1
|
Weng D, Calderwood SK, Gong J. A Novel Heat Shock Protein 70-Based Vaccine Prepared from DC Tumor Fusion Cells: An Update. Methods Mol Biol 2023; 2693:209-219. [PMID: 37540437 DOI: 10.1007/978-1-0716-3342-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen-processing machinery of dendritic cells through the cell fusion process, and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of the chaperone protein-based tumor vaccine.
Collapse
Affiliation(s)
- Desheng Weng
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jianlin Gong
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW The clinical activity of new immunotherapies in cancer, such as anti-Programmed cell death 1 (PD-1)/Programmed death-ligand 1, has revealed the importance of the patient's immune system in controlling tumor development. As in infectious diseases, dendritic cells (DCs) are critical for inducing immune responses in cancer. Unfortunately, autologous DC-based vaccines have not yet demonstrated their clinical benefit. Here, we review recent research using allogeneic DCs as alternatives to autologous DCs to develop innovative therapeutic cancer vaccines. RECENT FINDINGS A novel approach using an allogeneic plasmacytoid dendritic cell (PDC) line as an antigen presentation platform showed great potency when used to prime and expand antitumor-specific CD8+ T cells in vitro and in vivo in a humanized mouse model. This PDC platform, named PDC∗vac, was first evaluated in the treatment of melanoma with encouraging results and is currently being evaluated in the treatment of lung cancer in combination with anti-PD-1 immunotherapy. SUMMARY Therapeutic cancer vaccines are of particular interest because they aim to help patients, to mount effective antitumor responses, especially those who insufficiently respond to immune checkpoint inhibitors. The use of an allogeneic plasmacytoid DC-based platform such as PDC∗vac could greatly potentiate the efficacy of these new immunotherapies.
Collapse
Affiliation(s)
- Joël Plumas
- Immunobiology and Immunotherapy of Chronic Diseases, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes
- Research and Development Laboratory, Etablissement Français du Sang Auvergne-Rhône-Alpes
- PDC∗line Pharma SAS, Grenoble, France
- PDC∗line Pharma SA, Liège, Belgium
| |
Collapse
|
3
|
Anh BV, Thao CT, Cuong PT, Thuy NTT, Diem HH, Van Khanh BT, Hue BTH, Uyen TTT, Tu ND, Hoai TTT, Thanh NL, Liem NT, Nhung HTM. Vγ9γδ T Cell Induction by Human Umbilical Cord Blood Monocytes-Derived, Interferon-α-Stimulated Dendritic Cells. Cancer Control 2021; 27:1073274820974025. [PMID: 33222507 PMCID: PMC7791440 DOI: 10.1177/1073274820974025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells that activate T
cells to kill cancer cells. The extracellular products of DCs have also been
reported to perform the same function. In this study, we examined the in
vitro differentiation of umbilical cord blood monocytes into DCs in
the presence of GM-CSF, and interferon (IFN)-α. The resulting DC population
(called IFN-DCs) were then matured in the presence of TNF-α, and pulsed with
total protein extracted from A549 cancer cell line. The pulsed DCs and their
conditioned medium were then used to stimulate allogeneic lymphocytes (alloLym).
The proliferation and cytotoxicity of alloLym were then determined. The results
showed that after 5 days of differentiation, the stimulated monocytes had the
typical morphology and characteristic surface markers of DCs. Both unpulsed and
pulsed IFN-DCs can induce the proliferation of alloLym, especially Vγ9γδ T
cells. The conditioned medium from pulsed and unpulsed IFN-DCs culture also
prompted the growth of Vγ9γδ T cells. Moreover, alloLym stimulated with pulsed
DCs and their conditioned medium had a greater cytotoxic effect on A549 cells
than the ones that were not stimulated. Our results indicated that IFN-DCs and
their conditioned medium could induce the anti-tumor immunity in
vitro, providing evidence for application of cord blood
monocytes-derived, interferon-α- stimulated dendritic cells and their
extracellular products in anti-cancer therapy.
Collapse
Affiliation(s)
- Bui Viet Anh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Hightech Center, Vinmec Healthcare system, Hanoi, Vietnam
| | - Chu Thi Thao
- Vinmec Hightech Center, Vinmec Healthcare system, Hanoi, Vietnam
| | - Pham Thi Cuong
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Nguyen Thi Thu Thuy
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Hoang Huong Diem
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Bui Thi Van Khanh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Bui Thi Hong Hue
- Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vin homes Ocean Park, Hanoi, Vietnam
| | - Than Thi Trang Uyen
- Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vin homes Ocean Park, Hanoi, Vietnam
| | - Nguyen Dac Tu
- Vinmec Hightech Center, Vinmec Healthcare system, Hanoi, Vietnam
| | | | - Nguyen Lai Thanh
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Nguyen Thanh Liem
- Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam.,College of Health Sciences, Vin University, Hanoi, Vin homes Ocean Park, Hanoi, Vietnam
| | - Hoang Thi My Nhung
- VNU University of Science, Vietnam National University, Hanoi, Vietnam.,Vinmec Research Institute of Stem cells and Gene Technology, Vinmec Healthcare system, Hanoi, Vietnam
| |
Collapse
|
4
|
Naseri M, Zöller M, Hadjati J, Ghods R, Ranaei Pirmardan E, Kiani J, Eini L, Bozorgmehr M, Madjd Z. Dendritic cells loaded with exosomes derived from cancer stem cell-enriched spheroids as a potential immunotherapeutic option. J Cell Mol Med 2021; 25:3312-3326. [PMID: 33634564 PMCID: PMC8034455 DOI: 10.1111/jcmm.16401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for therapeutic resistance and recurrence in colorectal cancer. Despite advances in immunotherapy, the inability to specifically eradicate CSCs has led to treatment failure. Hence, identification of appropriate antigen sources is a major challenge in designing dendritic cell (DC)‐based therapeutic strategies against CSCs. Here, in an in vitro model using the HT‐29 colon cancer cell line, we explored the efficacy of DCs loaded with exosomes derived from CSC‐enriched colonospheres (CSCenr‐EXOs) as an antigen source in activating CSC‐specific T‐cell responses. HT‐29 lysate, HT‐29‐EXOs and CSCenr lysate were independently assessed as separate antigen sources. Having confirmed CSCs enrichment in spheroids, CSCenr‐EXOs were purified and characterized, and their impact on DC maturation was investigated. Finally, the impact of the antigen‐pulsed DCs on the proliferation rate and also spheroid destructive capacity of autologous T cells was assessed. CSCenr‐EXOs similar to other antigen groups had no suppressive/negative impacts on phenotypic maturation of DCs as judged by the expression level of costimulatory molecules. Notably, similar to CSCenr lysate, CSCenr‐EXOs significantly increased the IL‐12/IL‐10 ratio in supernatants of mature DCs. CSCenr‐EXO‐loaded DCs effectively promoted T‐cell proliferation. Importantly, T cells stimulated with CSCenr‐EXOs disrupted spheroids' structure. Thus, CSCenr‐EXOs present a novel and promising antigen source that in combination with conventional tumour bulk‐derived antigens should be further explored in pre‐clinical immunotherapeutic settings for the efficacy in hampering recurrence and metastatic spread.
