1
|
Ehlen QT, Mirsky NA, Slavin BV, Parra M, Nayak VV, Cronstein B, Witek L, Coelho PG. Translational Experimental Basis of Indirect Adenosine Receptor Agonist Stimulation for Bone Regeneration: A Review. Int J Mol Sci 2024; 25:6104. [PMID: 38892291 PMCID: PMC11172580 DOI: 10.3390/ijms25116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Kawai MY, Yoshida T, Kato T, Watanabe T, Kashiwagi M, Yamanaka S, Yamamoto H, Nagahiro S, Iwamoto T, Masud K, Aoki K, Ohura K, Nakao K. bmp-2 Gene-Transferred Skeletal Muscles with Needle-Type Electrodes as Efficient and Reliable Biomaterials for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:880. [PMID: 38399131 PMCID: PMC10890310 DOI: 10.3390/ma17040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Bone morphogenetic protein-2 (bmp-2) has a high potential to induce bone tissue formation in skeletal muscles. We developed a bone induction system in skeletal muscles using the bmp-2 gene through in vivo electroporation. Natural bone tissues with skeletal muscles can be considered potential candidates for biomaterials. However, our previous system using plate-type electrodes did not achieve a 100% success rate in inducing bone tissues in skeletal muscles. In this study, we aimed to enhance the efficiency of bone tissue formation in skeletal muscles by using a non-viral bmp-2 gene expression plasmid vector (pCAGGS-bmp-2) and needle-type electrodes. METHODS We injected the bmp-2 gene with pCAGGS-bmp-2 into the skeletal muscles of rats' legs and immediately placed needle-type electrodes there. Skeletal tissues were then observed on the 21st day after gene transfer using soft X-ray and histological analyses. RESULTS The use of needle-type electrodes resulted in a 100% success rate in inducing bone tissues in skeletal muscles. In contrast, the plate-type electrodes only exhibited a 33% success rate. Thus, needle-type electrodes can be more efficient and reliable for transferring the bmp-2 gene to skeletal muscles, making them potential biomaterials for repairing bone defects.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Takeshi Yoshida
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Tomoki Kato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Takuma Watanabe
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| | - Shigeki Nagahiro
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (S.N.); (T.I.)
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (S.N.); (T.I.)
| | - Khan Masud
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (K.M.); (K.A.)
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan; (K.M.); (K.A.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
- Graduate School, Division of Dental Research, Osaka Dental University, Osaka 573-1121, Japan
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (T.Y.); (T.K.); (T.W.); (M.K.); (S.Y.); (H.Y.); (K.N.)
| |
Collapse
|
3
|
Kawai MY, Ozasa R, Ishimoto T, Nakano T, Yamamoto H, Kashiwagi M, Yamanaka S, Nakao K, Maruyama H, Bessho K, Ohura K. Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer. MATERIALS 2022; 15:ma15030993. [PMID: 35160948 PMCID: PMC8840059 DOI: 10.3390/ma15030993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023]
Abstract
The application of periodontal tissue in regenerative medicine has gained increasing interest since it has a high potential to induce hard-tissue regeneration, and is easy to handle and graft to other areas of the oral cavity or tissues. Additionally, bone morphogenetic protein-2 (BMP-2) has a high potential to induce the differentiation of mesenchymal stem cells into osteogenic cells. We previously developed a system for a gene transfer to the periodontal tissues in animal models. In this study, we aimed to reveal the potential and efficiency of periodontal tissue as a biomaterial for hard-tissue regeneration following a bmp-2 gene transfer. A non-viral expression vector carrying bmp-2 was injected into the palate of the periodontal tissues of Wistar rats, followed by electroporation. The periodontal tissues were analyzed through bone morphometric analyses, including mineral apposition rate (MAR) determination and collagen micro-arrangement, which is a bone quality parameter, before and after a gene transfer. The MAR was significantly higher 3-6 d after the gene transfer than that before the gene transfer. Collagen orientation was normally maintained even after the bmp-2 gene transfer, suggesting that the bmp-2 gene transfer has no adverse effects on bone quality. Our results suggest that periodontal tissue electroporated with bmp-2 could be a novel biomaterial candidate for hard-tissue regeneration therapy.
Collapse
Affiliation(s)
- Mariko Yamamoto Kawai
- Department of Welfare, Kansai Women’s College, Osaka 582-0026, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
- Correspondence: ; Tel.: +81-72-977-6561; Fax: +81-72-977-9564
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
- Center for Aluminum and Advanced Materials Research and International Collaboration, School of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan; (R.O.); (T.I.); (T.N.)
| | - Hiromitsu Yamamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Marina Kashiwagi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Shigeki Yamanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kazumasa Nakao
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Hiroki Maruyama
- Department of Clinical Nephroscience, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8501, Japan;
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (H.Y.); (M.K.); (S.Y.); (K.N.); (K.B.)
| | - Kiyoshi Ohura
- Department of Nursing, Taisei Gakuin University, Osaka 587-8555, Japan;
| |
Collapse
|
4
|
García-García P, Ruiz M, Reyes R, Delgado A, Évora C, Riancho JA, Rodríguez-Rey JC, Pérez-Campo FM. Smurf1 Silencing Using a LNA-ASOs/Lipid Nanoparticle System to Promote Bone Regeneration. Stem Cells Transl Med 2019; 8:1306-1317. [PMID: 31631568 PMCID: PMC6877774 DOI: 10.1002/sctm.19-0145] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022] Open
Abstract
Despite the great advance of bone tissue engineering in the last few years, repair of bone defects remains a major problem. Low cell engraftment and dose‐dependent side effects linked to the concomitant administration of bone morphogenetic proteins (BMPs) are the main problems currently hindering the clinical use of mesenchymal stem cell (MSC)‐based therapies in this field. We have managed to bypass these drawbacks by combining the silencing the Smurf1 ubiquitin ligase in MSCs with the use of a scaffold that sustainably releases low doses of BMP‐2. In this system, Smurf1 silencing is achieved by using GapmeRs, a clinically safe method that avoids the use of viral vectors, facilitating its translation to the clinic. Here, we show that a single transient transfection with a small quantity of a Smurf1‐specific GapmeR is able to induce a significant level of silencing of the target gene, enough to prime MSCs for osteogenic differentiation. Smurf1 silencing highly increases MSCs responsiveness to BMP‐2, allowing a dramatic reduction of the dose needed to achieve the desired therapeutic effect. The combination of these primed cells with alginate scaffolds designed to sustainably and locally release low doses of BMP‐2 to the defect microenvironment is able to induce the formation of a mature bone matrix both in an osteoporotic rat calvaria system and in a mouse ectopic model. Importantly, this approach also enhances osteogenic differentiation in MSCs from osteoporotic patients, characterized by a reduced bone‐forming potential, even at low BMP doses, underscoring the regenerative potential of this system. stem cells translational medicine2019;8:1306&1317 The BMP‐Smad signaling cascade is an effective therapeutic target to promote bone formation. Silencing of Smurf1, a known BMP signaling inhibitor, increases the responsiveness of Mesenchymal stem cells to BMP, allowing a dramatic reduction of the doses used in the clinic to promote bone formation and therefore, avoiding secondary effects associated to the use of these factors.![]()
