1
|
Dual usage of a stage-specific fluorescent reporter system based on a helper-dependent adenoviral vector to visualize osteogenic differentiation. Sci Rep 2019; 9:9705. [PMID: 31273280 PMCID: PMC6609771 DOI: 10.1038/s41598-019-46105-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
We developed a reporter system that can be used in a dual manner in visualizing mature osteoblast formation. The system is based on a helper-dependent adenoviral vector (HDAdV), in which a fluorescent protein, Venus, is expressed under the control of the 19-kb human osteocalcin (OC) genomic locus. By infecting human and murine primary osteoblast (POB) cultures with this reporter vector, the cells forming bone-like nodules were specifically visualized by the reporter. In addition, the same vector was utilized to efficiently knock-in the reporter into the endogenous OC gene of human induced pluripotent stem cells (iPSCs), by homologous recombination. Neural crest-like cells (NCLCs) derived from the knock-in reporter iPSCs were differentiated into osteoblasts forming bone-like nodules and could be visualized by the expression of the fluorescent reporter. Living mature osteoblasts were then isolated from the murine mixed POB culture by fluorescence-activated cell sorting (FACS), and their mRNA expression profile was analyzed. Our study presents unique utility of reporter HDAdVs in stem cell biology and related applications.
Collapse
|
2
|
Tamura RE, de Luna IV, Lana MG, Strauss BE. Improving adenoviral vectors and strategies for prostate cancer gene therapy. Clinics (Sao Paulo) 2018; 73:e476s. [PMID: 30133562 PMCID: PMC6097088 DOI: 10.6061/clinics/2018/e476s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023] Open
Abstract
Gene therapy has been evaluated for the treatment of prostate cancer and includes the application of adenoviral vectors encoding a suicide gene or oncolytic adenoviruses that may be armed with a functional transgene. In parallel, versions of adenoviral vector expressing the p53 gene (Ad-p53) have been tested as treatments for head and neck squamous cell carcinoma and non-small cell lung cancer. Although Ad-p53 gene therapy has yielded some interesting results when applied to prostate cancer, it has not been widely explored, perhaps due to current limitations of the approach. To achieve better functionality, improvements in the gene transfer system and the therapeutic regimen may be required. We have developed adenoviral vectors whose transgene expression is controlled by a p53-responsive promoter, which creates a positive feedback mechanism when used to drive the expression of p53. Together with improvements that permit efficient transduction, this new approach was more effective than the use of traditional versions of Ad-p53 in killing prostate cancer cell lines and inhibiting tumor progression. Even so, gene therapy is not expected to replace traditional chemotherapy but should complement the standard of care. In fact, chemotherapy has been shown to assist in viral transduction and transgene expression. The cooperation between gene therapy and chemotherapy is expected to effectively kill tumor cells while permitting the use of reduced chemotherapy drug concentrations and, thus, lowering side effects. Therefore, the combination of gene therapy and chemotherapy may prove essential for the success of both approaches.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Igor Vieira de Luna
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Marlous Gomes Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: ,
| |
Collapse
|
3
|
Kurayoshi K, Ozono E, Iwanaga R, Bradford AP, Komori H, Ohtani K. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs. Biochem Biophys Res Commun 2014; 450:240-6. [PMID: 24893334 DOI: 10.1016/j.bbrc.2014.05.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 01/23/2023]
Abstract
In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter is activated by E2F only in cancer cells and therefore may be more cancer cell-specific than E2F1 promoter to drive gene expression. We show here that the ARF promoter has lower activity in normal growing fibroblasts and shows higher cancer cell-specificity compared to the E2F1 promoter. We also demonstrate that adenovirus expressing HSV-TK under the control of the ARF promoter shows lower cytotoxicity than that of the E2F1 promoter, in normal growing fibroblasts but has equivalent cytotoxicity in cancer cell lines. These results suggest that the ARF promoter, which is specifically activated by deregulated E2F activity, is an excellent candidate to drive therapeutic cytotoxic gene expression, specifically in cancer cells.