Collapse
Affiliation(s)
- Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Margot Zöller
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Department of Radiology, Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Leila Eini
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Basic Science, Faculty of Veterinary, Science and Research Branch of Islamic, Azad University, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
5
|
Shi M, Su L, Hao S, Guo X, Xiang J. Fusion Hybrid of Dendritic Cells and Engineered Tumor Cells Expressing Interleukin-12 Induces Type 1 Immune Responses against Tumor. TUMORI JOURNAL 2019; 91:531-8. [PMID: 16457153 DOI: 10.1177/030089160509100614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background Dendritic cell (DC)-tumor fusion hybrid vaccinees that facilitate antigen presentation represent a novel powerful strategy in cancer immunotherapy. Preclinical studies have demonstrated that IL-12 promotes specific antitumor immunity mediated by T cells in several types of tumors. In the present study, we investigated the antitumor immunity derived from vaccination of fusion hybrids between DCs and engineered J558/IL-12 myeloma cells secreting Th1 cytokine IL-12. Methods The expression vector pcDNA-IL-12 was generated and transfected into J558 myeloma cells and then bone marrow-derived DCs were fused with engineered J558/IL-12 cells. The antitumor immunity derived from vaccination of the fusion hybrid DC/J558/IL-12 was evaluated in vitro and in vivo. Results DC/J558/IL-12 cells secreted recombinant IL-12 (1.6 ng/mL), and inoculation of BALB/c mice with DC/J558/IL-12 hybrid induced a Th1 dominant immune response and resulted in tumor regression. Immunization of mice with engineered DC/J558/IL-12 hybrid elicited stronger J558 tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro as well as more potent protective immunity against J558 tumor challenge in vivo than immunization with the mixture of DCs and J558/IL-12, J558/IL-12 and J558, respectively. Furthermore, the antitumor immunity mediated by DC/J558/1L-12 tumor cell vaccination in vivo appeared to be dependent on CD8+ CTL. Conclusions These results demonstrate that the engineered fusion hybrid vaccines that combine Th1 cytokine gene-modified tumor cells with DCs may be an attractive strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Meiqing Shi
- Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
6
|
Weng D, Calderwood SK, Gong J. A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells. Methods Mol Biol 2018; 1709:359-369. [PMID: 29177672 DOI: 10.1007/978-1-4939-7477-1_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.
Collapse
Affiliation(s)
- Desheng Weng
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jianlin Gong
- Department of Medicine, Boston University School of Medicine, 650 Albany Street, Room 309, Boston, MA, 02118, USA.
| |
Collapse
|
7
|
Shahjahan Miah SM, Erick TK, Emerich DF. Dendritic Cell-Based Cancer Therapies: Current Status and Future Directions. CELL THERAPY 2017. [DOI: 10.1007/978-3-319-57153-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Mohamed YS, Bashawri LA, Vatte C, Abu-Rish EY, Cyrus C, Khalaf WS, Browning MJ. The in vitro generation of multi-tumor antigen-specific cytotoxic T cell clones: Candidates for leukemia adoptive immunotherapy following allogeneic stem cell transplantation. Mol Immunol 2016; 77:79-88. [PMID: 27490939 DOI: 10.1016/j.molimm.2016.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
Abstract
Adoptive T-cell immunotherapy is a promising approach to manage and maintain relapse-free survival of leukemia patients, especially following allogeneic stem cell transplantation. Post-transplant adoptive immunotherapy using cytotoxic T lymphocytes (CTLs) of the donor origin provide graft-versus-tumor effects, with or without graft-versus-host disease. Myeloid leukemias express immunogenic leukemia associated antigens (LAAs); such as WT-1, PRAME, MAGE, h-TERT and others, most of them are able to induce specific T cell responses whenever associated with the proper co-stimulation. We investigated the ability of a LAA-expressing hybridoma cell line to induce CTL clones in PBMCs of HLA-matched healthy donors in vitro. The CTL clones were induced by repetitive co-culture with LAAs-expressing, HLA-A*0201(+) hybrid cell line, generated by fusion of leukemia blasts to human immortalized APC (EBV-sensitized B-lymphoblastoid cell line; HMy2). The induced cytotoxic T cell clones were phenotypically and functionally characterized by pentamer analysis, IFN-γ release ELISPOT and cellular cytotoxicity assays. All T cell lines showed robust peptide recognition and functional activity when sensitized with HLA-A*0201-restricted WT-1235-243, hTERT615-624 or PRAME100-108 peptides-pulsed T2 cells, in addition to partially HLA-matched leukemia blasts. This study demonstrates the feasibility of developing multi-tumor antigen-specific T cell lines in allogeneic PBMCs in vitro, using LAA-expressing tumor/HMy2 hybrid cell line model, for potential use in leukemia adoptive immunotherapy in partially matched donor-recipient setting.
Collapse
Affiliation(s)
- Yehia S Mohamed
- Department of Medical Microbiology, College of Medicine, University of Dammam, PO BOX 2114, Dammam 31451, Saudi Arabia.
| | - Layla A Bashawri
- Clinical Laboratory Department, King Fahad Hospital of the University, University of Dammam, Saudi Arabia
| | - Chittibabu Vatte
- Department of Genetic Research, Institute for Research and Medical Consultations, University of Dammam, PO BOX-1982, Dammam-31441, Saudi Arabia
| | - Eman Y Abu-Rish
- Department of Biopharmaceutics & Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Cyril Cyrus
- Department of Genetic Research, Institute for Research and Medical Consultations, University of Dammam, PO BOX-1982, Dammam-31441, Saudi Arabia
| | - Wafaa S Khalaf
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK; Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Michael J Browning
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| |
Collapse
|
9
|
Koido S. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines. Int J Mol Sci 2016; 17:ijms17060828. [PMID: 27240347 PMCID: PMC4926362 DOI: 10.3390/ijms17060828] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whole tumor cells. DCs then process TAAs endogenously and present them through major histocompatibility complex (MHC) class I and II pathways in the context of costimulatory molecules, resulting in simultaneous activation of both CD4⁺ and CD8⁺ T cells. DC-tumor FCs require optimized enhanced immunogenicity of both DCs and whole tumor cells. In this context, an effective fusion strategy also needs to produce immunogenic DC-tumor FCs. We discuss the potential ability of DC-tumor FCs and the recent progress in improving clinical outcomes by DC-tumor FC-based cancer vaccines.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 277-8567 Chiba, Japan.
| |
Collapse
|
10
|
Schneble EJ, Yu X, Wagner TE, Peoples GE. Novel dendritic cell-based vaccination in late stage melanoma. Hum Vaccin Immunother 2015; 10:3132-8. [PMID: 25483650 DOI: 10.4161/hv.29110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) that play an important role in stimulating an immune response of both CD4(+) T helper cells and CD8(+) cytotoxic T lymphocytes (CTLs). As such, DCs have been studied extensively in cancer immunotherapy for their capability to induce a specific anti-tumor response when loaded with tumor antigens. However, when the most relevant antigens of a tumor remain to be identified, alternative approaches are required. Formation of a dentritoma, a fused DC and tumor cells hybrid, is one strategy. Although initial studies of these hybrid cells are promising, several limitations interfere with its clinical and commercial application. Here we present early experience in clinical trials and an alternative approach to manufacturing this DC/tumor cell hybrid for use in the treatment of late stage and metastatic melanoma.