Collapse
Affiliation(s)
- Patricia García-García
- Department of Chemical Engineering and Pharmaceutical Technology, Institute of Biomedical Technologies (ITB), University of La Laguna, La Laguna, Spain
| | - Mario Ruiz
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics, Institute of Biomedical Technologies (ITB), University of La Laguna, La Laguna, Spain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Institute of Biomedical Technologies (ITB), University of La Laguna, La Laguna, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Institute of Biomedical Technologies (ITB), University of La Laguna, La Laguna, Spain
| | - José Antonio Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - José Carlos Rodríguez-Rey
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| | - Flor María Pérez-Campo
- Department of Molecular Biology, Faculty of Medicine, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
5
|
Controlled Non-Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Kawai M, Kataoka Y, Sonobe J, Yamamoto H, Maruyama H, Yamamoto T, Bessho K, Ohura K. Analysis of mineral apposition rates during alveolar bone regeneration over three weeks following transfer of BMP-2/7 gene via in vivo electroporation. Eur J Histochem 2018; 62. [PMID: 30089353 PMCID: PMC6119816 DOI: 10.4081/ejh.2018.2947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/31/2018] [Indexed: 02/01/2023] Open
Abstract
Alveolar bone is not spontaneously regenerated following trauma or periodontitis. We previously proposed an animal model for new alveolar bone regeneration therapy based on the non-viral BMP-2/7 gene expression vector and in vivo electroporation, which induced the formation of new alveolar bone over the course of a week. Here, we analysed alveolar bone during a period of three weeks following gene transfer to periodontal tissue. Non-viral plasmid vector pCAGGS-BMP-2/7 or pCAGGS control was injected into palatal periodontal tissue of the first molar of the rat maxilla and immediately electroporated with 32 pulses of 50 V for 50 msec. Over the following three weeks, rats were double bone-stained by calcein and tetracycline every three days and mineral apposition rates (MAR) were measured. Double bonestaining revealed that MAR of alveolar bone was at similar level three days before BMP-2/7 gene transfer as three days after gene transfer. However, from 3 to 6 days, 6 to 9 days, 9 to 12 days, 12 to 15 days, 15 to 18 days, and 18 to 20 days after, MARs were significantly higher than prior to gene transfer. Our proposed gene therapy for alveolar bone regeneration combining nonviral BMP-2/7 gene expression vector and in vivo electroporation could increase alveolar bone regeneration potential in the targeted area for up to three weeks.
Collapse
Affiliation(s)
- Mariko Kawai
- Osaka Dental University, Department of Pharmacology, Japan
| | - Yohei Kataoka
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Oral Morphology, Japan
| | - Junya Sonobe
- Department of Oral and Maxillofacial Surgery, Kyoto University, Japan
| | | | - Hiroki Maruyama
- Niigata University Graduate School of Medicine and Dental Sciences, Department of Clinical Nephroscience, Japan
| | - Toshio Yamamoto
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Oral Morphology, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Kyoto University, Japan
| | - Kiyoshi Ohura
- Osaka Dental University, Department of Pharmacology, Japan
| |
Collapse
|
7
|
Raftery RM, Mencía-Castaño I, Sperger S, Chen G, Cavanagh B, Feichtinger GA, Redl H, Hacobian A, O'Brien FJ. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J Control Release 2018; 283:20-31. [PMID: 29782946 DOI: 10.1016/j.jconrel.2018.05.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Gene-activated scaffolds have been shown to induce controlled, sustained release of functional transgene both in vitro and in vivo. Bone morphogenetic proteins (BMPs) are potent mediators of osteogenesis however we found that the delivery of plasmid BMP-2 (pBMP-2) alone was not sufficient to enhance bone formation. Therefore, the aim of this study was to assess if the use of a series of modified BMP-2 plasmids could enhance the functionality of a pBMP-2 gene-activated scaffold and ultimately improve bone regeneration when implanted into a critical sized bone defect in vivo. A multi-cistronic plasmid encoding both BMP-2 and BMP-7 (BMP-2/7) was employed as was a BMP-2-Advanced plasmid containing a highly truncated intron sequence. With both plasmids, the highly efficient cytomegalovirus (CMV) promoter sequence was used. However, as there have been reports that the elongated factor 1-α promoter is more efficient, particularly in stem cells, a BMP-2-Advanced plasmid containing the EF1α promoter was also tested. Chitosan nanoparticles (CS) were used to deliver each plasmid to MSCs and induced transient up-regulation of BMP-2 protein expression, in turn significantly enhancing MSC-mediated osteogenesis when compared to untreated controls (p < 0.001). When incorporated into a bone mimicking collagen-hydroxyapatite scaffold, the BMP-2-Advanced plasmid, under the control of the CMV promotor, induced MSCs to produce approximately 2500 μg of calcium per scaffold, significantly higher (p < 0.001) than all other groups. Just 4 weeks post-implantation in vivo, this cell-free gene-activated scaffold induced significantly more bone tissue formation compared to a pBMP-2 gene-activated scaffold (p < 0.001) as indicated by microCT and histomorphometry. Immunohistochemistry revealed that the BMP-2-Advanced plasmid accelerated differentiation of osteoprogenitor cells to mature osteoblasts, thus causing rapid healing of the bone defects. This study confirms that optimising the plasmid construct can enhance the functionality of gene-activated scaffolds and translate to accelerated bone formation in a critical sized defect.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Irene Mencía-Castaño
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Georg A Feichtinger
- Division of Oral Biology, School of Dentistry, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
8
|
Kawai M, Ohmori YK, Nishino M, Yoshida M, Tabata K, Hirota DS, Ryu-Mon A, Yamamoto H, Sonobe J, Kataoka YH, Shiotsu N, Ikegame M, Maruyama H, Yamamoto T, Bessho K, Ohura K. Determination of cell fate in skeletal muscle following BMP gene transfer by in vivo electroporation. Eur J Histochem 2017; 61:2772. [PMID: 28735515 PMCID: PMC5641669 DOI: 10.4081/ejh.2017.2772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/23/2022] Open
Abstract
We previously developed a novel method for gene transfer, which combined a non-viral gene expression vector with transcutaneous in vivo electroporation. We applied this method to transfer the bone morphogenetic protein (BMP) gene and induce ectopic bone formation in rat skeletal muscles. At present, it remains unclear which types of cells can differentiate into osteogenic cells after BMP gene transfer by in vivo electroporation. Two types of stem cells in skeletal muscle can differentiate into osteogenic cells: muscle-derived stem cells, and bone marrow-derived stem cells in the blood. In the present study, we transferred the BMP gene into rat skeletal muscles. We then stained tissues for several muscle-derived stem cell markers (e.g., Pax7, M-cadherin), muscle regeneration-related markers (e.g., Myod1, myogenin), and an inflammatory cell marker (CD68) to follow cell differentiation over time. Our results indicate that, in the absence of BMP, the cell population undergoes muscle regeneration, whereas in its presence, it can differentiate into osteogenic cells. Commitment towards either muscle regeneration or induction of ectopic bone formation appears to occur five to seven days after BMP gene transfer.