Collapse
Affiliation(s)
- Kenta Kurayoshi
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Eiko Ozono
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, USA
| | - Hideyuki Komori
- Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kiyoshi Ohtani
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
4
|
Affiliation(s)
- Magnus Essand
- Clinical Immunology Division, Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
5
|
Liu W, Gao C, Zhou BG, Li WM. Effects of adenovirus-mediated gene transfer of ICOSIg and CTLA4Ig fusion protein on experimental autoimmune myocarditis. Autoimmunity 2009; 39:83-92. [PMID: 16698663 DOI: 10.1080/08916930500507870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To explore the therapeutic alliance effects of adenovirus vector-mediated gene transfer of ICOSIg and CTLA4Ig fusion protein on experimental autoimmune myocarditis (EAM). METHODS Expression vector pAdeno-CTLA4Ig and pAdeno-ICOSIg was constructed and transfected into HEK293 cells. Adenovirus expresses CTLA4Ig and ICOSIg was produced. Ad-CMV-GFP was used as controls. EAM was induced in Lewis rats by injection of procine cardiac myosin. All the immunized rats were divided into four groups. Group A (n = 15) received adenovirus containing CTLA4Ig and ICOSIg from day 14-28; group B (n = 15), group C (n = 15) and group D (n = 15) received adenovirus containing CTLA4Ig, ICOSIg and GFP, respectively. Group E (n = 10) was normal controls never received immunization. On day 28, all the rats were killed after echocardiography examination. Histopathological examination was used to observe inflammation in the myocardium. Western blot was used to detect CTLA4, ICOS, ICOSL and competitive RT-PCR for B7-1, B7-2 expression. T lymphocyte proliferation assay was performed and ELISPOT was used to detect the Th1 and Th2 production. RESULTS Alliance application of CTLA4Ig and ICOSIg exerts therapeutic effects on EAM. After a treatment duration of 14 days, cardiac function and myocardial inflammation improved significantly compared to group D. Expression of CTLA-4, ICOS and ICOSL, B7-1 was statistically decreased in group A, B and C compared with group D. T-cell proliferation was inhibited by costimulatory blockade in a dose-dependent style. ICOSIg blockade significantly augments IL-4 and IL-10 production while diminished IFN-gamma production. CONCLUSIONS Blockade of costimulatory pathway with alliance therapy of CTLA4Ig and ICOSIg alleviated autoimmune damage in EAM and improved cardiac function. The mechanisms may be downregulation of costimulatory molecules and anti-inflammation.
Collapse
Affiliation(s)
- W Liu
- The First Affiliated Hospital, Harbin Medical University, Department of Cardiology, Heilongjiang, 150001, PR China.
| | | | | | | |
Collapse
|
6
|
Adenovirus-mediated ICOSIg gene transfer alleviates cardiac remodeling in experimental autoimmune myocarditis. Immunol Cell Biol 2008; 86:659-65. [PMID: 19005474 DOI: 10.1038/icb.2008.45] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To explore the therapeutic effects of adenovirus vector mediated transfer of the ICOSIg gene on immuno-inflammation-mediated cardiac remodeling in an experimental autoimmune myocarditis (EAM) model, pAdeno-ICOSIg was constructed and transfected into HEK 293 cells to produce the ICOSIg adenovirus. Ad-CMV-GFP was used as a control. EAM was induced in Lewis rats by injection of porcine cardiac myosin. The immunized rats were divided into two groups. The inducible co-stimulatory molecule (ICOS) group received the adenovirus containing ICOSIg on day 14; the green fluorescent protein (GFP) group received the adenovirus containing GFP as the control adenovirus and 15 normal rats (Control group) consisted of the normal controls that were not immunized. On day 28, all rats were euthanized after echocardiography and histopathologically examined for cardiac fibrosis. Western blotting was performed to detect ICOS, ICOS ligand (ICOSL), matrix metalloproteinase (MMP)-2, MMP-9, tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 and real-time RT-PCR was performed to detect B7-1, B7-2 and interleukin (IL)-17 expression. ELISPOT was applied to detect Th1 and Th2 cytokine production. Collagen concentration and collagen cross-linking were determined as markers of cardiac fibrosis. It was found that blockade with ICOSIg exerted antifibrotic effects on cardiac remodeling in EAM. On day 28, cardiac function and inflammatory myocardial fibrosis improved significantly in the ICOS group compared to the GFP group. The expression of ICOS, the ICOSL, B7-1 and IL-17 was statistically significantly lower in the ICOS and Control groups compared to the GFP group. ICOSIg significantly augmented Th2 cytokine production and diminished Th1 and Th17 cytokine production. This blockade of the ICOS co-stimulatory pathway with ICOSIg alleviated autoimmune inflammation-mediated cardiac remodeling and improved cardiac function. Regulation of the Th1/Th2/Th17 balance may be one of the underlying mechanisms responsible for this effect.