Collapse
Affiliation(s)
- Erika J Schneble
- a San Antonio Military Medical Center; Department of General Surgery ; San Antonio , TX USA
| | | | | | | |
Collapse
|
11
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Koido S, Homma S, Kan S, Takakura K, Namiki Y, Kobayashi H, Ito Z, Uchiyama K, Kajihara M, Arihiro S, Arakawa H, Okamoto M, Ohkusa T, Gong J, Tajiri H. Induction of antigen-specific cytotoxic T lymphocytes by fusion cells generated from allogeneic plasmacytoid dendritic and tumor cells. Int J Oncol 2014; 45:470-8. [PMID: 24819411 DOI: 10.3892/ijo.2014.2433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/17/2014] [Indexed: 11/06/2022] Open
Abstract
Previous work has demonstrated that fusion cells generated from autologous monocyte-derived dendritic cells (MoDCs) and whole tumor cells induce efficient antigen-specific cytotoxic T lymphocytes. A major limitation to the use of this strategy is the availability of adequate amounts of autologous tumor cells. Moreover, MoDCs from cancer patients are often defective in their antigen-processing and presentation machinery. In this study, two types of allogeneic cells, a leukemia plasmacytoid dendritic cell (pDC) line (PMDC05) and pancreatic cancer cell lines (PANC-1 or MIA PaCa-2), were fused instead of autologous MoDCs and tumor cells. We created four types of pDC/tumor fusion cells by alternating fusion partners and treating with lipopolysaccharide (LPS): i) PMDC05 fused with PANC-1 (pDC/PANC-1), ii) PMDC05 fused with MIA PaCa-2 (pDC/MIA PaCa-2), iii) LPS-stimulated pDC/PANC-1 (LPS-pDC/PANC-1) and iv) LPS-stimulated pDC/MIA PaCa-2 (LPS-pDC/MIA PaCa-2) and examined their antitumor immune responses. The LPS-pDC/tumor cell fusions were the most active, as demonstrated by their: i) upregulated expression of HLA-DR and CD86 on a per-fusion-cell basis, ii) increased production of IL-12p70, iii) generation of a higher percentage of IFN-γ-producing CD4⁺ and CD8⁺ T cells and iv) augmented induction of MUC1-specific CD8⁺ T cells that lyse target tumor cells. This study provides the first evidence for an in vitro induction of antigen-specific cytotoxic T lymphocytes by LPS-stimulated fusion cells generated from leukemia plasmacytoid DCs and tumor cells and suggests that this strategy has potential applicability to the field of adoptive immunotherapy.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Sadamu Homma
- Department of Oncology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Shin Kan
- Department of Oncology, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kazuki Takakura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Yoshihisa Namiki
- Institute of Clinical Medicine and Research, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Hiroko Kobayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Mikio Kajihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Seiji Arihiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Hiroshi Arakawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Masato Okamoto
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| | - Jianlin Gong
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hisao Tajiri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Chiba 277-8564, Japan
| |
Collapse
|
13
|
Cicchelero L, de Rooster H, Sanders NN. Various ways to improve whole cancer cell vaccines. Expert Rev Vaccines 2014; 13:721-35. [PMID: 24758597 DOI: 10.1586/14760584.2014.911093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapy based on whole cancer cell vaccines is regarded as a promising avenue for cancer treatment. However, limited efficacy in the first human clinical trials calls for more optimized whole cancer cell vaccines and better patient selection. It is suggested that whole cancer cell vaccines consist preferably of immunogenically killed autologous cancer stem cells associated with dendritic cells. Adjuvants should stimulate both immune effector cells and memory cells, which could be achieved through their correct dosage and timing of administration. There are indications that whole cancer cell vaccination is less effective in patients who are immunocompromised, who have specific genetic defects in their immune or cancer cells, as well as in patients in an advanced cancer stage. However, such patients form the bulk of enrolled patients in clinical trials, prohibiting an objective evaluation of the true potential of whole cancer cell immunotherapy. Each key point will be discussed.
Collapse
Affiliation(s)
- Laetitia Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | | | |
Collapse
|
14
|
Ali HAA, Di J, Mei W, Zhang YC, Li Y, Du ZW, Zhang GZ. Antitumor Activity of Lentivirus-mediated Interleukin -12 Gene Modified Dendritic Cells in Human Lung Cancer in Vitro. Asian Pac J Cancer Prev 2014; 15:611-6. [DOI: 10.7314/apjcp.2014.15.2.611] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Doehn C, Kausch I, Melz S, Behm A, Jocham D. Cytokine and vaccine therapy of kidney cancer. Expert Rev Anticancer Ther 2014; 4:1097-111. [PMID: 15606336 DOI: 10.1586/14737140.4.6.1097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this paper, results from current randomized and other relevant studies on cytokine and vaccine therapy of kidney cancer in the adjuvant setting and in metastatic disease are reviewed. Improvement of medical therapy of kidney cancer is required since the relative 5-year survival of kidney cancer is only 62%. In the adjuvant setting, cytokine monotherapy (interferon [IFN]-alpha or interleukin [IL]-2) is not effective in improving progression-free or overall survival. Recently, an autologous kidney cancer cell vaccine has been shown to reduce the risk of tumor progression following radical nephrectomy for organ-confined or locally advanced kidney cancer in a randomized Phase III study. There were only a few vaccine-related side effects. Presently, this is the only promising approach for the adjuvant treatment of kidney cancer following nephrectomy. In metastatic kidney cancer patients with the tumor-bearing kidney in situ, a combination of radical nephrectomy plus IFN-alpha is more effective than IFN-alpha alone. In metastatic kidney cancer without the option of operative removal of the primary tumor and/or metastases, cytokines such as IFN-alpha, IL-2 and IL-12 and their combinations result in response rates of 10-30%, but the 5-year overall survival is less than 10%. Furthermore, the ideal dose, administration and combination of different agents are yet to be defined. Vaccine therapy of metastatic kidney cancer has been investigated only in Phase I and II studies with limited clinical benefit. Based on the current literature there is a clear need for new approaches in metastatic kidney cancer.
Collapse
Affiliation(s)
- Christian Doehn
- Department of Urology, University of Lübeck Medical School, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
16
|
Passalacqua R, Buti S, Tomasello G, Longarini R, Brighenti M, Dalla Chiesa M. Immunotherapy options in metastatic renal cell cancer: where we are and where we are going. Expert Rev Anticancer Ther 2014; 6:1459-72. [PMID: 17069530 DOI: 10.1586/14737140.6.10.1459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The treatment of renal cell carcinoma is rapidly changing as a result of recent evidence concerning the efficacy of biological drugs, antiangiogenetic agents and signal-transduction inhibitors. This paper will provide a critical overview of the use of immunotherapy in renal cell carcinoma and review the available data concerning the efficacy of interferons, interleukin-2 and other forms of immunological treatment, particularly allogenic transplantation and vaccines. Moreover, it will focus on the new mechanisms of regulation of the immune system with a better understanding of the interaction between host and tumor, the role of T regulatory cells, heat-shock proteins and vaccines. The mechanism of action and the results obtained in renal cell carcinoma using the new molecular targeted drugs will be examined, along with the possibility of using immunotherapy combined with the new biological agents. Future research will not only need to make every effort to optimize the use of the new molecules and to define their efficacy precisely, but also to consider how to integrate these drugs with the traditional immunotherapy.