Collapse
|
9
|
Tsuchiya S, Chiba M, Kishimoto KN, Nakamura H, Tsuchiya M, Hayashi H. Transfer of the bone morphogenetic protein 4 gene into rat periodontal ligament by in vivo electroporation. Arch Oral Biol 2016; 74:123-132. [PMID: 27940045 DOI: 10.1016/j.archoralbio.2016.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/07/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Regulation of alveolar bone metabolism is required in clinical dentistry. The aim of the present study was to establish a method for gene transfer into the periodontal ligament (PDL) by in vivo electroporation with a plasmid vector and to investigate the effects of BMP-4 transfer into the PDL. DESIGN Plasmids containing mouse BMP-4 cDNA (pCAGGS-BMP4) were transfected into cultured rat PDL cells by in vitro electroporation, and BMP-4 production and secretion were detected by immunocytochemistry and western blotting. Next, pCAGGS-BMP4 was injected into the PDL of rats, and electroporation was performed in vivo, using original paired-needle electrodes. BMP-4 expression was examined by immunohistochemical staining 3, 7, 14, 21, and 28days after electroporation. Control groups were injected with pCAGGS by electroporation, injected with pCAGGS-BMP4 without electroporation, or subjected to neither injection nor electroporation. RESULTS In vitro-transfected rat PDL cells exhibited production and secretion of the mature-form BMP-4. After in vivo electroporation of pCAGGS-BMP4, site-specific BMP-4 expression peaked on day 3, gradually decreased until day 14, and was absent by day 21. We observed no unfavorable effects such as inflammation, degeneration, or necrosis. CONCLUSIONS Gene transfer by electroporation with plasmid DNA vectors has several advantages over other methods, including the non-viral vector, non-immunogenic effects, site-specific expression, simplicity, cost-effectiveness, and limited histological side effects. Our results indicate that the method is useful for gene therapy targeting the periodontal tissue, which regulates alveolar bone remodeling.
Collapse
Affiliation(s)
- Shinobu Tsuchiya
- Division of Oral Dysfunction Science, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Miyagi, 980-8575, Japan.
| | - Mirei Chiba
- Division of Oral Physiology, Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, Miyagi, 980-8575, Japan.
| | - Koshi N Kishimoto
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Miyagi, 980-8575, Japan.
| | - Harukazu Nakamura
- Department of Molecular Neurobiology, Tohoku University Graduate School of Life Sciences and Institute of Development, Aging and Cancer, Miyagi, 980-8575, Japan.
| | - Masahiro Tsuchiya
- Faculty of Health Science, Department of Nursing, Tohoku Fukushi University, Miyagi, 981-8522, Japan; Division of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Miyagi, 980-8575, Japan.
| | - Haruhide Hayashi
- Division of Oral Physiology, Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, Miyagi, 980-8575, Japan.
| |
Collapse
|
10
|
Yue J, Wu J, Liu D, Zhao X, Lu WW. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector. NANOSCALE RESEARCH LETTERS 2015; 10:203. [PMID: 25977673 PMCID: PMC4420764 DOI: 10.1186/s11671-015-0906-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/18/2015] [Indexed: 05/21/2023]
Abstract
Nanotechnology has made a significant impact on the development of nanomedicine. Nonviral vectors have been attracting more attention for the advantage of biosafety in gene delivery. Polyethylenimine (PEI)-conjugated chitosan (chitosan-g-PEI) emerged as a promising nonviral vector and has been demonstrated in many tumor cells. However, there is a lack of study focused on the behavior of this vector in stem cells which hold great potential in regenerative medicine. Therefore, in this study, in vitro gene delivering effect of chitosan-g-PEI was investigated in bone marrow stem cells. pIRES2-ZsGreen1-hBMP2 dual expression plasmid containing both the ZsGreen1 GFP reporter gene and the BMP2 functional gene was constructed for monitoring the transgene expression level. Chitosan-g-PEI-mediated gene transfer showed 17.2% of transfection efficiency and more than 80% of cell viability in stem cells. These values were higher than that of PEI. The expression of the delivered BMP2 gene in stem cells enhanced the osteogenic differentiation. These results demonstrated that chitosan-g-PEI is capable of applying in delivering gene to stem cells and providing potential applications in stem cell-based gene therapy.
Collapse
Affiliation(s)
- Jianhui Yue
- />Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Rd., Shenzhen, 518055 People’s Republic of China
- />Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Rd., Shenzhen, 518055 People’s Republic of China
| | - Jun Wu
- />Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Rd., Pokfulam, Hong Kong, 999077 People’s Republic of China
| | - Di Liu
- />Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Rd., Shenzhen, 518055 People’s Republic of China
- />Department of Pharmacology, Harbin Medical University, 157 Baojian Rd., Harbin, 150081 People’s Republic of China
| | - Xiaoli Zhao
- />Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Rd., Shenzhen, 518055 People’s Republic of China
- />Shenzhen Key Laboratory of Marine Biomedical Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Rd., Shenzhen, 518055 People’s Republic of China
| | - William W Lu
- />Department of Orthopaedic and Traumatology, The University of Hong Kong, 21 Sassoon Rd., Pokfulam, Hong Kong, 999077 People’s Republic of China
| |
Collapse
|
11
|
Shapiro G, Kallai I, Sheyn D, Tawackoli W, Koh YD, Bae H, Trietel T, Goldbart R, Kost J, Gazit Z, Gazit D, Pelled G. Ultrasound-mediated transgene expression in endogenous stem cells recruited to bone injury sites. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Ilan Kallai
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
| | - Dmitriy Sheyn
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Wafa Tawackoli
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
- Biomedical Imaging Research Institute; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Young Do Koh
- Orthopedic Surgery; Ewha Womans University; Seoul Democratic People's Republic of Korea
| | - Hyun Bae
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Tamar Trietel
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Riki Goldbart
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Joseph Kost
- Department of Chemical Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Zulma Gazit
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Dan Gazit
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| | - Gadi Pelled
- Skeletal Biotech Laboratory; Hebrew University-Hadassah Faculty of Dental Medicine; Jerusalem Israel
- Department of Surgery; Cedars-Sinai Medical Center; Los Angeles CA 90048 United States
| |
Collapse
|
12
|
Zhao X, Li Z, Pan H, Liu W, Lv M, Leung F, Lu WW. Enhanced gene delivery by chitosan-disulfide-conjugated LMW-PEI for facilitating osteogenic differentiation. Acta Biomater 2013; 9:6694-703. [PMID: 23395816 DOI: 10.1016/j.actbio.2013.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Chitosan-disulfide-conjugated LMW-PEI (CS-ss-PEI) was designed to combine the biocompatibility of chitosan and the gene delivery ability of polyethylenimine (PEI) using bio-reducible disulfide for bone morphogenetic protein (BMP2) gene delivery in mediating osteogenic differentiation. It was prepared by conjugating low molecular weight PEI (LMW-PEI) to chitosan through oxidization of thiols introduced for the formation of disulfide linkage. The structure, molecular weight and buffer capacity were characterized by Fourier transform infrared (FTIR), light scattering and acid-base titration, respectively. The reduction in molecular weight of CS-ss-PEI by the reducing agent indicated its bio-reducible property. With the increment in the LMW-PEI component, the copolymer showed increased DNA binding ability and formed denser nanocomplexes. CS-ss-PEI exhibited low cytotoxicity in COS-1, HepG2 and 293T cells over the different weight ratios. The transfection efficiency of CS-ss-PEI4 was significantly higher than that of PEI 25k and comparable with Lipofectamine in mediating luciferase expression. Its application for BMP2 gene delivery was confirmed in C2C12 cells by BMP2 expression. For inducing in vitro osteogenic differentiation, CS-ss-PEI4 mediated BMP2 gene delivery showed a stronger effect in MG-63 osteoblast cells and stem cells in terms of alkaline phosphatase activity and mineralization compared with PEI25k and Lipofectamine. This study provides a potential gene delivery system for orthopedic-related disease.