Collapse
|
7
|
Kraaij R, van der Weel L, de Ridder CMA, van der Korput HAGM, Zweistra JLM, van Rijswijk ALCT, Bangma CH, Trapman J. A small chimeric promoter for high prostate-specific transgene expression from adenoviral vectors. Prostate 2007; 67:829-39. [PMID: 17394196 DOI: 10.1002/pros.20560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Specificity of transgene expression is important for safety during gene therapeutical applications. For prostate cancer, transcriptional targeting has been applied but was hampered by loss of specificity and low activity. We constructed a small chimeric promoter for high and prostate-specific transgene expression from adenoviral vectors. METHODS A chimeric promoter, composed of the prostate-specific antigen (PSA) enhancer and the rat probasin promoter, was cloned into an adenoviral vector and its activity was compared to vectors containing conventional prostate-specific promoters and the constitutive Cytomegalovirus (CMV) promoter in in vitro and in vivo prostate cancer models. RESULTS The chimeric PSA-probasin promoter was the most active prostate-specific promoter reaching up to 20% of CMV promoter activity while maintaining prostate-specificity. CONCLUSIONS The chimeric PSA-probasin promoter is a small promoter that can be utilized in viral vectors for high prostate-specific transgene expression.
Collapse
Affiliation(s)
- Robert Kraaij
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang J, Zhang H, Liang RX, Pang B, Shi QG, Huang PT, Huang CF, Zhou JG. Identification and characterization of the novel human prostate cancer-specific PC-1 gene promoter. Biochem Biophys Res Commun 2007; 357:8-13. [PMID: 17418805 DOI: 10.1016/j.bbrc.2007.02.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 11/29/2022]
Abstract
Human prostate and colon gene-1 (PC-1, also known as PrLZ) is an androgen-regulated, prostate tissue and prostate cancer cells specifically expressed novel gene. The increased expression of PC-1 gene appears to promote prostate cancer cells androgen-dependent (AD) and androgen-independent (AI) growth. To clone and investigate the expression and regulation elements of PC-1 gene may provide insight into the function of PC-1 and develop a new promoter that targets therapeutic genes to the AD and AI prostate cancer cells. The goal of the present study is cloning and characterization of the PC-1 promoter. A series of luciferase constructs that contain various fragments of the PC-1 5'-genomic region were transfected into human prostate cancer cells for promoter transactivation analysis. 5' deletion analysis identified the -1579 bp promoter region was required for the maximal proximal promoter activity; two transcriptional suppression and a positive regulatory region were identified; -4939 bp promoter fragment of the PC-1 gene retained the characteristic of prostate cancer-specific expression and exhibited higher transcription activity than PSA-6 kb promoter in the medium supplemented with steroid-depleted FBS. An androgen response element (ARE) was located in between -345 and -359 bp of the PC-1 5'-untranslated region relative to the translation initiation site. Thus, our studies not only provide molecular basis of PC-1 transcription regulation, but also define a new regulatory sequence that may be used to restrict expression of therapeutic genes to prostate cancer in the prostate cancer gene therapy.