Collapse
Affiliation(s)
- Rodolfo Passalacqua
- Istituti Ospitalieri, Department of Internal Medicine, Medical Oncology Division, Viale Concordia 1, 26100, Cremona, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother 2014; 10:3125-31. [PMID: 25625926 PMCID: PMC4514037 DOI: 10.4161/21645515.2014.982993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
Collapse
Key Words
- AML, Acute Myeloid Leukemia
- ASCT, Autologous Stem Cell Transplant
- Apo-DC, Apoptotic body loaded- dendritic cells
- CML, Chronic Myeloid Leukemia
- CR, Complete response
- CTLA-4, Cytotoxic T-Lymphocyte Antigen 4
- DC/AML, Dendritic cell Acute Myeloid Leukemia fusion vaccine
- DC/MM, Dendritic cell Multiple Myeloma fusion vaccine
- DNA Deoxyribonucleic acid
- FLT-ITD, Fms-like Tyrosine Kinase with Internal Tandem Duplication
- GMCSF, Granulocyte macrophage colony-stimulating factor
- GVHD, Graft vs Host Disease
- HLA-A*2402, Human Leukocyte antigen A*2402
- IFN, Interferon
- IFNg, Interferon gamma
- IL, Interleukin
- Id, Idiotype
- KLH, Keyhole limpet hemocyanin
- MDS, Myelodysplastic syndrome
- MHC, Major histocompatibility complex
- OS, Overall Survival
- PD-1, Programmed death 1
- PD-L1, Programmed death-ligand 1
- PR, Partial response
- PRR, Pathogen recognition receptor
- RNA, Ribonucleic acid
- SCT, Stem cell transplant
- TGFB, Transforming growth factor β
- TNFα, Tumor necrosis factor α
- VEGF, Vascular endothelial growth factor
- VGPR, Very good partial response
- WT-1, Wilm's tumor suppressor gene 1
- cancer
- dendritic cell
- immunotherapy
- leukemia
- mRNA, mRNA
- myeloma
- pDCs, Plasmacytoid Dendritic cell
- trial
- vaccine
Collapse
Affiliation(s)
- Athalia R Pyzer
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
18
|
Chen X, Liu Z, Huang Y, Li R, Zhang H, Dong S, Ge C, Zhang Z, Wang Y, Wang Y, Xue Y, Li Z, Song X. Superior anti-tumor protection and therapeutic efficacy of vaccination with dendritic cell/tumor cell fusion hybrids for murine Lewis lung carcinoma. Autoimmunity 2013; 47:46-56. [PMID: 24191684 DOI: 10.3109/08916934.2013.850080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research into their potential use in immunotherapy in the treatment of cancer. In this study, we examined the efficacy of dendritic cell-tumor cell fusion hybrid vaccines in eliciting an immune response against Lewis lung carcinoma (LLC) cells, as compared to other types of tumor vaccines. In addition, we also tested whether the efficacy of the vaccines was affected by the route of administration. Four different tumor vaccines were compared: (1) HC (hybrid cell), consisting of DC/LLC hybrids; (2) DC+LLC (DCs pulsed with apoptotic LLCs); (3) DC without antigen loading/pulsing; (4) LLC (apoptotic/irradiated tumor cells). We also compared four different routes of administration for each vaccine: (1) Preimmunization; (2) Vaccination therapy; (3) Adoptive immunotherapy; (4) Vaccination therapy combined with adoptive immunotherapy. Anti-tumor immunity was assessed in vivo and the CTL (cytotoxic T lymphocyte) response as well as the expression of key cytokines, IFN-γ and IL-10 were further evaluated using in vitro assays. RESULTS Our data demonstrate that vaccination with HC hybrids provides more effective anti-tumor protective immunity and significantly greater therapeutic immunity than vaccination with DC+LLC, DC or LLC. Most remarkably, vaccination therapy with HC hybrids was more successful than combination (vaccination + adoptive) therapy for the induction of anti-tumor responses. Splenocytes harvested from mice immunized with HC hybrids demonstrated the greatest cytotoxic T lymphocyte (CTL) activity and their production of IFN-γ was high, while their production of IL-10 was very low. CONCLUSIONS Our results suggest that vaccination therapy with DC-tumor cell fusion hybrids provides more effective protection against lung cancer.
Collapse
|
19
|
Hamdi FS, Français O, Subra F, Dufour-Gergam E, Le Pioufle B. Microarray of non-connected gold pads used as high density electric traps for parallelized pairing and fusion of cells. BIOMICROFLUIDICS 2013; 7:44101. [PMID: 24404035 PMCID: PMC3716780 DOI: 10.1063/1.4813062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/21/2013] [Indexed: 05/28/2023]
Abstract
Cell fusion consists of inducing the formation of a hybridoma cell containing the genetic properties of the progenitor cells. Such an operation is usually performed chemically or electrically. The latter method, named electrofusion, is considered as having a strong potential, due to its efficiency and non-toxicity, but deserves further investigations prior to being applicable for key applications like antibody production and cancer immunotherapy. Indeed, to envision such applications, a high amount of hybrid cells is needed. In this context, we present in this paper a device for massive cell pairing and electrofusion, using a microarray of non-connected conductive pads. The electrofusion chamber--or channel--exposes cells to an inhomogeneous electric field, caused by the pads array, enabling the trapping and pairing of cells with dielectrophoresis (DEP) forces prior to electrofusion. Compared to a mechanical trapping, such electric trapping is fully reversible (on/off handling). The DEP force is contactless and thus eases the release of the produced hybridoma. Moreover, the absence of wire connections on the pads permits the high density trapping and electrofusion of cells. In this paper, the electric field mapping, the effect of metallic pads thickness, and the transmembrane potential of cells are studied based on a numerical model to optimize the device. Electric calculations and experiments were conducted to evaluate the trapping force. The structure was finally validated for cell pairing and electrofusion of arrays of cells. We believe that our approach of fully electric trapping with a simple structure is a promising method for massive production of electrofused hybridoma.
Collapse
Affiliation(s)
- Feriel S Hamdi
- Ecole Normale Supérieure de Cachan, CNRS, SATIE, UMR 8029, Cachan, France ; Univ Paris-Sud, CNRS, Institut d'Electronique Fondamentale, UMR 8622, Orsay, France
| | - Olivier Français
- Ecole Normale Supérieure de Cachan, CNRS, SATIE, UMR 8029, Cachan, France
| | - Frederic Subra
- Ecole Normale Supérieure de Cachan, CNRS, LBPA, UMR 8113, Cachan, France
| | | | - Bruno Le Pioufle
- Ecole Normale Supérieure de Cachan, CNRS, SATIE, UMR 8029, Cachan, France
| |
Collapse
|
20
|
Wang J, Liao L, Tan J. Dendritic cell-based vaccination for renal cell carcinoma: challenges in clinical trials. Immunotherapy 2013; 4:1031-42. [PMID: 23148755 DOI: 10.2217/imt.12.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After decades of research, dendritic cell (DC)-based vaccines for renal cell carcinoma have progressed from preclinical rodent models and safety assessments to Phase I/II clinical trials. DC vaccines represent a promising therapy that has produced measurable immunological responses and prolonged survival rates. However, there is still much room to improve in terms of therapeutic efficacy. The key issues that affect the efficiency and reliability of DC therapy include the selection of patients who will respond best to treatment, the proper preparation and administration of DC vaccines, and a combination of DC vaccination with other immune-enhancing therapies (e.g., removal of Tregs, CTLA-4 blockade and lymphodepletion). Additional antiangiogenic agents will hopefully lead to greater survival benefits for patients in early disease stages. This review focuses on the different approaches of DC-based vaccination against renal cell carcinoma and potential strategies to enhance the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jin Wang
- Organ Transplant Institute, Fuzhou General Hospital, Xiamen University, Fuzhou, China
| | | | | |
Collapse
|
21
|
Yoshimura K, Uemura H. Role of vaccine therapy for renal cell carcinoma in the era of targeted therapy. Int J Urol 2013; 20:744-55. [PMID: 23521119 DOI: 10.1111/iju.12147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma is the most common malignant tumor originating from the kidney. Compared with other solid tumors, it does not respond to traditional management modalities, such as chemotherapy and radiotherapy. However, it is well known that renal cell carcinoma represents one of the most immune-responsive cancers and several immunotherapeutic strategies have been investigated in the management of renal cell carcinoma with variable degrees of success. The development of immunotherapy with α-interferon or high-dose interleukin-2 is the best established treatment, and is associated with durable disease control. Although the lack of defined antigens in renal cell carcinoma has hindered more specific vaccine development, research regarding vaccination therapy has been of special interest for the treatment of renal cell carcinoma for more than 30 years. At present, there are three types of cell-based vaccines in renal cell carcinoma treatment: autologous tumor-cell vaccines, genetically modified tumor vaccines and dendritic cell-based vaccines. A further type is peptide-based vaccination with tumor-associated antigens as possible targets, such as carbonic anhydrase IX, survivin and telomerase that are overexpressed in renal cell carcinoma. In the present article, we review data from completed clinical trials of vaccine therapy, and discuss future trials to assess the current knowledge and future role of vaccine therapy for renal cell carcinoma in the era of recently developed targeted therapy.