Collapse
|
13
|
Kang JW, Park KD, Choi Y, Baek DH, Cho WS, Choi M, Park JH, Choi KS, Kim HS, Yoo TM. Biodistribution and in vivo efficacy of genetically modified human mesenchymal stem cells systemically transplanted into a mouse bone fracture model. Arch Pharm Res 2013; 36:1013-22. [PMID: 23615814 DOI: 10.1007/s12272-013-0132-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have generated a great deal of interest in clinical application due to their ability to undergo multi-lineage differentiation. Recently, ex vivo genetic modification of hMSCs was attempted to increase their differentiation potential. The present study was conducted to evaluate the biodistribution and in vivo efficacy of genetically modified hMSCs. To accomplish this, Runx2, which is a key transcription factor associated with osteoblast differentiation, was transduced into hMSCs using lentiviral vectors expressing green fluorescent protein (GFP) or luciferase. Here, we developed an experimental fracture in mice femur to investigate the effects of Runx2-transduced hMSCs on bone healing and migration into injury site. We conducted bio-luminescence imaging (BLI) using luciferase-tagged vector and quantitative real-time PCR using GFP probe to investigate the biodistribution of Runx2-transduced hMSCs in the fracture model. The biodistribution of hMSC cells in the fractured femur was observed at 14 days post-transplantation upon both BLI imaging and real-time PCR. Moreover, the fractured mice transplanted with Runx2-transduced hMSCs showed superior bone healing when compared to mock-transduced hMSC and MRC5 fibroblasts which were used as control. These data suggested that transplanted genetically modified hMSCs systemically migrate to the fractured femur, where they contribute to bone formation in vivo.
Collapse
Affiliation(s)
- Jin Wook Kang
- Biotechnological Development Assistance Team, National Institute of Food and Drug Safety Evaluation, Korea Food & Drug Administration, Osong Health Technology Administration Complex, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Chengwon-gun, Chungcheongbuk-do 363-700, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Im GI. Nonviral gene transfer strategies to promote bone regeneration. J Biomed Mater Res A 2013; 101:3009-18. [PMID: 23554051 DOI: 10.1002/jbm.a.34576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022]
Abstract
Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.
Collapse
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Korea
| |
Collapse
|
15
|
Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 2012; 64:1320-30. [PMID: 22429662 DOI: 10.1016/j.addr.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/13/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
Bone formation and regeneration therapies continue to require optimization and improvement because many skeletal disorders remain undertreated. Clinical solutions to nonunion fractures and osteoporotic vertebral compression fractures, for example, remain suboptimal and better therapeutic approaches must be created. The widespread use of recombinant human bone morphogenetic proteins (rhBMPs) for spine fusion was recently questioned by a series of reports in a special issue of The Spine Journal, which elucidated the side effects and complications of direct rhBMP treatments. Gene therapy - both direct (in vivo) and cell-mediated (ex vivo) - has long been studied extensively to provide much needed improvements in bone regeneration. In this article, we review recent advances in gene therapy research whose aims are in vivo or ex vivo bone regeneration or formation. We examine appropriate vectors, safety issues, and rates of bone formation. The use of animal models and their relevance for translation of research results to the clinical setting are also discussed in order to provide the reader with a critical view. Finally, we elucidate the main challenges and hurdles faced by gene therapy aimed at bone regeneration as well as expected future trends in this field.
Collapse
|
16
|
Ectopic study of calcium phosphate cement seeded with pBMP-2 modified canine bMSCs mediated by a non-viral PEI derivative. Cell Biol Int 2012; 36:119-28. [PMID: 21899515 DOI: 10.1042/cbi20100848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have evaluated the ectopic new bone formation effects of CPC (calcium phosphate cement) seeded with pBMP-2 (plasmids containing bone morphogenetic protein-2 gene) transfected canine bMSCs (bone marrow stromal cells) mediated by a non-viral PEI (polyethylenimine) derivative (GenEscort™ II) in nude mice. Canine bMSCs were transfected with pBMP-2 or pEGFP (plasmids containing enhanced green fluorescent protein gene) mediated by GenEscort™ II in vitro, and the osteoblastic differentiation was explored by ALP (alkaline phosphatase) staining, ARS (alizarin red S) staining and RT-qPCR (real-time quantitative PCR) analysis. Ectopic bone formation effects of CPC/pBMP-2 transfected bMSCs were evaluated and compared with CPC/pEGFP transfected bMSCs or CPC/untransfected bMSCs through histological, histomorphological and immunohistochemical analysis 8 and 12 weeks post-operation in nude mice. Transfection efficiency was up ∼35% as demonstrated by EGFP (enhanced green fluorescent protein) expression. ALP and ARS staining were stronger with pBMP-2 gene transfection, and mRNA expression of BMP-2 (bone morphogenetic protein-2), Col 1 (collagen 1) and OCN (osteocalcin) in pBMP-2 group was significantly up-regulated at 6 and 9 days. Significantly higher NBV (new bone volume) was achieved in pBMP-2 group than in the control groups at 8 and 12 weeks (P<0.05). In addition, immunohistochemical analysis indicated higher OCN expression in pBMP-2 group (P<0.01). We conclude that CPC seeded with pBMP-2 transfected bMSCs mediated by GenEscort™ II could enhance ectopic new bone formation in nude mice, suggesting that GenEscort™ II mediated pBMP-2 gene transfer is an effective non-viral method and CPC is a suitable scaffold for gene enhanced bone tissue engineering.
Collapse
|
17
|
BMP-2 gene transfer under various conditions with in vivo electroporation and bone induction. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY MEDICINE AND PATHOLOGY 2012. [DOI: 10.1016/j.ajoms.2011.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR, Duffy GP, O'Brien FJ. Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:749-754. [PMID: 22213347 DOI: 10.1002/adma.201103828] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ability of nano-hydroxyapatite (nHA) particles developed in-house to act as non-viral delivery vectors is assessed. These nHA particles are combined with collagen to yield bioactive, biodegradable collagen nano-hydroxyapatite (coll-nHA) scaffolds. Their ability to act as gene-activated matrices for BMP2 delivery is demonstrated with successful transfection of mesenchymal stem cells (MSCs) resulting in high calcium production.