Collapse
Affiliation(s)
- Jian Wang
- Beijing Institute of Biotechnology, Beijing 100850, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shi CX, Graham FL, Hitt MM. A convenient plasmid system for construction of helper-dependent adenoviral vectors and its application for analysis of the breast-cancer-specific mammaglobin promoter. J Gene Med 2006; 8:442-51. [PMID: 16389604 DOI: 10.1002/jgm.867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Helper-dependent (HD) adenovirus (Ad) vectors, deleted of all viral coding sequences, have a higher cloning capacity, improved performance of tissue-specific promoters, and reduced toxicity in animals relative to first-generation Ad vectors, making these vectors promising tools for gene transfer in vitro and in vivo. However, the large size of HDAd precursor plasmids renders them relatively difficult to manipulate due to the paucity of unique restriction enzyme sites suitable for transgene insertion and to the size constraints imposed by the viral packaging machinery. METHODS We have constructed a series of HDAd precursor plasmids that allows cassette insertion at a unique site in the vector backbone. We have tested whether these vector backbones will support the tissue-specificity of inserted expression cassettes in a study of the activity of the potentially breast-cancer-specific mammaglobin promoter and enhancer. RESULTS We report here the generation of a series of HDAd precursor plasmids, both with and without an additional reporter expression cassette, that were designed to accommodate a wide range in size of inserted DNA. The system was validated for transcriptional targeting studies by demonstrating the tissue-specificity and activity of the mammaglobin promoter rescued using this precursor system. In addition, we have extended our previous studies on the mammaglobin promoter by demonstrating that two copies of the mammaglobin enhancer fused to the minimal promoter surpassed the activity of the single enhancer/promoter by at least 10-fold in breast cancer cells while maintaining only minimal expression in normal cells both in vitro and in a mouse tumor model. CONCLUSIONS This versatile plasmid system simplifies the construction of HDAd vectors and was valuable in demonstrating the targeting potential of the mammaglobin promoter for breast cancer gene therapy.
Collapse
Affiliation(s)
- Chang-Xin Shi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
10
|
Abstract
Human adenoviruses (HAdVs) can cause mild respiratory, gastrointestinal, urogenital and ocular disease. Knowledge about HAdVs has been expanding for more than five decades putting them amongst the most-studied viruses. This continued interest stems, to a great extent, from the fact that these double-stranded DNA viruses have proven to be a versatile tool to probe the basic phenomena of eukaryotic cells. HAdV research has led to the discovery of, for instance, RNA splicing and greatly contributed to our knowledge of processes as fundamental as replication, transcription and translation. Moreover, the transformation of rodent cells by HAdVs has provided a system to unravel the molecular pathways that control cell proliferation. As a result, the genetic organisation of these agents is known in great detail allowing the straightforward manipulation of their genomes. In addition, the virus itself became renowned for its ability to produce large amounts of progeny and to efficiently infect mammalian cells regardless of their cell cycle status. These features contributed to the broad use of recombinant HAdVs as gene carriers particularly in in vivo settings where the vast majority of target cells are post-mitotic. The most advanced type of HAdV vectors can accommodate up to 37 kb of foreign DNA and are devoid of viral genes. With the aid of these high-capacity HAdV vectors large physiologically responsive transcriptional elements and/or genes can be efficiently introduced into target cells while minimising adaptive immune responses against the transduced cells. This article provides information on HAdV especially on the aspects pertinent to the design, production and performance of its recombinant forms. The development and characteristics of the main HAdV-based vector types are also briefly reviewed.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
11
|
de Leeuw B, Su M, ter Horst M, Iwata S, Rodijk M, Hoeben RC, Messing A, Smitt PS, Brenner M. Increased glia-specific transgene expression with glial fibrillary acidic protein promoters containing multiple enhancer elements. J Neurosci Res 2006; 83:744-53. [PMID: 16496373 DOI: 10.1002/jnr.20776] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to direct transgene expression to astrocytes has become increasingly important as the roles for these cells continue to expand. Promoters consisting of the 5'-flanking region of the human or mouse glial fibrillary acidic protein (GFAP) gene have generally proved satisfactory. However, a more powerful promoter would be advantageous for several applications, such as expression of dominant negative RNAs or proteins, or for gene therapy. We investigated the possibility of increasing the transcriptional activity of the human GFAP promoter by inserting into it one or three additional copies of putative GFAP enhancer regions. The promoters enhanced with three additional copies gave 75-fold higher LacZ expression levels upon plasmid transfection into GFAP-expressing U251 cells than the parental gfa2 promoter. Surprisingly, in a transgenic mouse model, the enhanced promoters resulted in no or only very low expression of marker genes, probably caused by toxicity. When various cell lines were infected with replication-deficient adenoviral vectors, the enhanced promoters gave LacZ expression levels that were approximately 10-fold higher than those with the parental gfa2 promoter, while retaining specificity for GFAP-expressing cells. Injection of the adenoviral vectors carrying the enhanced promoters into nude mouse brain showed that LacZ expression was limited to GFAP-positive cells. We conclude that gfa2 enhanced promoters are useful for production of short-term, glia-specific, high expression levels of genes in an adenoviral context. Adenoviral vectors containing these enhanced promoters may be useful in glioma gene therapy.