Collapse
Affiliation(s)
- Kazuhiro Yoshimura
- Department of Urology, Faculty of Medicine, Kinki University, Osaka, Japan.
| | | |
Collapse
|
22
|
Browning MJ. Antigen presenting cell/ tumor cell fusion vaccines for cancer immunotherapy. Hum Vaccin Immunother 2013; 9:1545-8. [PMID: 23475129 DOI: 10.4161/hv.24235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Fusions of antigen presenting cells and tumor cells have been investigated in animal models and phase I/II clinical trials as candidate cancer vaccines. In animal studies there have been numerous reports of induction of protective immunity against a wide range of tumor types. Results of clinical trials have been less dramatic, but tumor-specific immune responses have been reported in many patients, with clinical responses to the vaccination in a subset. In this commentary article, I review the current status of antigen presenting cell/tumor cell fusion vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Michael J Browning
- Department of Infection; Immunity and Inflammation; University of Leicester; Leicester, UK; Department of Immunology; Leicester Royal Infirmary; Leicester, UK
| |
Collapse
|
23
|
Flörcken A, Kopp J, van Lessen A, Movassaghi K, Takvorian A, Jöhrens K, Möbs M, Schönemann C, Sawitzki B, Egerer K, Dörken B, Pezzutto A, Westermann J. Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer: a clinical phase I/II study. Hum Vaccin Immunother 2013; 9:1217-27. [PMID: 23458999 DOI: 10.4161/hv.24149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Multi-kinase inhibitors have been established for the treatment of advanced renal cell cancer, but long-term results are still disappointing and immunotherapeutic approaches remain an interesting experimental option particularly in patients with a low tumor burden. DC are crucial for antigen-specific MHC-restricted T cell immunity. Furthermore, allogeneic HLA-molecules pose a strong immunogenic signal and may help to induce tumor-specific T cell responses. In this phase I/II trial, 7 patients with histologically confirmed progressive metastatic RCC were immunized repetitively with 1 × 10 (7) allogeneic partially HLA-matched DC pulsed with autologous tumor lysate following a schedule of 8 vaccinations over 20 weeks. Patients also received 3 Mio IE IL-2 s.c. once daily starting in week 4. Primary endpoints of the study were feasibility and safety. Secondary endpoints were immunological and clinical responses. Vaccination was feasible and safe with no severe toxicity being observed. No objective response could be documented. However, while all patients had documented progress at study entry, 29% of the patients showed SD throughout the study with a mean TTP of 24.6 weeks (range 5 to 96 weeks). In 3/7 patients, TH1-polarized immune responses against RCC-associated antigens were observed. In one patient showing a minimal clinical response and a TTP of 96 weeks, clonally proliferated T cells against yet undefined antigens were induced by the vaccine. Vaccination with tumor antigen loaded DC remains an interesting experimental approach, but should rather be applied in the situation of minimal residual disease after systemic therapy. Additional depletion of regulatory cells might be a promising strategy.
Collapse
Affiliation(s)
- Anne Flörcken
- Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Virchow- Klinikum; Berlin, Germany; Department of Hematology; Oncology, and Tumor Immunology; Charité University Medicine Berlin; Campus Benjamin Franklin; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mohamed YS, Dunnion D, Teobald I, Walewska R, Browning MJ. In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies. Vaccine 2012; 30:6578-87. [DOI: 10.1016/j.vaccine.2012.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/23/2012] [Accepted: 08/15/2012] [Indexed: 02/04/2023]
|
25
|
Mottet G, Le Pioufle B, Mir LM. High-resolution analyses of cell fusion dynamics in a biochip. Electrophoresis 2012; 33:2508-15. [DOI: 10.1002/elps.201200112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Mohamed YS, Dunnion D, Teobald I, Walewska R, Browning MJ. Long-lived fusions of human haematological tumour cells and B-lymphoblastoid cells induce tumour antigen-specific cytotoxic T-cell responses in vitro. Immunobiology 2012; 217:719-29. [DOI: 10.1016/j.imbio.2011.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/01/2011] [Indexed: 12/11/2022]
|
27
|
Tschoep-Lechner K, Drexler I, Hammer D, Neumann D, Pohla H, Sutter G, Noessner E, Issels RD. Modified vaccinia virus Ankara delivers a robust surrogate marker for immune monitoring to sarcoma cells even if cells are being exposed to chemotherapy and heat treatment. Int J Hyperthermia 2012; 28:33-42. [PMID: 22235783 PMCID: PMC9476112 DOI: 10.3109/02656736.2011.626834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katharina Tschoep-Lechner
- Department of Internal Medicine III, Klinikum Grosshadern Medical Centre, Ludwig Maximilians University, Marchioninistrasse 25, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chiang CLL, Hagemann AR, Leskowitz R, Mick R, Garrabrant T, Czerniecki BJ, Kandalaft LE, Powell DJ, Coukos G. Day-4 myeloid dendritic cells pulsed with whole tumor lysate are highly immunogenic and elicit potent anti-tumor responses. PLoS One 2011; 6:e28732. [PMID: 22194898 PMCID: PMC3237492 DOI: 10.1371/journal.pone.0028732] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 11/14/2011] [Indexed: 11/25/2022] Open
Abstract
“Day-7” myeloid DCs are commonly used in the clinic. However, there is a strong need to develop DCs faster that have the same potent immunostimulatory capacity as “Day-7” myeloid DCs and at the same time minimizing time, labor and cost of DC preparations. Although “2 days” DCs can elicit peptide-specific responses, they have not been demonstrated to engulf, process and present complex whole tumor lysates, which could be more convenient and personalized source of tumor antigens than defined peptides. In this preclinical study, we evaluated the T-cell stimulatory capacity of Day-2, Day-4, and Day-7 cultured monocyte-derived DCs loaded with SKOV3 cell whole lysate prepared by freeze-thaw or by UVB-irradiation followed by freeze-thaw, and matured with lipopolysaccharide (LPS) and interferon (IFN)-gamma. DCs were evaluated for antigen uptake, and following maturation with LPS and IFN-gamma, DCs were assessed for expression of CD80, CD40, CD86, ICAM-1 and CCR7, production of IL-12p70 and IP-10, and induction of tumor-specific T-cell responses. Day-4 and Day-7 DCs exhibited similar phagocytic abilities, which were superior to Day-2 DCs. Mature Day-7 DCs expressed the highest CD40 and ICAM-1, but mature Day-4 DCs produced the most IL-12p70 and IP-10. Importantly, Day-4 and Day-7 DCs derived from ovarian cancer patients stimulated equally strongly tumor-specific T-cell responses. This is the first study demonstrating the highly immunogenic and strong T-cell stimulatory properties of Day-4 myeloid DCs, and provided important preclinical data for rapid development of potent whole tumor lysate-loaded DC vaccines that are applicable to many tumor types.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrea R. Hagemann
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel Leskowitz
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rosemarie Mick
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas Garrabrant
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian J. Czerniecki
- Rena Rowan Breast Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lana E. Kandalaft
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel J. Powell
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George Coukos
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Although several cytokines have shown antitumor activity in renal cell carcinoma (RCC), the most consistent results have been reported with interleukin-2 (IL-2) and interferon (IFN). Recent insights into how the immune response to a tumor is regulated hold the promise of allowing patients to obtain a durable response to immunotherapy, perhaps without the significant toxicity associated with conventional approaches. This review describes how improvements in patient selection, combination therapy, and investigational agents might expand and better define the role of immunotherapy in metastatic RCC.
Collapse
|
30
|
Chiang CLL, Maier DA, Kandalaft LE, Brennan AL, Lanitis E, Ye Q, Levine BL, Czerniecki BJ, Powell DJ, Coukos G. Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate. J Transl Med 2011; 9:198. [PMID: 22082029 PMCID: PMC3283529 DOI: 10.1186/1479-5876-9-198] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dendritic cells (DCs) are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines. METHODS Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells. Different culture parameters for clinical-scale DC preparation were investigated, including: 1) culture media; 2) culture surface; 3) duration of activating DCs with lipopolysaccharide (LPS) and interferon (IFN)-gamma; 4) method of DC harvest; and 5) cryomedia and final DC product formulation. RESULTS DCs cultured in CellGenix DC media containing 2% human AB serum expressed higher levels of maturation markers following lysate-loading and maturation compared to culturing with serum-free CellGenix DC media or AIM-V media, or 2% AB serum supplemented AIM-V media. Nunclon™Δ surface, but not Corning(®) tissue-culture treated surface and Corning(®) ultra-low attachment surface, were suitable for generating an optimal DC phenotype. Recombinant trypsin resulted in reduced major histocompatibility complex (MHC) Class I and II expression on mature lysate-loaded DCs, however presentation of MHC Class I peptides by DCs was not impaired and cell viability was higher compared to cell scraping. Preservation of DCs with an infusible cryomedia containing Plasma-Lyte A, dextrose, sodium chloride injection, human serum albumin, and DMSO yielded higher cell viability compared to using human AB serum containing 10% DMSO. Finally, activating DCs for 16 hours with LPS and IFN-γ stimulated robust mixed leukocyte reactions (MLRs), and high IL-12p70 production in vitro that continued for 24 hours after the cryopreserved DCs were thawed and replated in fresh media. CONCLUSIONS This study examined criteria including DC phenotype, viability, IL-12p70 production and the ability to stimulate MLR as metrics of whole oxidized tumor lysate-pulsed DC immunogenicity and functionality. Development and optimization of this unique method is now being tested in a clinical trial of autologous oxidized tumor lysate-pulsed DC in clinical-scale in recurrent ovarian, primary peritoneal or fallopian tube cancer (NCT01132014).