Collapse
Affiliation(s)
- Caroline M Curtin
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
19
|
Osawa K, Okubo Y, Nakao K, Koyama N, Bessho K. Osteoinduction by repeat plasmid injection of human bone morphogenetic protein-2. J Gene Med 2011; 12:937-44. [PMID: 21069645 DOI: 10.1002/jgm.1515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein-2 (BMP-2) is an osteoinductive protein and is considered useful for the treatment of skeletal disorders. Previous studies using BMP-2 in clinical applications have encountered difficulties, including the lack of an efficient, safe, inexpensive and simple delivery system. The gene transfer approach is a promising option for utilizing BMP-2. Although viral vector-mediated gene transfer is efficient, safety concerns prevent its clinical application for common diseases. On the other hand, plasmid-based gene transfer is a safe method and can be harnessed for practical applications. METHODS A plasmid encoding human BMP-2 (pCAGGS-BMP-2) was used and injected repeatedly (one to eight times) into the skeletal muscle of mice at a divided dose. We compared the capability of osteoinduction in the skeletal muscle of mice after gene transfer by repeat injection. BMP-2 production was assessed via immunohistochemistry, and osteoinduction was evaluated using radiography, histology and biochemical assays. RESULTS The BMP-2 gene was transferred into the skeletal muscle of mice by repeat injection using pCAGGS-BMP-2. Mature bone was frequently observed in mice injected repeatedly with pCAGGS-BMP-2 at a divided dose. This confirms that, if the total dose is fixed, repeat injection with pCAGGS-BMP-2 at a divided dose causes osteoinduction more frequently in the skeletal muscle of mice. CONCLUSIONS These results suggest the possibility of the effective clinical use of human BMP-2 gene therapy by direct DNA injection, and facilitate the clinical application of BMP-2 gene therapy.
Collapse
Affiliation(s)
- Kenji Osawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
20
|
Lü K, Zeng D, Zhang Y, Xia L, Xu L, Kaplan DL, Jiang X, Zhang F. BMP-2 gene modified canine bMSCs promote ectopic bone formation mediated by a nonviral PEI derivative. Ann Biomed Eng 2011; 39:1829-39. [PMID: 21347550 DOI: 10.1007/s10439-011-0276-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 02/11/2011] [Indexed: 12/20/2022]
Abstract
The study was to explore the effects of BMP-2 gene modified canine bone marrow stromal cells (bMSCs) mediated by a nonviral PEI derivative (GenEscort™ II) in promoting bone formation in vitro and in vivo. Canine bMSCs were cultured and transfected with plasmids containing bone morphogenetic protein-2 gene (pBMP-2) or enhanced green fluorescent protein gene (pEGFP). Gene transfection conditions were initially optimized by varying GenEscort™ II/plasmid ratios. Osteogenic differentiation of gene modified bMSCs was investigated via alkaline phosphatase (ALP) activity analysis and real-time quantitative PCR (RT-qPCR) analysis in vitro. The bone formation ability of pBMP-2 transfected bMSCs combined with apatite-coated silk scaffolds (mSS) was explored and compared with pEGFP transfected bMSCs/mSS or untreated bMSCs/mSS at 8, 12 weeks after operation. Results showed that gene transfection efficiency reached up to 36.67 ± 4.12% as demonstrated by EGFP expression. ALP staining and activity assay were stronger with pBMP-2 gene transfection, and the mRNA expression of BMP-2, bone sialoprotein (BSP), Runt-related transcription factor 2 (Runx-2), and osteopontin (OPN) up-regulated in bMSCs 3, 6, 9 days in pBMP-2 group. Besides, the tissue-engineered bone complex with pBMP-2 modified bMSCs achieved significantly increased de novo bone formation compared with control groups (p < 0.01). We conclude that pBMP-2 transfection mediated by GenEscort™ II could enhance the osteogenic differentiation of canine bMSCs and promote the ectopic new bone formation in nude mice. GenEscort™ II mediated pBMP-2 gene transfer appears to be a safe and effective nonviral method for gene enhanced bone tissue engineering.
Collapse
Affiliation(s)
- Kaige Lü
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Gazit D. Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther 2010; 19:53-9. [PMID: 20859259 DOI: 10.1038/mt.2010.190] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nonunion fractures present a challenge to orthopedics with no optimal solution. In-vivo DNA electroporation is a gene-delivery technique that can potentially accelerate regenerative processes. We hypothesized that in vivo electroporation of an osteogenic gene in a nonunion radius bone defect site would induce fracture repair. Nonunion fracture was created in the radii of C3H/HeN mice, into which a collagen sponge was placed. To allow for recruitment of host progenitor cells (HPCs) into the implanted sponge, the mice were housed for 10 days before electroporation. Mice were electroporated with either bone morphogenetic protein 9 (BMP-9) plasmid, Luciferase plasmid or injected with BMP-9 plasmid but not electroporated. In vivo bioluminescent imaging indicated that gene expression was localized to the defect site. Microcomputed tomography (µCT) and histological analysis of murine radii electroporated with BMP-9 demonstrated bone formation bridging the bone gap, whereas in the control groups the defect remained unbridged. Population of the implanted collagen sponge by HPCs transfected with the injected plasmid following electroporation was noted. Our data indicate that regeneration of nonunion bone defect can be attained by performing in vivo electroporation with an osteogenic gene combined with recruitment of HPCs. This gene therapy approach may pave the way for regeneration of other skeletal tissues.
Collapse
Affiliation(s)
- Nadav Kimelman-Bleich
- Skeletal Biotech Laboratory, Hebrew University-Hadassah Medical Center, Faculty of Dental Medicine, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y, Gazit Z, Awad H, Gazit D, Schwarz EM. Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:13-20. [PMID: 20143927 DOI: 10.1089/ten.teb.2009.0156] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While various problems with bone healing remain, the greatest clinical change is the absence of an effective approach to manage large segmental defects in limbs and craniofacial bones caused by trauma or cancer. Thus, nontraditional forms of medicine, such as gene therapy, have been investigated as a potential solution. The use of osteogenic genes has shown great potential in bone regeneration and fracture healing. Several methods for gene delivery to the fracture site have been described. The majority of them include a cellular component as the carrying vector, an approach known as cell-mediated gene therapy. Yet, the complexity involved with cell isolation and culture emphasizes the advantages of direct gene delivery as an alternative strategy. Here we review the various approaches of direct gene delivery for bone repair, the choice of animal models, and the various outcome measures required to evaluate the efficiency and safety of each technique. Special emphasis is given to noninvasive, quantitative, in vivo monitoring of gene expression and biodistribution in live animals. Research efforts should aim at inducing a transient, localized osteogenic gene expression within a fracture site to generate an effective therapeutic approach that would eventually lead to clinical use.
