the hypothesis that, UCP2 functions as an inhibitor of the atherosclerotic process in endothelial cells. Adenovirus-mediated UCP2 (Ad-UCP2) overexpression led to a significant increase in endothelial nitric oxide synthase (eNOS) and decrease in endothelin-1 mRNA expression in human aortic endothelial cells (HAECs). Moreover, UCP2 inhibited the increase in ROS production and NF-kappaB activation, and apoptosis of HAECs induced by lysophophatidylcholine (LPC) and linoleic acid. LPC and linoleic acid caused mitochondrial calcium accumulation and transient mitochondrial membrane hyperpolarization, which was followed by depolarization. UCP2 overexpression prevented these processes. In isolated rat aorta, Ad-UCP2 infection markedly improved impaired vascular relaxation induced by LPC. The data collectively suggest that UCP2, functions as a physiologic regulator of ROS generation in endothelial cells. Thus, measures to increase UCP2 expression in vascular endothelial cells may aid in preventing the development and progression of atherosclerosis in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Ki-Up Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Recent advances in understanding the molecular and cellular basis of cardiovascular diseases, together with the availability of tools for genetic manipulation of the cardiovascular system, offer possibilities for new treatments. Gene therapies have demonstrated potential usefulness for treating complex cardiovascular diseases, such as hypertension, atherosclerosis and myocardial ischemia, in various animal models. Some of these experimental therapies are now undergoing clinical evaluation in patients with cardiovascular disease. However, the successful transition of these therapies into mainstream clinical practice awaits further improvements to vector platforms and delivery tools and the documentation of clinical feasibility, safety and efficacy through multi-center randomized trials.
Collapse
Affiliation(s)
- Luis G Melo
- Department of Physiology, Queen's University, 18 Stuart Street, Kingston, Ontario, K7L 3N6, Canada.
| | | | | | | |
Collapse
|
19
|
Abstract
Blood vessels express 3 isoforms of superoxide dismutase (SOD): cytosolic or copper-zinc SOD (CuZn-SOD), manganese SOD (Mn-SOD) localized in mitochondria, and an extracellular form of CuZn-SOD (EC-SOD). Because there are no selective pharmacological inhibitors of individual SOD isoforms, the functional importance of the different SODs has been difficult to define. Recent molecular approaches, primarily the use of genetically-altered mice and viral-mediated gene transfer, have allowed investigators to begin to define the role of specific SOD isoforms in vascular biology. This review will focus mainly on the role of individual SODs in relation to endothelium under normal conditions and in disease states. This area is important because reactive oxygen species and superoxide anion are thought to play major roles in changes in vascular structure and function in pathophysiology.
Collapse
Affiliation(s)
- Frank M Faraci
- Department of Internal Medicine, Cardiovascular Center, University of Iowa, Carver College of Medicine, Iowa City, IA 52242-1081, USA.
| | | |
Collapse
|
20
|
Hynes SO, Smith LA, Richardson DM, Kovesdi I, O'Brien T, Katusic ZS. In vivo expression and function of recombinant GTPCH I in the rabbit carotid artery. Am J Physiol Heart Circ Physiol 2004; 286:H570-4. [PMID: 14551046 DOI: 10.1152/ajpheart.00669.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.
Collapse
Affiliation(s)
- Sean O Hynes
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tasić N, Radak D, Cvetković Z, Petrović B, Ilijevski N, Dordević-Denić G. Uloga i znacaj oligoelemenata u patogenezi ateroskleroze. VOJNOSANIT PREGL 2004; 61:667-73. [PMID: 15717729 DOI: 10.2298/vsp0406667t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Kakko S, Päivänsalo M, Koistinen P, Kesäniemi YA, Kinnula VL, Savolainen MJ. The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis 2003; 168:147-52. [PMID: 12732398 DOI: 10.1016/s0021-9150(03)00091-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Redox-state of the cells of vascular walls is an important determinant of atherosclerosis. Manganese superoxide dismutase (MnSOD) is an essential anti-oxidant enzyme working in mitochondria of mammalian cells. A potentially functional amino acid polymorphism (Ala16Val) has been described in the signal sequence of the enzyme. The aim of the current study was to test whether the signal sequence polymorphism of the MnSOD would be associated with the degree of carotid atherosclerosis. The polymorphism was genotyped in a sample of 989 middle-aged hypertensive and control subjects. Carotid atherosclerosis was quantified as intima-media thickness (IMT) by ultrasound. The signal sequence polymorphism was found to be a minor determinant of carotid IMT explaining 1.3% of the overall variation, the Val allele associated with the higher IMT. In women, a significant interaction with plasma levels of low-density lipoprotein (LDL) cholesterol was detected, since LDL cholesterol levels were positively correlated with carotid IMT only in the carriers of the Val allele and the Val allele was associated with higher IMT only in the subjects with highest plasma levels of LDL cholesterol. In conclusion, the signal sequence polymorphism of the MnSOD gene is a minor determinant of carotid IMT pointing out the importance of redox-balance in the atherogenesis.