Collapse
Affiliation(s)
- Bertie de Leeuw
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lillehammer T, Tveito S, Engesaeter BO, Fodstad O, Maelandsmo GM, Engebraaten O. Melanoma-specific expression in first-generation adenoviral vectors in vitro and in vivo -- use of the human tyrosinase promoter with human enhancers. Cancer Gene Ther 2005; 12:864-72. [PMID: 15891771 DOI: 10.1038/sj.cgt.7700852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current treatment regimens for patients with metastatic melanoma are not curative, and new treatment strategies are needed. One possible approach is targeted treatment using the tyrosinase promoter for melanoma-specific expression of genes delivered by adenoviral (Ad) vectors. In this study, a vector with the human minimal tyrosinase promoter and two human enhancer elements (2hE-hTyrP) was compared with different hybrid promoter constructs, containing tyrosinase regulatory sequences and the viral simian virus 40 (SV40) promoter. The tissue specificity of the first-generation vectors was measured by enhanced green fluorescence protein (EGFP) reporter flow cytometry in 12 human melanoma and nonmelanoma cell lines. In the melanotic melanoma cells, the activity of the 2hE-hTyrP promoter was comparable with the activity of the cytomegalovirus promoter, and the background expression levels obtained in the nonmelanoma cell lines confirmed the strict tissue-specific property of this promoter. The hybrid SV40-based promoters were effective, but no tissue specificity was observed even after the inclusion of tyrosinase enhancer elements identical to the elements used in the 2hE-hTyrP promoter. The in vivo tissue specificity of the 2hE-hTyrP vector was demonstrated in subcutaneous xenografted tumors by ex vivo detection of EGFP fluorescence with the IVIS Imaging equipment and fluorescence microscopy visualizing the in situ EGFP expression in tumor sections. The tyrosinase mRNA level in the 12 cell lines was measured by quantitative real-time RT-PCR, and the expression levels reliably reflected to what extent the 2hE-hTyrP promoter could drive the gene expression in the individual cell lines. In conclusion, the human tyrosinase promoter fused to two human tyrosinase enhancers (2hE-hTyrP) can be used for efficient tissue-specific expression from first-generation Ad vectors in melanoma cell lines both in vitro and in vivo, as predicted by the quantitative tyrosinase mRNA levels in the melanoma and nonmelanoma cell lines tested.
Collapse
Affiliation(s)
- Trine Lillehammer
- Department of Tumor Biology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
13
|
Li HW, Li J, Helm GA, Pan D. Highly specific expression of luciferase gene in lungs of naïve nude mice directed by prostate-specific antigen promoter. Biochem Biophys Res Commun 2005; 334:1287-91. [PMID: 16043123 DOI: 10.1016/j.bbrc.2005.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 07/11/2005] [Indexed: 11/25/2022]
Abstract
PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10(9)PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases.