Collapse
Affiliation(s)
- Gadi Pelled
- Skeletal Biotechnology Laboratory, Hebrew University of Jerusalem-Hadassah Medical Campus, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Custer SK, Neumann M, Lu H, Wright AC, Taylor JP. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet 2010; 19:1741-55. [DOI: 10.1093/hmg/ddq050] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Kawai M, Maruyama H, Bessho K, Yamamoto H, Miyazaki JI, Yamamoto T. Simple strategy for bone regeneration with a BMP-2/7 gene expression cassette vector. Biochem Biophys Res Commun 2009; 390:1012-7. [PMID: 19854156 DOI: 10.1016/j.bbrc.2009.10.099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 10/20/2009] [Indexed: 11/30/2022]
Abstract
Bone morphogenetic protein (BMP) is one of the most promising candidates for bone regeneration therapy. Heterodimers of BMP family proteins, such as BMP-2/4 or BMP-2/7, are well known to have stronger osteoinduction activity than BMP homodimers. Here, we constructed a double gene cassette vector encoding BMP-2 and BMP-7, pCAGGS-BMP-2/7, and examined its potential for osteoinduction in vitro and in vivo. Expression of the pCAGGS-BMP-2/7 vector induced osteogenic differentiation in various cell lines with the same efficiency as BMP-2 and BMP-7 co-expressed from separate vectors. Moreover, the pCAGGS-BMP-2/7 vector strongly induced bone formation in rat skeletal muscle when introduced by in vivo electroporation, compared with BMP-2 or BMP-7 alone. Thus, our BMP-2/7 double gene cassette vector, or some variation of it, may be applicable for the future clinical induction of bone formation, because it does not require multiple vectors or complicated preparation.
Collapse
Affiliation(s)
- Mariko Kawai
- Department of Oral Morphology, Graduate School of Medicine and Dentistry, Okayama University, Okayama 700-8525, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y, Gazit Z, Awad H, Gazit D, Schwarz EM. Direct Gene Therapy for Bone Regeneration: Gene Delivery, Animal Models, and Outcome Measures. Tissue Eng Part A 2009. [DOI: 10.1089/ten.tea.2009.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Osteoinduction by microbubble-enhanced transcutaneous sonoporation of human bone morphogenetic protein-2. J Gene Med 2009; 11:633-41. [DOI: 10.1002/jgm.1331] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Global age-dependent differences in gene expression in response to calvarial injury. J Craniofac Surg 2009; 19:1292-301. [PMID: 18812854 DOI: 10.1097/scs.0b013e3181843609] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Children less than 2 years of age are capable of healing large calvarial defects, whereas adults have been found to lack this endogenous ability. In this study, we used microarray analysis to compare genomewide expression patterns during active regeneration after injury with calvaria in skeletally immature and mature mice. Parietal bone defects were created in 6-day-old (juvenile) and 60-day-old (adult) mice using a 4-mm trephine bit (n = 20 mice per age group). The calvarial disc was removed, leaving the underlying dura mater intact. Two weeks after injury, the region of regeneration with the underlying dura mater was harvested, and RNA was extracted for microarray analysis. The 25 most differentially upregulated genes in juvenile regenerates compared with adults were listed, as well as selected bone-related genes. In addition, QRT-PCR confirmation of specific genes was performed for validation. Juvenile regenerates expressed significantly greater amounts of BMP-2, -4, -7, as well as FGF-2 and its receptor FGFR-1. Various other growth factors were also noted to be upregulated, including IGF-2 and Ptn. This corresponded with the increased expression of markers for osteogenic differentiation of Sparc and Oc. Markers of osteoclast activity, Acp5, Ctsk, and Mmp2, were noted to be greater in juvenile regenerates compared with adults. The observation of Mmp14 upregulation, however, highlights the importance of balanced osteoclast-mediated bone resorption for ultimate healing. The 2 most differentially regulated genes, transthyretin (Ttr) and prostaglandin D2 synthase (Ptgds), highlight the potential role of retinoic acid signaling and the prostaglandin axis on skeletal regeneration. These findings underscore the multitude of biomolecular mechanisms at play, allowing juvenile calvaria to heal after injury. The identification of various growth factors and cytokines involved also suggests novel therapeutic strategies for tissue-engineering purposes.
Collapse
|
28
|
Handschin AE, Trentz OA, Hemmi S, Wedler V, Trentz O, Giovanoli P, Wanner GA. Leptin Increases Extracellular Matrix Mineralization of Human Osteoblasts From Heterotopic Ossification and Normal Bone. Ann Plast Surg 2007; 59:329-33. [PMID: 17721225 DOI: 10.1097/sap.0b013e31802f6513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heterotopic ossification (HO) is the pathologic formation of bone in soft tissue. The exact pathomechanism is unknown but probably involves a disturbed osteoblast differentiation. Leptin, known as the obesity gene, may regulate normal osteoblast function in vitro. The aim of the present in vitro study was to further analyze the pathomechanisms of HO, including a possible role of leptin in ectopic bone formation. Human osteoblasts were cultivated either from normal bone or from resected HO. Both groups were incubated with increasing doses of leptin. Phenotype expression and mineralization of extracellular matrix were measured after 7, 14, and 21 days. In both groups, leptin increased both the formation of bone nodules and Ca-45 incorporation. This is the first study to analyze the effect of leptin on bone cells from ectopic ossification. Similar to the in vitro behavior of normal osteoblasts, cells from HO respond to leptin exposure with an increased mineralization of the extracellular matrix. This mechanism may be involved in the pathogenesis of ectopic bone formation in vivo.
Collapse
Affiliation(s)
- Alexander E Handschin
- Division of Plastic, Hand and Reconstructive Surgery, University Hospital of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. ACTA ACUST UNITED AC 2007; 13:1135-50. [PMID: 17516852 DOI: 10.1089/ten.2007.0096] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many clinical conditions require regeneration or implantation of bone. This is one focus shared by neurosurgery and orthopedics. Current therapeutic options (bone grafting and protein-based therapy) do not provide satisfying solutions to the problem of massive bone defects. In the past few years, gene- and stem cell-based therapy has been extensively studied to achieve a viable alternative to current solutions offered by modern medicine for bone-loss repair. The use of adult stem cells for bone regeneration has gained much focus. This unique population of multipotential cells has been isolated from various sources, including bone marrow, adipose, and muscle tissues. Genetic engineering of adult stem cells with potent osteogenic genes has led to fracture repair and rapid bone formation in vivo. It is hypothesized that these genetically modified cells exert both an autocrine and a paracrine effects on host stem cells, leading to an enhanced osteogenic effect. The use of direct gene delivery has also shown much promise for in vivo bone repair. Several viral and nonviral methods have been used to achieve substantial bone tissue formation in various sites in animal models. To advance these platforms to the clinical setting, it will be mandatory to overcome specific hurdles, such as control over transgene expression, viral vector toxicity, and prolonged culture periods of therapeutic stem cells. This review covers a prospect of cell and gene therapy for bone repair as well as some very recent advancements in stem cell isolation, genetic engineering, and exogenous control of transgene expression.