Collapse
Affiliation(s)
- Sakari Kakko
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, P.O. 5000, Finland.
| | | | | | | | | | | |
Collapse
|
23
|
Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, Chen AF. Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 2003; 107:1053-8. [PMID: 12600921 DOI: 10.1161/01.cir.0000051459.74466.46] [Citation(s) in RCA: 252] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiotensin II-induced hypertension is associated with NAD(P)H oxidase-dependent superoxide production in the vessel wall. Vascular superoxide level is also increased in deoxycorticosterone acetate (DOCA)-salt hypertension, which is associated with a markedly depressed plasma renin activity because of sodium retention. However, the mechanisms underlying superoxide production in low-renin hypertension are undefined. METHODS AND RESULTS This study investigated (1) whether and how endothelin-1 (ET-1), which is increased in DOCA-salt hypertensive rats, contributes to arterial superoxide generation and (2) the effect of gene transfer of manganese superoxide dismutase and endothelial nitric oxide synthase. Both superoxide and ET-1 levels were significantly elevated in carotid arteries of DOCA-salt rats compared with that of the sham-operated controls. ET-1 concentration-dependently stimulated superoxide production in vitro in carotid arteries of normotensive rats. The increase in arterial superoxide in both ET-1-treated normotensive and DOCA-salt rats was reversed by a selective ET(A) receptor antagonist, ABT-627, the flavoprotein inhibitor diphenyleneiodonium, and the NADPH oxidase inhibitor apocynin but not by the nitric oxide synthase inhibitor N(omega)-L-arginine methyl ester or the xanthine oxidase inhibitor allopurinol. Furthermore, in vivo blockade of ET(A) receptors significantly reduced arterial superoxide levels, with a concomitant decrease of systolic blood pressure in DOCA-salt rats. Ex vivo gene transfer of manganese superoxide dismutase or endothelial nitric oxide synthase also suppressed superoxide levels in carotid arteries of DOCA-salt rats. CONCLUSIONS These findings suggest that ET-1 augments vascular superoxide production at least in part via an ET(A)/NADPH oxidase pathway in low-renin mineralocorticoid hypertension.
Collapse
Affiliation(s)
- Lixin Li
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing 48824-1317, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Yamada S, Ito T, Adachi J, Ueno Y, Shiomi M. Decreased arterial responses in WHHL rabbits, an animal model of spontaneous hypercholesterolemia and atherosclerosis. Exp Anim 2002; 51:493-9. [PMID: 12451710 DOI: 10.1538/expanim.51.493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We examined changes in blood pressure and blood flow of the arteries of WHHL and Japanese white rabbits after intravenous bolus injections of acetylcholine (3.0 micrograms/kg), bradykinin (0.5 microgram/kg), and sodium nitroprusside (3.0 micrograms/kg) under a condition of anesthesia. These vasodilators lowered the blood pressure and increased the blood flow in WHHL and Japanese white rabbits. The changes in the hemodynamic parameters of WHHL rabbits after injection of sodium nitroprusside were similar to those of Japanese white rabbits. This suggests that the relaxation response of the tunica media was not diminished in WHHL rabbits. In contrast, the changes in the hemodynamic parameters of WHHL rabbits after injection of acetylcholine or bradykinin were significantly lower than those in Japanese white rabbits. In the histopathological and immunohistological examination, atherosclerotic lesions were observed in the ascending aortas of WHHL rabbits. In the surface of the atheromatous plaques, CD31-positive endothelial cells disappeared partly and the accumulation of RAM-11-positive macrophages was observed in these regions. In addition, plasma NO2- and NO3- levels of WHHL rabbits were significantly lower than those of Japanese white rabbits. These findings suggest that relaxation responses derived from arterial endothelial cells were probably depressed in WHHL rabbits due to dysfunction or denudation of the arterial endothelial cells.