Collapse
Affiliation(s)
- Hong-Wei Li
- Department of Radiology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
14
|
Cheng WS, Kraaij R, Nilsson B, van der Weel L, de Ridder CMA, Tötterman TH, Essand M. A novel TARP-promoter-based adenovirus against hormone-dependent and hormone-refractory prostate cancer. Mol Ther 2005; 10:355-64. [PMID: 15294182 DOI: 10.1016/j.ymthe.2004.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/13/2004] [Indexed: 11/19/2022] Open
Abstract
TARP (T cell receptor gamma-chain alternate reading frame protein) is a protein that in males is uniquely expressed in prostate epithelial cells and prostate cancer cells. We have previously shown that the transcriptional activity of a chimeric sequence comprising the TARP promoter (TARPp) and the PSA enhancer (PSAe) is strictly controlled by testosterone and highly restricted to cells of prostate origin. Here we report that a chimeric sequence comprising TARPp and the PSMA enhancer (PSMAe) is highly active in testosterone-deprived prostate cancer cells, while a regulatory sequence comprising PSAe, PSMAe, and TARPp (PPT) has high prostate-specific activity both in the presence and in the absence of testosterone. Therefore, the PPT sequence may, in a gene therapy setting, be beneficial to prostate cancer patients that have been treated with androgen withdrawal. A recombinant adenovirus vector with the PPT sequence, shielded from interfering adenoviral sequences by the mouse H19 insulator, yields high and prostate-specific transgene expression both in cell cultures and when prostate cancer, PC-346C, tumors were grown orthotopically in nude mice. Intravenous virus administration reveals both higher activity and higher selectivity for the insulator-shielded PPT sequence than for the immediate-early CMV promoter. Therefore, we believe that an adenovirus with therapeutic gene expression controlled by an insulator-shielded PPT sequence is a promising candidate for gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Wing-Shing Cheng
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
15
|
Hoffmann D, Jogler C, Wildner O. Effects of the Ad5 upstream E1 region and gene products on heterologous promoters. J Gene Med 2005; 7:1356-66. [PMID: 15945123 DOI: 10.1002/jgm.771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND All recombinant adenovirus vectors contain the upstream region of the E1A gene comprising the viral origin of replication, encapsidation signal, and cis-acting regulatory elements for transcription of the E1A and other early genes. Using different reporter genes, some previous studies demonstrated the maintenance of heterologous promoter specificity in the adenoviral context, while others reported that adenoviral sequences interfere with promoter activity. METHODS Plasmid DNA-based luciferase reporter gene assays and adenovirus type 5 (Ad5) infection were combined to examine the effect of the Ad5 (nt 1-353) element and/or adenoviral gene products on tissue-specific (Midkine (MK) and COX-2), cell cycle associated (Ki-67 and E2F1) and viral promoters (Ad5 E1, Ad5 E4 and SV40). As a proof of concept, data were verified in the setting of recombinant replication-defective and replication-competent adenoviral vectors. RESULTS Viral and E2F1 promoter activities were enhanced by the Ad5 (nt 1-353) segment by approximately 100% and 145%, respectively, regardless of its position. A polyadenylation sequence (polyA) upstream of the promoter had no effect, confirming an enhancer element within the Ad5 (nt 1-353) segment. Ad5 (nt 1-353) increased COX-2 promoter activity by 146% but was blocked by an upstream polyA, indicating a cryptic transcription start site. When placing the reporter gene cassette in a replication-defective adenovirus, similar data were obtained. In the plasmid vector-based system, adenoviral gene products transactivated the E2F1 and viral promoters by 194%, 19%, 67%, and 16%, respectively. Tissue-specific promoter activities were not significantly affected by the Ad5 (nt 1-353) segment, nor adenoviral gene products. In concert with these data, we were able to target replication-competent adenoviral vectors with the COX-2 promoter, but not with the cell cycle associated promotor. CONCLUSIONS The adenovirus E1A upstream regulatory region and gene products interact with some but not all heterologous promoters. Often, the basal promoter activity can be reduced with an upstream polyA. Since the data obtained in our plasmid vector-based assay with internal control and infection with adenovirus could be confirmed in the adenoviral setting, our system might be suitable to speed up the identification of promoters which maintain their specificity in the adenoviral context and circumvent the problems associated with determining infectious adenovirus titers.
Collapse
Affiliation(s)
- Dennis Hoffmann
- Ruhr-Universität Bochum, Abteilung für Molekulare und Medizinische Virologie, Bldg. MA, Rm. 6/40, D-44801 Bochum, Germany
| | | | | |
Collapse
|
16
|
Abstract
Helper-dependent adenoviral vectors possess a number of characteristics that make them attractive gene therapy vectors. These vectors are completely devoid of viral coding sequences and are able to mediate high-efficiency transduction in vivo to direct sustain high-level transgene expression with negligible chronic toxicity. This review focuses on advances in helper-dependent adenoviral vector technology, selected examples of in vivo studies of particular interest, and the issue of vector-mediated acute toxicity.