Collapse
Affiliation(s)
- Nadav Kimelman
- Skeletal Biotech Lab, The Hebrew University of Jerusalem-Hadassah Medical Campus, Ein Kerem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Kang Y, Liao WM, Yuan ZH, Sheng PY, Zhang LJ, Yuan XW, Lei L. In vitro and in vivo induction of bone formation based on adeno-associated virus-mediated BMP-7 gene therapy using human adipose-derived mesenchymal stem cells. Acta Pharmacol Sin 2007; 28:839-49. [PMID: 17506943 DOI: 10.1111/j.1745-7254.2007.00583.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM To determine whether adeno-associated virus (AAV)-2-mediated, bone morphogenetic protein (BMP)-7-expressing human adipose-derived mesenchymal stem cells (ADMS) cells would induce bone formation in vitro and in vivo. METHODS ADMS cells were harvested from patients undergoing selective suction-assisted lipectomy and transduced with AAV carrying the human BMP-7 gene. Non-transduced cells and cells transduced with AAV serotype 2 carrying the enhanced green fluorescence protein gene served as controls. ADMS cells were qualitatively assessed for the production of BMP-7 and osteocalcin, and subjected to alkaline phosphatase (ALP) and Chinalizarin staining. A total of 2.5 x 10(6) cells mixed with type I collagen were implanted into the hind limb of severe combined immune-deficient (SCID) mice and subjected to a histological analysis 3 weeks post implantation. RESULTS Transfection of the ADMS cells achieved an efficiency of 99% at d 7. Transduction with AAV2-BMP-7 induced the expression of BMP-7 until d 56, which was markedly increased by d 7. The cells were positively stained for ALP. Osteocalcin production and matrix mineralization further confirmed that these cells differentiated into osteoblasts and induced bone formation in vitro. A histological examination demonstrated that implantation of BMP-7-expressing ADMS cells could induce new bone formation in vivo. CONCLUSION The present in vitro and in vivo study demonstrated that human ADMS cells would be a promising source of autologous mesenchymal stem cells for BMP gene therapy and tissue engineering.
Collapse
Affiliation(s)
- Yan Kang
- Department of Orthopedics, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Kimelman N, Pelled G, Gazit Z, Gazit D. Applications of gene therapy and adult stem cells in bone bioengineering. Regen Med 2007; 1:549-61. [PMID: 17465849 DOI: 10.2217/17460751.1.4.549] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone tissue engineering is an emerging field, that could become a main therapeutic strategy in orthopedics in coming years. While bone has regenerative abilities that enable the self repair and regeneration of fractures, there are extreme situations in which the extent of bone loss is too large for complete regeneration to occur. In order to achieve bone regeneration, osteogenic genes (mainly from the bone morphogenetic protein family) can be delivered either directly into the target tissue, or by using adult stem cells, which are later implanted into the target site. Engineered adult stem cells combined with biodegradable polymeric scaffolds can be implanted into target sites, with or without ex vivo culture period. Several important factors influence the success of bone engineering approaches including: choice of cell and scaffold, the vector used in order to deliver the osteogenic gene, and the osteogenic gene itself. Cutting-edge imaging technologies, bioinformatics-based analysis of gene expression and exogenous regulation of transgene expression are among the tools that are being used to optimize and control bone formation in vivo. In this review we have attempted to provide an overview of the main factors that should be considered when utilizing adult stem cells and gene therapy strategies to regenerate bone defects or to promote new bone formation in vivo.
Collapse
Affiliation(s)
- N Kimelman
- The Hebrew University of Jerusalem, Skeletal Biotechnology Laboratory, Hadassah Medical Campus, Ein Kerem, PO Box 12272, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
32
|
Park J, Lutz R, Felszeghy E, Wiltfang J, Nkenke E, Neukam FW, Schlegel KA. The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-implant bone defects. Biomaterials 2007; 28:2772-82. [PMID: 17339051 DOI: 10.1016/j.biomaterials.2007.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/08/2007] [Indexed: 11/26/2022]
Abstract
Successful bone-implant osseointegration in large peri-implant bone defects is often difficult, even through autologous bone grafting. Recently, cell-mediated regional gene therapy was introduced to deliver potent morphogens or growth factors in regenerative medicine. We applied liposomal vectors carrying bone morphogenetic protein (BMP)-2 cDNA directly into freshly created peri-implant bone defects on pig calvariae, with or without autologous bone graft. The BMP-2 gene was efficiently introduced into immigrating cells and trabecular cells lining the marginal bone surrounding the bony defect. After 1 week, abundant BMP-2 protein was detected throughout the peri-implant bone defect by immunohistochemistry. At 4 weeks, BMP-producing cells were still present in the defect and peri-implant area, which significantly enhanced new bone formation, compared with the control groups. Interestingly within a week of BMP-2 gene delivery with bone grafts, most osteoblastic cells lining the grafted bone chips also produced BMP-2. Particulated bone was immediately reorganized into newly formed trabecular bone. Grafted bone without BMP-2 gene delivery was still scattered and new bone matrix formation was not detected until 4 weeks after bone grafting. In conclusion, direct application of the BMP-2 gene using a liposomal vector enhanced bone regeneration in a bony defect and gene delivery combined with bone graft could induce a rapid osseointegration of the bone-implant interface at earlier stage.
Collapse
Affiliation(s)
- J Park
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glueckstrasse 11, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Wan DC, Aalami OO, Wang Z, Nacamuli RP, Lorget F, Derynck R, Longaker MT. Differential gene expression between juvenile and adult dura mater: a window into what genes play a role in the regeneration of membranous bone. Plast Reconstr Surg 2006; 118:851-861. [PMID: 16980845 DOI: 10.1097/01.prs.0000232366.23897.2b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although reossification of large calvarial defects is possible in children, adults lack this tissue engineering capacity. In this study, the authors compared the differences in gene expression between juvenile and adult dura mater using a mouse cDNA microarray with 42,000 unique elements. METHODS Non-suture-associated parietal bone was harvested from 6-day-old and 60-day-old mice. The dura mater was carefully dissected from the calvarial disk and snap-frozen. RNA was extracted from pooled dura mater for microarray analysis. The 25 most differentially expressed genes were listed, as were selected bone-related genes. In addition, quantitative real-time reverse-transcriptase polymerase chain reaction confirmation of selected genes-BMP-2, BMP-4, and BMP-7; and osteopontin (OP), osteocalcin (OC), and FGFR-1-was performed. RESULTS Juvenile dura mater expressed significantly greater amounts of BMP-2 and OP. Minimal difference in OC expression was observed between juvenile and adult dura mater. Extracellular matrix proteins (Col3a1, 5a1, 6a1, and fibronectin 1), osteoblast differentiation markers (Runx2/Cbfa1, Itm2a, and FGFR-1), and the growth factor Ptn were among other genes with greater expression in juvenile dura mater. Markers of osteoclasts (Acp5, MMP9, Ctsk) and the multiple candidate gene Ntrk2 were also expressed at higher levels in the juvenile dura mater. CONCLUSIONS These findings suggest a more differentiated osteoprogenitor population to exist along with a greater presence of osteoclasts in the juvenile dura mater relative to adults. In addition to establishing a baseline difference in gene expression between juvenile and adult dura mater, new genes potentially critical to the regenerative potential of juvenile calvaria were identified.
Collapse
Affiliation(s)
- Derrick C Wan
- Stanford and San Francisco, Calif. From the Department of Surgery, Stanford University School of Medicine, Stanford University, and the Departments of Surgery and Cell and Tissue Biology, University of California, San Francisco
| | | | | | | | | | | | | |
Collapse
|
34
|
Kawai M, Bessho K, Maruyama H, Miyazaki JI, Yamamoto T. Simultaneous gene transfer of bone morphogenetic protein (BMP) -2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression. BMC Musculoskelet Disord 2006; 7:62. [PMID: 16887039 PMCID: PMC1557501 DOI: 10.1186/1471-2474-7-62] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/03/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. METHODS First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. RESULTS In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a time-dependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP-4-expressing cells resided in the matrix between muscle fibers. CONCLUSION The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.