Collapse
Affiliation(s)
- Cheryl L-L Chiang
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brookman-May S, Burger M, Wieland WF, Rössler W, May M, Denzinger S. Vaccination therapy in renal cell carcinoma: current position and future options in metastatic and localized disease. Expert Rev Vaccines 2011; 10:837-52. [PMID: 21692704 DOI: 10.1586/erv.11.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As renal cell carcinoma represents one of the most immune-responsive cancers, immunotherapy exhibits a suitable treatment basis. Beside nonspecific stimulation via cytokines, passive specific and active immunotherapy are also appropriate options to recognize and destroy tumor cells. For more than 30 years, research regarding vaccination therapy has been of special interest for the treatment of renal cell carcinoma. However, apart from occasional promising results in Phase I and II trials, vaccination therapy is still considered experimental in this tumor entity, especially owing to missing results from Phase III trials demonstrating clinical efficacy. In the present article, we review data from completed clinical trials of vaccination therapy and also discuss scheduled future trials, in order to assess the current position and possible future fields of application of vaccination therapy in renal cell carcinoma in the era of recently developed targeted therapies.
Collapse
Affiliation(s)
- Sabine Brookman-May
- University of Regensburg, Department of Urology, Caritas St. Josef Medical Center, Landshuter Strasse 65, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Immunologic monitoring of cellular responses by dendritic/tumor cell fusion vaccines. J Biomed Biotechnol 2011; 2011:910836. [PMID: 21541197 PMCID: PMC3085507 DOI: 10.1155/2011/910836] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/11/2010] [Accepted: 02/27/2011] [Indexed: 12/22/2022] Open
Abstract
Although dendritic cell (DC)- based cancer vaccines induce effective antitumor activities in murine models, only limited therapeutic results have been obtained in clinical trials. As cancer vaccines induce antitumor activities by eliciting or modifying immune responses in patients with cancer, the Response Evaluation Criteria in Solid Tumors (RECIST) and WHO criteria, designed to detect early effects of cytotoxic chemotherapy in solid tumors, may not provide a complete assessment of cancer vaccines. The problem may, in part, be resolved by carrying out immunologic cellular monitoring, which is one prerequisite for rational development of cancer vaccines. In this review, we will discuss immunologic monitoring of cellular responses for the evaluation of cancer vaccines including fusions of DC and whole tumor cell.
Collapse
|
33
|
Nierkens S, Janssen EM. Harnessing dendritic cells for tumor antigen presentation. Cancers (Basel) 2011; 3:2195-213. [PMID: 24212804 PMCID: PMC3757412 DOI: 10.3390/cancers3022195] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8+ and CD4+ T cells; the in vitro loading of DCs with tumor antigens.
Collapse
Affiliation(s)
- Stefan Nierkens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA, The Netherlands; E-Mail:
| | - Edith M. Janssen
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
34
|
Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbé J, Bonnotte B. Dendritic cell-tumor cell hybrids and immunotherapy: what's next? Cytotherapy 2011; 13:774-85. [PMID: 21299362 DOI: 10.3109/14653249.2011.553593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation still require optimization. An alternative technique for providing antigens to DC consists of the direct fusion of dendritic cells with tumor cells. These resulting hybrid cells may express both major histocompatibility complex (MHC) class I and II molecules associated with tumor antigens and the appropriate co-stimulatory molecules required for T-cell activation. Initially tested in animal models, this approach has now been evaluated in clinical trials, although with limited success. We summarize and discuss the results from the animal studies and first clinical trials. We also present a new approach to inducing hybrid formation by expression of viral fusogenic membrane glycoproteins.
Collapse
Affiliation(s)
- Dominique Cathelin
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, France.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Treatment of metastatic renal cell cancer is still challenging due to its resistance to conventional therapies, such as radiotherapy or chemotherapy. Immunotherapeutic approaches with IL-2 and/or IFN-alpha have become standard regimens in treating metastatic renal cell cancer. Furthermore, molecularly targeted therapies, such as VEGF-pathway inhibition or use of mammalian target of rapamycin inhibitors, have demonstrated promising results and might become even more important in the following years. Finally, vaccination therapies have gained increasing interest and have been tested in multiple clinical trials. There is a vast choice of different application and production types of these vaccines, ranging from dendritic cell-based principals to the application of naked RNA. The development of new immune-enhancing strategies led to the option of interesting, potent combination regimes. This review has a focus on vaccination therapies in renal cell cancer, especially dendritic cell-based principals, and aims to give an overview of this rapidly changing field of investigation.
Collapse
Affiliation(s)
- Annkristin Heine
- University of Bonn, Department of Hematology & Oncology, Wilhelmstrasse 35-7, 53111 Bonn, Germany
| | | | | |
Collapse
|
36
|
Balan S, Kale VP, Limaye LS. A large number of mature and functional dendritic cells can be efficiently generated from umbilical cord blood-derived mononuclear cells by a simple two-step culture method. Transfusion 2011; 50:2413-23. [PMID: 20497510 DOI: 10.1111/j.1537-2995.2010.02706.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Advances in the past two decades in dendritic cell (DC) biology paved the way to exploit them as a promising tool in cancer immunotherapy. The prerequisite for DC vaccine preparations is large-scale in vitro generations of homogeneous, mature, and functional DCs. Frequent improvements are being made in the existing in vitro DC production protocols to achieve this goal. In our previous study we reported a large-scale generation of mature, functional DCs from umbilical cord blood (UCB) CD34+ cells. Here we report that this method can be used for the efficient generation of DCs from UCB mononuclear cells (MNCs) and thus the hematopoietic stem cell isolation step is not essential. STUDY DESIGN AND METHODS MNCs or CD34+ cells isolated from the same cord blood (CB) samples were used for the generation of DCs. DCs were characterized for morphology, phenotype, and functional assays including antigen uptake, chemotaxis, and mixed leukocyte reaction. Similarly DCs generated from the MNCs of same fresh and frozen CB units were compared. RESULTS The morphologic, phenotypic, and functional characterization of the DCs generated from various sets show that they were comparable in nature irrespective of the starting population used. CONCLUSION We conclude that the CD34+ isolation step is not essential for the generation of mature, functional DCs and thus can be eliminated. More importantly, we show that DCs can be generated with equal efficiency from the MNCs of frozen CB units. Our culture method will be useful for exploiting the potential of UCB as an additional source for allogeneic DCs in the clinical settings.
Collapse
Affiliation(s)
- Sreekumar Balan
- National Centre for Cell Science, Pune University Campus, Pune, India
| | | | | |
Collapse
|
37
|
Immunotherapy for renal cell carcinoma. Clin Dev Immunol 2011; 2010:284581. [PMID: 21253521 PMCID: PMC3022170 DOI: 10.1155/2010/284581] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022]
Abstract
Immunotherapy plays a significant role in the management of renal cell carcinoma (RCC) patients with metastatic disease because RCC is highly resistant to both chemotherapy and radiation therapy. Many reports illustrate various approaches to the treatment of RCC, such as cytokine-, antigen- or dendritic cell- (DC-) based immunotherapy, and the safety and effectiveness of immunotherapy have been highlighted by multiple clinical trials. Although antitumor immune responses and clinically significant outcomes have been achieved in these trials, the response rate is still low, and very few patients show long-term clinical improvement. Recently, the importance of immune regulation by antigen-presenting cells (APC) and regulatory T cells (Treg cells) has also been discussed. The authors outline the principles of cell-mediated tumor immunotherapy and discuss clinical trials of immunotherapy for RCC.