Collapse
Affiliation(s)
- Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
17
|
Shi CX, Long MA, Liu L, Graham FL, Gauldie J, Hitt MM. The human SCGB2A2 (Mammaglobin-1) promoter/enhancer in a helper-dependent adenovirus vector directs high levels of transgene expression in mammary carcinoma cells but not in normal nonmammary cells. Mol Ther 2004; 10:758-67. [PMID: 15451460 DOI: 10.1016/j.ymthe.2004.06.849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022] Open
Abstract
Expression of secretoglobin family 2A member 2 (SCGB2A2, also known as mammaglobin-1) has been detected in a high percentage of primary and metastatic breast tumors, to a lesser extent in normal breast, but not in other normal tissues. Plasmid transfection studies in our lab and others, however, were unable to identify the genetic elements regulating this specificity. Here we demonstrate that a 25-kb DNA fragment derived from the human SCGB2A2 gene upstream of the protein coding sequence was highly active and preferentially expressed in breast cancer cells when introduced via a helper-dependent adenoviral (HDAd) vector. HDAd delivery was selected for its high cloning capacity, its high efficiency of gene transfer, and the absence of cis-acting viral sequences that can potentially interfere with specificity of the inserted promoters. A series of vectors with deletions in the 25-kb fragment was constructed to identify important regulatory regions of the SCGB2A2 promoter. We have determined that elements controlling the specificity of expression reside within the first 345 bp upstream of the coding sequence. In addition, we identified a strong enhancer several kilobases upstream of this minimal promoter. We suggest that the SCGB2A2 promoter/enhancer should be particularly advantageous for gene therapy protocols involving oncolytic viruses or toxic gene transfer via adenovectors to mammary tumors.
Collapse
Affiliation(s)
- Chang-Xin Shi
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Adenovirus-based vectors are promising vehicles for gene replacement therapy due to their ability to efficiently transduce a wide variety of proliferating and non-proliferating cells. Over the past decade, different versions of adenoviral vectors (Ads) have been developed. These vectors can be classified into two major categories, based on whether the viral coding sequences are partially (first or second-generation Ads) or completely deleted (helper-dependent or gutted Ads). Both types of Ads have been tested in a variety of gene delivery studies, and major obstacles to their clinical application have been identified. Currently, innate and adaptive host immune responses to Ads remain major challenges, limiting both the initial viral dose and the effectiveness of subsequent administrations. Recent developments in vector design and delivery methods have improved the potential of Ads for successful gene therapy application.
Collapse
Affiliation(s)
- Huibi Cao
- Programme in Lung Biology Research and the Canadian Institutes of Health Research Group in Lung Development, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
19
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
20
|
Brown BD, Shi CX, Powell S, Hurlbut D, Graham FL, Lillicrap D. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood 2004; 103:804-10. [PMID: 14512318 DOI: 10.1182/blood-2003-05-1426] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTwo helper-dependent (HD) adenoviral vectors encoding a canine factor VIII B-domain–deleted transgene (cFVIII) were constructed and evaluated in 4 hemophilia A dogs. One vector was regulated by the cytomegalovirus (CMV) promoter (HD-CMV-cFVIII), while the other vector contained a tissue-restricted promoter comprised of the human FVIII proximal promoter with an upstream concatemer of 5 hepatocyte nuclear factor 1 binding sites (HD-HNF-cFVIII). We detected no toxicity at low dose (5 × 1011 vp/kg), but at higher vector doses (> 1 × 1012 vp/kg) transient hepatotoxicity and thrombocytopenia were observed. Low-level increases in FVIII activity were detected in all 3 HD-HNF-cFVIII–treated dogs, which corresponded with decreased whole blood clotting times. None of the animals receiving the HD-HNF-cFVIII vector developed FVIII inhibitors, and in 1 of the 3 animals, FVIII activity was sustained for over 6 months after treatment. One animal, which received the HD-CMV-cFVIII vector, achieved peak levels of FVIII above 19 000 mU/mL, but FVIII activity disappeared within 1 week, coincident with the development of a potent anti–canine FVIII antibody response. This study supports previous demonstrations of improved safety using HD gene transfer and suggests that these vectors can provide transient FVIII expression with minimal, acute toxicity in the absence of inhibitor formation.