Collapse
Affiliation(s)
- Mariko Kawai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroki Maruyama
- Division of Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8120, Japan
| | - Jun-ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Medical School, Osaka 565-0871, Japan
| | - Toshio Yamamoto
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
35
|
Kawai M, Bessho K, Maruyama H, Miyazaki JI, Yamamoto T. Human BMP-2 gene transfer using transcutaneous in vivo electroporation induced both intramembranous and endochondral ossification. ACTA ACUST UNITED AC 2006; 287:1264-71. [PMID: 16247797 DOI: 10.1002/ar.a.20245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It has been generally accepted that bone morphogenetic protein-2 (BMP-2) can induce osteogenesis in skeletal muscles via endochondral ossification. However, it is not clear how the ossification process occurs after the BMP-2 gene transfer to skeletal muscles in rats using in vivo electroporation. In this study, we evaluated the ossification process by BMP-2 gene transfer using in vivo electroporation. The gastrocnemius muscles of Wistar rats were injected with human BMP-2 gene expression vector (pCAGGS-BMP-2), followed by electroporation under the condition of 100 V, 50 msec per 1 sec, x8. Light and electron microscopic and radiographic analyses were performed at 1, 3, 5, 7, and 10 days after treatment. At 7 days, no sign of cartilage and/or bone formation was detected. However, at 10 days after in vivo electroporation, soft X-ray analysis revealed small lucent areas around the plasmid-injected region. Clusters of both cartilage tissues, leading to endochondral ossification and intramembranous bones of various sizes, were observed between muscle fibers. RT-PCR detected osteocalcin mRNA, showing bone formation at 10 days. Our findings strongly suggest that BMP-2 gene transfer using in vivo electroporation induces not only endochondral ossification but also intramembranous ossification.
Collapse
Affiliation(s)
- Mariko Kawai
- Department of Oral Morphology, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | |
Collapse
|
36
|
Varkey M, Gittens SA, Uludag H. Growth factor delivery for bone tissue repair: an update. Expert Opin Drug Deliv 2005; 1:19-36. [PMID: 16296718 DOI: 10.1517/17425247.1.1.19] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Growth factors (GFs) are endogenous proteins capable of acting on cell-surface receptors and directing cellular activities involved in the regeneration of new bone tissue. The specific actions and long-term effects of GFs on bone-forming cells have resulted in exploration of their potential for clinical bone repair. The concerted efforts have led to the recent approval of two GFs, bone morphogenetic protein-2 and osteogenic protein-1, for clinical bone repair, and human parathryroid hormone (1-34) for augmentation of systemic bone mass. This review provides a selective summary of recent (2001-2004) attempts for GF delivery in bone tissue regeneration. First, a summary of non-human primate studies involving local regeneration and repair is provided, with special emphasis on the range of biomaterials used for GF delivery. Next, efforts to administer GFs for systemic augmentation of bone tissue are summarised. Finally, an alternative means of GF delivery, namely the delivery of genes coding for osteogenic proteins, rather than the delivery of the proteins, is summarised from rodent models. To conclude, future avenues of research considered promising to enhance the clinical application of GFs are discussed.
Collapse
Affiliation(s)
- Mathew Varkey
- University of Alberta, Department of Chemical & Materials Engineering, Faculty of Engineering, 526 Chemical and Materials Engineering Building, Edmonton, Alberta T6G 2G6, Canada
| | | | | |
Collapse
|
37
|
Sugiyama O, An DS, Kung SPK, Feeley BT, Gamradt S, Liu NQ, Chen ISY, Lieberman JR. Lentivirus-mediated gene transfer induces long-term transgene expression of BMP-2 in vitro and new bone formation in vivo. Mol Ther 2005; 11:390-8. [PMID: 15727935 DOI: 10.1016/j.ymthe.2004.10.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 10/28/2004] [Indexed: 12/23/2022] Open
Abstract
We examined the potential of ex vivo gene therapy to enhance bone repair using lentiviral vectors encoding either enhanced green fluorescent protein (EGFP) as a reporter gene or bone morphogenetic protein-2 (BMP-2) downstream of either the cytomegalovirus immediate early (CMV) promoter or the murine leukemia virus long terminal repeat (RhMLV) promoter derived from a murine retrovirus adapted to replicate in a rhesus macaque. In vitro, rat bone marrow stromal cells (BMSCs) transduced with Lenti-CMV-EGFP or Lenti-RhMLV-EGFP demonstrated over 90% transduction efficiency at 1 week and continued to demonstrate stable expression for 8 weeks. ELISA results demonstrated that lentivirus-mediated gene transfer into BMSCs induced stable BMP-2 production in vitro for 8 weeks. Increased EGFP and BMP-2 production was noted with the RhMLV promoter. In addition, we implanted BMSCs transduced with Lenti-RhMLV-BMP-2 into a muscle pouch in the hind limbs of severe combined immune deficient mice. Robust bone formation was noted in animals that received Lenti-RhMLV-BMP-2 cells at 3 weeks. These results demonstrate that lentiviral vectors expressing BMP-2 can induce long-term gene expression in vitro and new bone formation in vivo under the control of the RhMLV promoter. Prolonged gene expression may be advantageous when developing tissue engineering strategies to repair large bone defects.
Collapse
Affiliation(s)
- Osamu Sugiyama
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Harwood PJ, Giannoudis PV. Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf 2005; 4:75-89. [PMID: 15709900 DOI: 10.1517/14740338.4.1.75] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bone morphogenetic proteins (BMPs) have been extensively studied since the discovery of agents within bone that could induce bone formation at ectopic sites by Urist in the 1960s. Extensive preclinical research has been carried out showing the efficacy of these products in promoting bone healing. Clinical trials are encouraging, with meta-analysis of results revealing better rates of healing than treatment with autologous bone grafting (risk ratio [RR]: 0.845; 95% confidence interval [CI]: 0.772 - 0.924; p < 0.001 for clinical outcome and RR: 0.884; 95% CI: 0.825 - 0.948; p < 0.001 for radiological outcome). Preclinical and clinical safety assessments have revealed little evidence of toxic effects and there have been few reports of adverse events related to their use. A small rate of immunological reaction following administration, resulting in antibody formation, has been observed in some patients, without clinical consequence, although the long-term implications of this are unknown. Ongoing research is revealing that BMPs act on an extremely wide range of body tissues in a variety of manners and this is far from fully understood. It should be noted, however, that given the role of BMP as a differentiation factor, the production of undifferentiated neoplastic tissue seems unlikely. It has also been shown in an animal model that artificially administered BMP can cross the placenta and subsequently be detected in the growing embryo. As this area has been little investigated, use in pregnancy is currently contraindicated. Until the long-term safety profile is more fully documented it would seem sensible to continue to carefully control use and monitor patients closely. However, the current evidence is very promising.
Collapse
Affiliation(s)
- Paul J Harwood
- Leeds University and St. James' University Hospital, Academic Department Orthopaedic Trauma Surgery, Leeds, UK
| | | |
Collapse
|