Collapse
|
38
|
Weng D, Calderwood SK, Gong J. Preparation of a heat-shock protein 70-based vaccine from DC-tumor fusion cells. Methods Mol Biol 2011; 787:255-65. [PMID: 21898241 DOI: 10.1007/978-1-61779-295-3_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of heat-shock protein 70 peptide complexes (Hsp70.PC) after the fusion of tumor and dendritic cells (DCs) (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen-processing machinery of dendritic cells through the cell fusion process and, thus, we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and, therefore, constitutes an improved formulation of chaperone protein-based tumor vaccine.
Collapse
Affiliation(s)
- Desheng Weng
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
39
|
Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2010; 19:990-9. [PMID: 21189474 DOI: 10.1038/mt.2010.289] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this phase I/II nonrandomized trial was to assess feasibility, safety as well as immunological and clinical responses of a mRNA-based vaccination in patients with stage IV renal cell cancer using granulocyte-macrophage colony stimulating factor (GM-CSF) as adjuvant. Intradermal injections of in vitro transcribed naked mRNA, which was generated using plasmids coding for the tumor-associated antigens mucin 1(MUC1), carcinoembryonic (CEA), human epidermal growth factor receptor 2 (Her-2/neu), telomerase, survivin, and melanoma-associated antigen 1 (MAGE-A1) were performed in 30 enrolled patients. In the first 14 patients (cohort A) vaccinations were administered on days 0, 14, 28, and 42 (20 µg/antigen) while in the consecutive 16 patients (cohort B) an intensified protocol consisting of injections at days 0-3, 7-10, 28, and 42 (50 µg/antigen) was used. In both cohorts, after this induction period, vaccinations were repeated monthly until tumor progression analyzed by Response Evaluation Criteria In Solid Tumors criteria (RECIST). Vaccinations were well tolerated with no severe side effects and induced clinical responses [six stable diseases (SD) and one partial response in cohort A and nine SD in cohort B]. In cohort A, 35.7% survived 4 years (median survival 24 months) compared to 31.25% in cohort B (median survival 29 months). Induction of CD4(+) and CD8(+) T cell responses was shown for several tumor-associated antigens (TAA) using interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and Cr-release assays.
Collapse
|
40
|
Kondoh H, Okano S, Yoshida K, Yonemitsu Y, Tomita Y, Yoshikai Y, Wake N, Sueishi K. Semi-allogeneic dendritic cells injected via the intratumoural injection route show efficient antitumour effects in cooperation with host-derived professional antigen-presenting cells. Scand J Immunol 2010; 72:476-90. [PMID: 21044122 DOI: 10.1111/j.1365-3083.2010.02461.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dendritic cells (DC)-based immunotherapy is a potent anticancer modality. In DC-based immunotherapy, allogeneic DC may be an alternative source, but the usefulness of allogeneic DC in DC-based immunotherapy is still controversial. When used for immunotherapy, three factors may affect the efficiency of an allogeneic DC-driven antitumour response: (1) survival time, which is affected by T-cell alloresponses; (2) major histocompatibility complex incompatibility with the host cells in the context of antigen presentation; and (3) the role of host-derived professional antigen-presenting cells (pAPC). In addition, it is unclear which injection route is preferable when using allogeneic DC. In this study, we demonstrate that semi-allogeneic DC, which share half of the genes of the recipient, are more effective when used via the intratumoural (i.t.) injection route, rather than the subcutaneous (s.c.) injection route, for the induction of efficient antitumour effects and the generation of a significant tumour-specific CD8(+) T-cell response. The i.t. route has the advantage of not requiring ex vivo pulsation with tumour lysates or tumour antigens, because the i.t.-injected DC can engulf tumour antigens in situ. Allogeneic bone marrow transplantation (BMT) models, which permit us to separately assess the three factors described previously, show that while all three factors are important for efficient antitumour effects, the control of the alloresponse to injected DC is the most crucial for host-derived pAPC to function well when DC are administered intratumourally. This information may be useful for DC-based cancer immunotherapy under circumstances that do not allow for the use of autologous DC.
Collapse
Affiliation(s)
- H Kondoh
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Regulation of tumor immunity by tumor/dendritic cell fusions. Clin Dev Immunol 2010; 2010:516768. [PMID: 21048993 PMCID: PMC2964897 DOI: 10.1155/2010/516768] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/22/2010] [Indexed: 02/07/2023]
Abstract
The goal of cancer vaccines is to induce antitumor immunity that ultimately will reduce tumor burden in tumor environment. Several strategies involving dendritic cells- (DCs)- based vaccine incorporating different tumor-associated antigens to induce antitumor immune responses against tumors have been tested in clinical trials worldwide. Although DCs-based vaccine such as fusions of whole tumor cells and DCs has been proven to be clinically safe and is efficient to enhance antitumor immune responses for inducing effective immune response and for breaking T-cell tolerance to tumor-associated antigens (TAAs), only a limited success has occurred in clinical trials. This paper reviews tumor immune escape and current strategies employed in the field of tumor/DC fusions vaccine aimed at enhancing activation of TAAs-specific cytotoxic T cells in tumor microenvironment.
Collapse
|
42
|
Progress in Tumor-Dentritic Cell Hybrid Vaccines*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Siders WM, Garron C, Shields J, Kaplan JM. Induction of antitumor immunity by semi-allogeneic and fully allogeneic electrofusion products of tumor cells and dendritic cells. Clin Transl Sci 2010; 2:75-9. [PMID: 20443871 DOI: 10.1111/j.1752-8062.2008.00052.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunization with the electrofusion product of tumor cells and dendritic cells (DCs) is a promising approach to cancer immunotherapy. Production of electrofusion vaccines currently requires the acquisition of tumor material and must be tailored to each individual. Alternative vaccine configurations were explored in this study. Results indicated that fusion vaccines with fully syngeneic, semi-allogeneic or fully allogeneic components, were all effective in inducing specific, long-lasting antitumor immunity. This previously undescribed activity of a fully allogeneic fusion product introduces the possibility of using defined allogeneic tumor and DC lines to simplify vaccine manufacturing.
Collapse
Affiliation(s)
- William M Siders
- Genzyme Corporation, 49 New York Avenue, Framingham, Massachusetts, USA
| | | | | | | |
Collapse
|
44
|
Ilett EJ, Prestwich RJD, Melcher AA. The evolving role of dendritic cells in cancer therapy. Expert Opin Biol Ther 2010; 10:369-79. [PMID: 20132058 DOI: 10.1517/14712590903559830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE OF THE FIELD Dendritic cells (DC) are a clear choice for use in cancer immunotherapy, and much research has focused on generating DC for clinical use. Although DC therapy has been successful in inducing specific anti-tumour immune responses, these have rarely translated into clinical efficacy. AREAS COVERED IN THIS REVIEW We examine some of the components of generating DC for therapy, including their culture, antigen loading and delivery, and discuss why DC therapy has not yet delivered substantial clinical benefit. We also examine more novel approaches, such as the potential for combination DC-based immunomodulatory strategies. WHAT THE READER WILL GAIN Given the highly immunosuppressive tumour environment, many of the approaches to DC vaccination are unlikely to result in effective therapy, as even successfully primed T cells may fail to infiltrate tumours or be anergized after entry. Broader approaches against multiple tumour-associated antigens in the context of overcoming tumour immune suppression are likely to prove more successful. The combination of oncolytic viral therapy with DC vaccines may promote an inflammatory tumour environment, inducing optimal DC activation, T cell priming and effective therapy. TAKE HOME MESSAGE Evolving DC-based therapeutic strategies addressing multiple components of tumour-immune system interactions may yield substantial benefits for patients.