Collapse
Affiliation(s)
- Satoshi Yamada
- Institute for Experimental Animals, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
25
|
Li L, Crockett E, Wang DH, Galligan JJ, Fink GD, Chen AF. Gene transfer of endothelial NO synthase and manganese superoxide dismutase on arterial vascular cell adhesion molecule-1 expression and superoxide production in deoxycorticosterone acetate-salt hypertension. Arterioscler Thromb Vasc Biol 2002; 22:249-55. [PMID: 11834524 DOI: 10.1161/hq0202.104124] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enhanced vascular cell adhesion molecule-1 (VCAM-1) expression directly contributes to vascular dysfunction in hypertension. Decreased NO and/or increased superoxide are causative factors for such an event in the vessel wall. The present study was undertaken to determine whether gene transfer of endothelial NO synthase (eNOS) or manganese superoxide dismutase (MnSOD) affects VCAM-1 levels in arteries from hypertensive rats. Isolated carotid and femoral arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats were transduced for 4 hours with adenoviral vectors encoding eNOS, MnSOD, or beta-galactosidase reporter genes. Recombinant eNOS or MnSOD expression was evident morphologically and quantitatively 24 hours after gene transfer. Immunohistochemistry, ELISA, and Western blot techniques were used to determine VCAM-1 expression and levels. In addition, endogenous eNOS and MnSOD and in situ superoxide levels were analyzed by immunoblotting and fluorescence confocal microscopy, respectively. Arterial VCAM-1 expression was significantly higher in DOCA-salt hypertensive rats than in sham-operated rats; this expression was accompanied by decreased MnSOD but unaltered endogenous eNOS levels. VCAM-1 expression was significantly lower in MnSOD- and eNOS-transduced hypertensive arteries, with a concomitant reduction of superoxide level. These results suggest that gene transfer of MnSOD or eNOS suppresses arterial VCAM-1 expression in DOCA-salt hypertension by reducing the superoxide level.
Collapse
Affiliation(s)
- Lixin Li
- Department of Pharmacology, Michigan State University, East Lansing 48824-1317, USA
| | | | | | | | | | | |
Collapse
|
26
|
Fennell JP, Brosnan MJ, Frater AJ, Hamilton CA, Alexander MY, Nicklin SA, Heistad DD, Baker AH, Dominiczak AF. Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther 2002; 9:110-7. [PMID: 11857069 DOI: 10.1038/sj.gt.3301633] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Accepted: 11/30/2001] [Indexed: 11/09/2022]
Abstract
Gene transfer may be appropriate for therapeutic protocols targeted at the vascular endothelium. Endothelial dysfunction is the principal phenotype associated with atherosclerosis and hypertension. Oxidative stress has been implicated in the development of endothelial dysfunction. We have explored the ability of overexpressing anti-oxidant genes (superoxide dismutases; SODs) in vitro and in vivo to assess their potential for reversing endothelial dysfunction in a rat model, the stroke-prone spontaneously hypertensive rat (SHRSP). Western blotting and immunofluorescence assays in vitro showed efficient overexpression of MnSOD and ECSOD with respect to localisation to the mitochondria and extracellular surface, respectively. Transgene functional activity was quantified with SOD activity assays. MnSOD and ECSOD overexpression in intact SHRSP vessels in vivo led to endothelial and adventitial overexpression. Pharmacological assessment of transduced vessels following in vivo delivery by basal NO availability quantification demonstrated that the "null" adenovirus and MnSOD adenovirus did not significantly increase NO availability. However, AdECSOD-treated carotid arteries showed a significant increase in NO availability (1.91 +/- 0.04 versus 0.75 +/- 0.08 g/g, n = 6, P = 0.029). In summary, efficient overexpression of ECSOD, but not MnSOD in vivo, results in improved endothelial function in a rat model of hypertension and has important implications for the development of endothelial-based vascular gene therapy.
Collapse
Affiliation(s)
- J P Fennell
- BHF Blood Pressure Group, Department of Medicine and Therapeutics, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|