Collapse
Affiliation(s)
- Brian D Brown
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
21
|
Zheng JY, Chen D, Chan J, Yu D, Ko E, Pang S. Regression of prostate cancer xenografts by a lentiviral vector specifically expressing diphtheria toxin A. Cancer Gene Ther 2003; 10:764-70. [PMID: 14502229 DOI: 10.1038/sj.cgt.7700629] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have constructed a prostate-specific lentiviral vector based on the promoter of the prostate-specific antigen (PSA). The PSA promoter-based lentiviral vector has been used to deliver the diphtheria toxin A (DTA) gene into prostate cancer cells, and has shown promising tissue-specific eradication of prostate cancer cells in cell culture. To evaluate the efficacy of eradicating human prostate cancer cells in vivo, we used human LNCaP prostate xenografts in nude mice as an animal model and found that with a single injection of the DTA lentiviral vector into LNCaP prostate tumors, approximately 75% of the tumors (from three experiments; conducted 9/11, 11/15 and 3/4) in the animals were completely eradicated. The DTA vector has also shown the ability to cause tumor regression in recurrent prostate tumors. Intravenous injection of the DTA lentiviral vector into nude mice elicited no pathogenic effects, suggesting that this prostate tissue-specific vector is safe for eradicating prostate cancer cells in vivo.
Collapse
Affiliation(s)
- Jun-ying Zheng
- Division of Oral Biology and Medicine and UCLA Dental Institute, UCLA School of Dentistry, 10833 Le Conte Avenue, Los Angeles, California 90095-1668, USA
| | | | | | | | | | | |
Collapse
|
22
|
Cheng WS, Giandomenico V, Pastan I, Essand M. Characterization of the androgen-regulated prostate-specific T cell receptor gamma-chain alternate reading frame protein (TARP) promoter. Endocrinology 2003; 144:3433-40. [PMID: 12865322 DOI: 10.1210/en.2003-0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TARP (T cell receptor gamma-chain alternate reading frame protein) is uniquely expressed in males in prostate epithelial cells and prostate cancer cells. Here we demonstrate that TARP expression is regulated by testosterone at the transcriptional level through specific binding of androgen receptor to an androgen response element in the proximal TARP promoter. We further demonstrate that the promoter specifically initiates reporter gene expression in TARP-positive prostate cancer cell lines. To develop a regulatory sequence for prostate-specific gene expression, we constructed a chimeric sequence consisting of the TARP promoter and the prostate-specific antigen (PSA) enhancer. We found that in the prostatic adenocarcinoma cell line LNCaP, the transcriptional activity of the regulatory sequence consisting of a TARP promoter and PSA enhancer is 20 times higher than the activity of a regulatory sequence consisting of the PSA promoter and PSA enhancer. Thus, our studies define a regulatory sequence that may be used to restrict expression of therapeutic genes to prostate cancer cells and may therefore play a role in prostate cancer gene therapy.
Collapse
Affiliation(s)
- Wing-Shing Cheng
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | | | | | | |
Collapse
|
23
|
Abstract
Our understanding of cardiac excitation-contraction coupling has improved significantly over the last 10 years. Furthermore, defects in the various steps of excitation-contraction coupling that characterize cardiac dysfunction have been identified in human and experimental models of heart failure. The various abnormalities in ionic channels, transporters, kinases and various signalling pathways collectively contribute to the 'failing phenotype.' However, deciphering the causative changes continues to be a challenge. An important tool in dissecting the importance of the various changes in heart failure has been the use of cardiac gene transfer. To achieve effective cardiac gene transfer a number of obstacles remain, including appropriate vectors for gene delivery, appropriate delivery systems, and a better understanding of the biology of the disease. In this review, we will examine our current understanding of these various factors. Gene transfer provides not only a potential therapeutic modality but also an approach to identifying and validating molecular targets.
Collapse
Affiliation(s)
- Federica del Monte
- Program in Cardiovascular Gene Therapy, Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- Jayanta Roy-Chowdhury
- Departments of Medicine and Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | | |
Collapse
|