Collapse
Affiliation(s)
- E J Ilett
- University of Leeds, Leeds Institute of Molecular Medicine, CRUK Clinical Centre, Beckett Street, Leeds, UK
| | | | | |
Collapse
|
45
|
Abstract
Although cancer vaccines with defined antigens are commonly used, the use of whole tumor cell preparations in tumor immunotherapy is a very promising approach and can obviate some important limitations in vaccine development. Whole tumor cells are a good source of TAAs and can induce simultaneous CTLs and CD4(+) T helper cell activation. We review current approaches to prepare whole tumor cell vaccines, including traditional methods of freeze-thaw lysates, tumor cells treated with ultraviolet irradiation, and RNA electroporation, along with more recent methods to increase tumor cell immunogenicity with HOCl oxidation or infection with replication-incompetent herpes simplex virus.
Collapse
|
46
|
Hu Z, Liu S, Mai X, Hu Z, Liu C. Anti-tumor effects of fusion vaccine prepared by renal cell carcinoma 786-O cell line and peripheral blood dendritic cells of healthy volunteers in vitro and in human immune reconstituted SCID mice. Cell Immunol 2010; 262:112-9. [PMID: 20167310 DOI: 10.1016/j.cellimm.2010.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 01/07/2010] [Accepted: 01/22/2010] [Indexed: 11/17/2022]
Abstract
Dendritic cells (DC), as professional antigen presenting cells, play the central role in the process of body initiating the anti-tumor immunity, and the study on DC anti-tumor vaccine has become heated in recent years. In this study, we used polyethylene glycol (PEG) to induce renal cell carcinoma (RCC) 786-O cell line fused with peripheral blood DC of healthy volunteers, and discuss the biological characteristics of fusion vaccine and its anti-tumor effects in vitro and in human immune reconstituted SCID mice model of RCC. The study found that PEG could effectively induce cell fusion, and the expressions of CD86 and HLA-DR in fusion vaccine group were significantly up-regulated compared with the DC control group; the secretion of IL-12 was much higher and longer than that of the control; the functions of dendritic cell-tumor fusion vaccine to stimulate the proliferation of allogenic T lymphocytes and to kill RCC786-O cells in vitro were significantly higher than those of the control group, and after the killing, apoptosis body was observed in the target cells; after the injection of fusion vaccine into human immune reconstituted SCID mice model of RCC786-O via vena caudalis, the volume of mice tumor was reduced significantly, proliferation index of tumor cells decreased obviously compared with that of the control group, and more hemorrhage and putrescence focuses presented, accompanying large quantity of lymphocytes soakage. The results of this experimental study shows that fusion vaccine of RCC786-O cell line and DC can significantly stimulate the proliferation of allogenic T cells and specifically inhibit and kill RCC cells in vitro and in vivo, which makes the DC-RCC786-O fusion vaccine a possible new way of effective RCC immunotherapy.
Collapse
Affiliation(s)
- Zhi Hu
- Department of Urological Surgery, The Second Affiliated Hospital, Chongqing Medical University, Yuzhong District, Chongqing, PRC 400010, China.
| | | | | | | | | |
Collapse
|
47
|
Gervais A, Eymard JC, Toulmonde E, Bernard J. Selected allogeneic dendritic cells markedly enhance human tumour antigen-specific T cell response in vitro. Cancer Immunol Immunother 2009; 58:1831-41. [PMID: 19330330 PMCID: PMC11030287 DOI: 10.1007/s00262-009-0694-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 03/07/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alloreaction is known to accumulate several theoretical advantages that can improve dendritic cell (DC)-based anti-infective or antitumour strategies. Allogeneic DC have already been tested in experimental and clinical studies, but their efficacy compared with their autologous counterparts was rarely investigated and conclusions diverge. OBJECTIVE This study compared antigen-specific T cell responses following priming with autologous versus allogeneic DC and examined the possibility of screening these responses in order to select allogeneic DC that lead to a great amplification. RESULTS Allogeneic DC obtained from donors matched with the single HLA-A2 allele were efficient in generating in vitro peptide-specific T cell responses. When randomly chosen, allogeneic DC generated a broad range of antigen-specific T cell responses in comparison with autologous DC. When screened and selected, allogeneic DC markedly enhanced peptide-specific T cell priming and allowed a more efficient boosting of resulting T cells. These selected allogeneic DC provided a favourable cytokinic and cellular environment that can help concurrent antigen-specific responses. CONCLUSION Ex vivo selected allogeneic DC provide adjuvant effects that lead to amplification of concomitant antigen-specific T cell responses.
Collapse
Affiliation(s)
- Alban Gervais
- Institut Jean Godinot, Unité de Thérapie Cellulaire, Reims, France.
| | | | | | | |
Collapse
|
48
|
Zhou J, Weng D, Zhou F, Pan K, Song H, Wang Q, Wang H, Wang H, Li Y, Huang L, Zhang H, Huang W, Xia J. Patient-derived renal cell carcinoma cells fused with allogeneic dendritic cells elicit anti-tumor activity: in vitro results and clinical responses. Cancer Immunol Immunother 2009; 58:1587-97. [PMID: 19221746 PMCID: PMC11030900 DOI: 10.1007/s00262-009-0668-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
Renal cell carcinoma (RCC) has been shown to be susceptible to immunotherapeutic treatment strategies. In the present study, patient-derived tumor cells were fused with allogeneic dendritic cells (DC) to elicit anti-tumor activity against RCC. DC from HLA-A2+ healthy donors were fused with primary RCC cells from ten patients. Phenotype of fusion cells were characterized by flow cytometer and confocal microscopy. In vitro, T cell proliferation, IFN-gamma secretion and cytotoxic T lymphocytes (CTL) activity elicited by allogeneic DC/RCC fusion cells were assessed. Clinically, ten patients were vaccinated with allogeneic DC/RCC fusion vaccine. The adverse effects and toxicity were observed. The clinical response was evaluated by CT scans. After fusion, the created hybrids expressed both tumor associated antigen and DC-derived molecules and could stimulate the proliferation and IFN-gamma secretion of T cells as well as elicit strong CTL activity against RCC cells in vitro. In vivo, no serious adverse effects, toxicity, or signs of autoimmune disease were observed after vaccination therapy. Percentage of T lymphocyte subsets in peripheral blood of patients was increased significantly. One of ten patients exhibited a partial response with regression of lung metastases. Six patients showed stable disease with stabilization of previously progressive disease (follow up 1.5 years). The PR and SD responses, exhibited by 7/10 patients who received the allogeneic DC/RCC fusion vaccine treatment, suggest that this approach is safe and can elicit immunological responses in a significant portion of patients with RCC.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Desheng Weng
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Fangjian Zhou
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ke Pan
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Haifeng Song
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Qijing Wang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Huan Wang
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Hui Wang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Department of Urology, Cancer Center, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yongqiang Li
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Lixi Huang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Huakun Zhang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Wei Huang
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| | - Jianchuan Xia
- State Key Laboratory of Oncology in Southern China, 510060 Guangzhou, People’s Republic of China
- Biotherapy Center, Cancer Center, Sun Yat-sen University, 651 Dongfeng Road East, 510060 Guangzhou, People’s Republic of China
| |
Collapse
|
49
|
Balan S, Kale VP, Limaye LS. A simple two-step culture system for the large-scale generation of mature and functional dendritic cells from umbilical cord blood CD34+ cells. Transfusion 2009; 49:2109-21. [DOI: 10.1111/j.1537-2995.2009.02231.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Vaccine Therapy in Patients with Renal Cell Carcinoma. Eur Urol 2009; 55:1333-42. [DOI: 10.1016/j.eururo.2009.01.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/22/2009] [Indexed: 11/20/2022]
|